- 09-21 B. Messirdi, A. Senoussaoui
- Resonances for a General Hamiltonian in the Born-Oppenheimer Approximation
(221K, LaTeX 2e)
Feb 8, 09
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We study the discrete spectrum of a
general class of Born-Oppenheimer Hamiltonians of the type:
\begin{equation*}
H=-h^{2}\Delta _{x}+P\left( x,y,D_{y}\right) \text{ on }L^{2}\left( \mathbb{R%
}_{x}^{n}\times \mathbb{R}_{y}^{p}\right) ,n,p\in \mathbb{N}^{\ast }
\end{equation*}%
{\small when }$h${\small \ tends to }$0^{+}${\small , here }$P\left(
x,y,D_{y}\right) ${\small \ is a pseudodifferential operator on }$%
L^{2}\left( \mathbb{R}_{y}^{p}\right) .$ {\small In the case where the first
eigenvalue }$\lambda _{1}\left( x\right) ${\small \ of }$P\left(
x,y,D_{y}\right) ${\small \ on }$L^{2}\left( \mathbb{R}_{y}^{p}\right) $%
{\small \ admits one non degenerate point-well, we obtain WKB-type
expansions for all order in }${\small h}^{{\small 1/2}}${\small \ of
eigenvalues (in the interval }$[0,C_{0}h],${\small \ }$C_{0}>0)${\small \
and associated normalized eigenfunctions of }$H,${\small \ and this for all
orders in }$h^{1/2}$.
- Files:
09-21.src(
09-21.comments ,
09-21.keywords ,
Resonances08.tex ,
Resonances08.pdf.mm )