- 03-248 Timoteo Carletti
- The $1/2$--Complex Bruno function and the Yoccoz function.
A numerical study of the Marmi--Moussa--Yoccoz Conjecture.
(6259K, postscript file)
May 30, 03
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We study the $1/2$--Complex Bruno function and we produce an algorithm
to evaluate it numerically, giving a characterization of the
monoid $\hat{\mathcal{M}}=\mathcal{M}_T\cup \mathcal{M}_S$.
We use this algorithm to test the Marmi--Moussa--Yoccoz Conjecture about the
H\"older continuity of the function $z\mapsto -i\mathbf{B}(z)+
\log U\!\left(e^{2\pi i z}\right)$ on $\{ z\in \mathbb{C}: \Im z \geq 0 \}$, where $\mathbf{B}$ is the $1/2$--complex
Bruno function and $U$ is the Yoccoz function. We give a positive
answer to an explicit question of S. Marmi et al~\cite{MMYc}.
- Files:
03-248.src(
03-248.keywords ,
carletti.ps )