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Abstract

Time-discrete non-relativistic classical dynamics for d degrees
of freedom is here formulated in a new way: Discrete approxima-
tions to the action (i.e. the time integral of the Lagrangian) deter-
mine the new state from a given one, and no differential equations
or discretized differential equations are being used. The basis for
this dynamical law is a formulation of initial conditions by posi-
tion and d+1 velocities. The mean value of these velocities corre-
sponds to the ordinary initial velocity. The dynamical law works
as follows: for an initial configuration we consider d+1 rectilinear
paths corresponding to the d+1 velocities of the initial condition.
After a time step τ all paths change their velocity in such a man-
ner, that they re-unite after a second time step τ. The principle of
stationary action is then applied to these paths to determine the
position of the merging point. The d+1 new velocities are taken
as the velocities associated with the sub-paths of the second time
step.

The method is as straightforward and as careless about achiev-
ing numerical accuracy as the Euler discretization of differential
equations. It turns out, however, that it is closely related—both
in explicit representation and in performance—to the more pow-
erful symplectic integration methods for Hamiltonian systems. If
the spread of the velocities is adjusted suitably, the method also
accounts for the lowest order quantum correction to the motion of
the center of a wave packet.
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1 Initial Remark

This article is a revision of [1]. It adds some important details, mainly
on relations to quantum theory, relates the results more explicitly to
the literature, and corrects the misprints that spoiled equations (21)
and (65) of [1].

2 Introduction

Hamilton’s principle of stationary action (’principle of least action’ [2],
[4]) expresses classical mechanics in a concise and economic manner.
With respect to the central problem of dynamics, which is finding the
system trajectory from given initial conditions, this principle works
rather indirectly: only after having transformed the variation princi-
ple into the corresponding Euler-Lagrange differential equations, we
are in a position to calculate future system states from a given one.

Feynman’s path integral representation of quantum mechanical tran-
sition amplitudes [3] shows that the ‘selection of the path of least ac-
tion’ can be interpreted in a causal manner: partial waves propagate,
interfere, and create the illusion of a trajectory along the space-time
points of maximum constructive interference. In Feynman’s words [2]:
‘So our principle of least action is incompletely stated. It isn’t that a
particle takes the path of least action but that it smells all the paths
in the neighborhood and chooses the one that has the least action by a
method analogous to the one by which light chose the shortest time.’

This paper describes what is essentially a mathematical formulation of
this concept in the framework of classical mechanics. It will be shown
that the infinite manifold of paths to be considered in quantum me-
chanics can be reduced to a finite number in classical mechanics. This
number is d+1 for a system of d degrees of freedom. Maximum con-
structive interference will be described as the condition of having equal
action along the interfering paths.

These d+1 paths will be organized in a way that minimum deviation
from the notion of a classical trajectory is necessary: Whereas each
point of a traditional trajectory has a unique velocity vector associated
with it, the present formulation associates d+1 velocities with a trajec-
tory point. The mean value of these velocities corresponds to the ordi-
nary velocity, and the spread in velocity allows the particle ‘to smell the
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neighborhood’: shortly after the space-time point to which the veloci-
ties were attributed, the particle ‘occupies’ d+1 different space points
and is influenced by the physical quantities (e.g. potentials) valid at
these space points. After the elapse of a time step ∆t, the ‘non-localized’
state has contracted again to a point, again having d+1 velocities as-
sociated with it. It is only this point in which the system state can
be compared with a state of the traditional trajectory according to the
rule introduced already: space-time points correspond directly, and the
mean value of the d+1 velocities corresponds to the ordinary velocity.

The essential point is, that this new state is determined from the ac-
tions along the d+1 paths by the condition of ‘maximum constructive
interference’. No intermediate differential equation is needed. Since
this determines the system state after elapse of a finite time step, it
defines the time evolution operator of a time-discrete dynamical sys-
tem.

Since the traditional trajectory obeys the Euler-Lagrange differential
equations, and the present method produces states which approximate
such trajectory states on a lattice of time points, the method can also
be interpreted as generating an integrator of the Euler-Lagrange dif-
ferential equations in the sense of numerical analysis. This integrator
can directly be compared with known integrators for these differential
equations, and this will be done on various levels. A close relation to
known symplectic integrators will become apparent.

Looking only at the integrator, one has not to concern oneself with the
ingredients of its derivation: a continuum of states, in which only a dis-
crete subset allows an interpretation as a classical particle, and which
behaves quantum mechanically in so far, as velocity spread and posi-
tion spread never vanish at the same time. Also the derivation itself
can be interpreted in a more conventional way: In essence, it says that
the ‘least-action path’ is determined by an algebraic equation if we re-
strict the search to a subset of paths which allows a sufficiently sim-
ple parametrization and which is sufficient to represent the trajectory
over the time step of the integrator. Having looked at the matter from
various directions, I hope that the present formulation of the method,
which introduces a fixed system of ‘smelling’-paths and which considers
the descriptors of these paths—the d+1 velocities mentioned above—
as dynamical variables of the system1, offers a good starting point for
further development.

