- 04-381 Rutwig Campoamor-Stursberg
- A new matrix method for the Casimir operators of the Lie algebras
$w\frak{sp}\left( N,\mathbb{R}\right) $ and $I\frak{sp}\left(
2N,\mathbb{R}\right) $.
(254K, PDF)
Nov 13, 04
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. A method is given to determine the Casimir operators of the perfect Lie
algebras $w\frak{sp}\left( N,\mathbb{R}\right) =\frak{sp}\left(
2N,\mathbb{R}\right) \overrightarrow{\oplus}_{\Gamma_{\omega_{1}}\oplus
\Gamma_{0}}\frak{h}_{N}$ and the inhomogeneous Lie algebras
$I\frak{sp}\left( 2N,\mathbb{R}\right) $ in terms of polynomials associated to a parametrized $\left(2N+1\right)\times\left( 2N+1\right) $-matrix. For the inhomogeneous symplectic algebras this matrix is shown to be associated to a faithful representation.\newline The method is extended to other classes of Lie algebras, and some applications to the missing label problem are given.
- Files:
04-381.src(
04-381.keywords ,
Camp220904#2#.pdf.mm )