- 95-428 Knill O.
- Determinants of random Schroedinger operators arrizing from
lattice gauge fields
(68K, LaTeX)
Sep 21, 95
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. For a class of bounded random
selfadjoint operators
$(Lu)(n)=\sum_{i=1}^d A_i(n) u(n+e_i)+A_i^*(n-e_i) u(n-e_i)$,
determined by a discrete abelian or nonabelian $U(N)$
lattice gauge field $n \mapsto (A_1(n), \dots, A_d(n))$ on $\ZZ^d$,
the potential theoretic
logarithmic energy $I(L)=-\int \int \log |E-E'| \; dk(E) \; dk(E')$
of the density of states $dk$ of $L$ is finite and satisfies
$I(L)=-\log|\det(L^{(2)}|$, where $L^{(2)}$ is the two particle
Hamiltonian of $L$. For the $n$-particle Hamiltonians
$L^{(n)}$ defined on the $n$ particle subspace of the Fock space,
we show the existence of ergodic or gauge invariant minimizers of
the height functionals $I_n(L)=-\log |\det(L^{(n)})|$. We prove
$I_n(L) \in [-\log(\sqrt{2nd}),0]$ and
$I_n(L) \sim {\rm EulerGamma}/2-\log(\sqrt{dn}) + o(1)$
for $n \rightarrow \infty$.
A random walk expansion for
$I_{n,\beta}(L)=-\log |\det(L^{(n)}-\beta)|$ identifies
$\det(1-z L^{(n)})$ as a dynamical zeta function.
- Files:
95-428.tex