- 00-370 Hundertmark D., Simon B.
- An Optimal L^p-Bound on the Krein Spectral Shift Function
(23K, AMS-LaTeX)
Sep 18, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. [{\it Note}: This paper supplants B. Simon's preprint, ``$L^p$ bounds on
the Krein spectral shift," which has been withdrawn.]
\medskip
Let $\xi_{A,B}$ be the Krein spectral shift function for a pair of operators $A,B$,
with $C=A-B$ trace class. We establish the bound
\begin{displaymath}
\int F(\abs{\xi_{A,B}(\lambda)})\, d\lambda
\le
\int F(\abs{\xi_{\abs{C},0}(\lambda)})\, d\lambda
=
\sum_{j=1}^\infty \big[F(j)-F(j-1)]\mu_j(C),
\end{displaymath}
where $F$ is any non-negative convex function on $[0,\infty)$ with $F(0)=0$ and
$\mu_j(C)$ are the singular values of $C$. Specializing to $F(t)=t^p$, $p\ge 1$
this improves a recent bound of Combes, Hislop, and Nakamura.
- Files:
00-370.tex