- 00-253 J. Buzzi
- No or infinitely many a.c.i.p. for piecewise expanding C^r maps in higher dimensions
(215K, postscript)
Jun 1, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. On the interval, any piecewise expanding map which is a little more than C^1 has a finite, noin-zero number of ergodic absolutely continuous invariant probability measures (acip). In higher dimension this is no longer true, even assuming C^r smoothness with arbitrarily large r. We show that there are examples with no acip, and others with infinitely many acip. We build on a previous example of M. Tsujii.
- Files:
00-253.src(
00-253.keywords ,
modtsj.ps )