- 19-41 Massimiliano Berti, Philippe Bolle
- Quasi-periodic solutions of nonlinear wave equations on Td
(3934K, PDF)
Jun 20, 19
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider autonomous nonlinear wave equations (NLW)
\[
u_{tt} −\Delta +V(x)u+g(x,u)=0, x \in \mathbb{T}^d \equiv \mathbb{R}^d/(2\pi\mathbb{Z})d
\]
in any space dimension $d \ge 1$, where
$ V(x) \in C^\infty( \mathbb{T}^d, \mathbb{R})$ is a real valued
multiplicative potential and the nonlinearity $g \in C^\infty( \mathbb{T}^d imes \mathbb{R}, \mathbb{R})$ has
the form $g(x, u) = a(x)u^3 + O(u^4)$
with $ a(x)\in C^\infty( \mathbb{T}^d, \mathbb{R})$
We require that −\Delta +V(x) > eta Id, eta > 0.
This condition is satisfied,
in particular, if the potential V (x) \ge 0 and V (x)
ot\equiv ≡ 0. In this
Monograph we prove the existence of small amplitude time
quasi-periodic solutions of (NLW).
- Files:
19-41.src(
19-41.keywords ,
Mono_Berti_Bolle.pdf.mm )