- 04-304 Barry Simon, Andrej Zlatos
- Higher-Order Szego Theorems With Two Singular Points
(42K, LaTeX 2e)
Sep 23, 04
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We consider probability measures, $d\mu=w(\theta) \f{d\theta}{2\pi} +d\mu_\s$, on the unit circle, $\partial\bbD$, with Verblunsky coefficients, $\{\alpha_j\}_{j=0}^\infty$.
We prove for $\theta_1\neq\theta_2$ in $[0,2\pi)$ and $(\delta\beta)_j=\beta_{j+1}$ that
\[
\int [1-\cos(\theta-\theta_1)][1-\cos(\theta-\theta_2)] \log w(\theta) \, \f{d\theta}{2\pi} >-\infty
\]
if and only if
\[
\sum_{j=0}^\infty \, \bigl|\bigl\{(\delta -e^{-i\theta_2}) (\delta
-e^{-i\theta_1}) \alpha\bigr\}_j\bigr|^2 +\abs{\alpha_j}^4 <\infty
\]
We also prove that
\[
\int (1-\cos\theta)^2 \log w(\theta)\, \f{d\theta}{2\pi} >-\infty
\]
if and only if
\[
\sum_{j=0}^\infty \abs{\alpha_{j+2}-2\alpha_{j+1} +\alpha_j}^2 + \abs{\alpha_j}^6 <\infty
\]
- Files:
04-304.src(
04-304.keywords ,
sz_2004.TEX )