- 18-92 Paul Federbush
- A Set of Conjectured Identities for Stirling Numbers of the First Kind
(9K, latex)
Aug 28, 18
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Given an integer g, g > 1, an integer w, -1 < w < g - 1, and a set of g distinct numbers, c_1, ..., c_g, we present a conjectured identity for Stirling numbers of the first kind. We have proven all the equalities in case g < 7; and for the case g = 7, provided w < 4. These expressions arise from an aspect of the study of the dimer-monomer problem on regular graphs.
- Files:
18-92.src(
18-92.comments ,
18-92.keywords ,
v1_draft_stirling.tex )