- 00-285 Ricardo Weder
- Multidimensional Inverse Scattering for the Nonlinear Klein-Gordon
Equation with a Potential
(37K, Latex)
Jul 7, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. In this paper we solve the multidimensional inverse scattering problem for the nonlinear Klein-Gordon equation on $\ER^n, n \geq 2$:
$$ \frac{\partial^2}{\partial t^2} u(x,t) -\Delta u(x,t)+ u(x,t) + V_0(x)
u(x,t) +\sum_{j=1}^{\infty} V_j(x) |u|^{2(j_0+j)} u(x,t)=0.
$$
We prove that the small-amplitude limit of the scattering operator determines
uniquely all the $V_j, j=0,1, \cdots $. Our proof gives, as well, a method for the
reconstruction of the $V_j, j=0,1, \cdots$.
- Files:
00-285.src(
00-285.keywords ,
kgn.tex )