- 09-82 Vincenzo Grecchi, Marco Maioli, Andre' Martinez
- Pade' summability of the cubic oscillator
(306K, pdf)
May 26, 09
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We prove the Pad\'e (Stieltjes) summability
of the perturbation series of the energy levels of the
cubic anharmonic oscillator, $H_1(\beta)=p^2+x^2+i\sqrt{\beta} x^3$, as
suggested by the numerical studies of Bender and Weniger. At the same time, we give a simple and independent proof of the positivity of the eigenvalues of the $\mathcal{PT}$-symmetric operator $H_1(\beta)$ for real $\beta$ (Bessis-Zinn Justin conjecture). All the $n\in\N$ zeros of an eigenfunction, real at $\beta=0$, become complex with negative imaginary part, for complex, non-negative $\beta\neq 0$.
- Files:
09-82.src(
09-82.comments ,
09-82.keywords ,
pade_sum09.pdf.mm )