- 95-188 Anton Bovier, V\'eronique Gayrard
- An almost sure large deviation principle for the Hopfield model
(326K, PS)
Apr 3, 95
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We prove a large deviation principle for the finite dimensional
marginals of the Gibbs distribution of the macroscopic `overlap'-parameters
in the Hopfield model in the case where the number of random patterns, $M$,
as a function of the system size $N$ satisfies $\limsup M(N)/N=0$.
In this case the rate function (or free energy as a function of the overlap
parameters) is independent of the disorder for almost all realization
of the patterns and given by an explicit variational formula.
- Files:
95-188.src(
desc ,
95-188.ps )