1this means that initial conditions have to specify values for these quantities
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3 A single particle in one dimension

This section describes the method for a system of one degree of freedom
for which the basic equations are very simple, and interesting struc-
tural properties, such as symplecticity and motion reversal invariance,
can easily be verified.

We assume a Lagrangian

L(v;x; t) = T(v)�V(x; t) =
m
2

v2�V(x; t) : (1)

The intrinsic meaning of this can be seen in associating the action

S(x; t;x; t) := (t� t)

�
T

�
x�x
t� t

�
�V

�
x+x

2
;
t+ t

2

��
(2)

with a pair (x; t);(x; t) of space-time points2 which are sufficiently close
together that all relevant system paths connecting them can be consid-
ered recti-linear and thus identical. At the next level of detail, we add
to the descriptors of a short path an intermediate point (x0; t 0). Again,
the paths between the points can be considered rectilinear. We asso-
ciate with the corresponding triplet of points (or with the piecewise
rectilinear path they are representing) the action

S(x; t;x0; t 0;x; t) :=

(t 0� t)T

�
x0�x
t 0� t

�
+(t� t 0)T

�
x�x0

t� t 0

�
� (t� t)V

�
x0; t 0

�
(3)

= (t 0� t)L

�
x0�x
t 0� t

;x0; t 0
�
+(t� t 0)L

�
x�x0

t� t 0
;x0; t 0

�
;

which enjoys the obvious consistency property

S(x; t;x; t) = S(x; t; x+x
2 ;

t+t
2 ;x; t) ;

which would not hold if (3) would be replaced by the trivial definition

S(x; t;x0; t 0;x; t) := S(x; t;x0; t 0)+S(x0; t 0;x; t):

At the starting point (x; t) of a trajectory, we are given the velocity v and
ask for the system state (v;x) at time t = t+∆t = t+2τ. The function (3)

2to be called simply points in the sequel
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allows to formulate an equation which determines this state if we spec-
ify, in addition to v, a velocity spread ∆v: This then defines two paths
from (x; t) to (x; t) for which the condition of constructive interference
can be posed in the form

S(x; t;x+(v+∆v)τ; t+ τ;x; t) = S(x; t;x+(v�∆v)τ; t+ τ;x; t) : (4)

If x is found from this central equation of this section, the new velocity
is given by

v=
x�x

τ
�v ; (5)

as will become clear soon. In order to express the solution x of (4) com-
pactly, we need some notation:

v1 := v+∆v ; v2 := v�∆v ; x0p := x+ τvp ; t 0 := t+ τ (6)
Sp := S(x; t;x0p; t

0;x; t) ; p2 f1;2g (7)

The actions Sp
3, which allow to express (4) simply as

S1 = S2 ; (8)

are given by (1) and (3) as

Sp = Tp�Vp ; (9)

Tp =
τ
2

mv2
p+

τ
2

m

����x�x
τ

�vp

����
2

= τm

 
v2

p�2vp
x�x
2τ

+2

����x�x
2τ

����
2
!

;

Vp = 2τV(x0p; t 0) :

In the difference of the Sp the term which contains the square of the
unknown x cancels out and we simply get

S1�S2 = m(v1�v2)
�
x�x+2τv+2τ2a

�
; (10)

where

a=�V (x02; t 0)�V (x01; t 0)
m(x02�x01)

: (11)

3Throughout this section, the path-index p varies from 1 to 2.
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Equations (8)–(11) imply:

x= x+∆t v+ 1
2(∆t)2a : (12)

The two velocities v1 , v2 in point (x; t) are given by the velocities in the
last half of the path:

vp :=
x�x0p

τ
: (13)

Forming their mean value, we get (5). Equations (6), (11)–(13) allow to
express the state at (x; t) in a compact manner:

a =
V (x+ τ(v�∆v); t+ τ)�V (x+ τ(v+∆v); t+ τ)

2τ∆vm
; (14)

v = v+∆t a ; (15)

x = x+∆t
v+v

2
; (16)

∆v = �∆v ; (17)
v1 = v+∆v ; (18)
v2 = v�∆v : (19)

This set of formulae defines a mapping operating on ordinary4 system
states; to have a name for this mapping (integrator) we write

(v;x; t) = Φ1
∆t;∆v(v;x; t) ; (20)

where the upper index serves as a distinction from similar mappings
to be considered later.

For a given τ, we could equally well describe the initial configuration by
the three positions x, x01, x02 instead of one position and two velocities.
Then, the time step equations (14)–(19) become particularly simple:

x= x01+x02�x+2τ2a ; x01 = x+x01�x ; x02 = x+x02�x : (21)

If ∆v is very small, formula (14) becomes inaccurate numerically and
may better be expressed by derivatives; this also clarifies the structure
of this expression:

V (x02; t 0)�V (x01; t 0)
x02�x01

=

V 0
(x+ τv; t 0)+

V 000
(x+ τv; t 0)

3!
(∆vτ)2+ � � � : (22)

4described by a single velocity instead of two velocities
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Therefore, the acceleration a is given by:

a=� 1
m

�
V 0
(x+ τv; t+ τ)+

1
2
(∆vτ)2

3
V 000

(x+ τv; t+ τ)+ � � �
�

: (23)

This formula shows two interesting features:

1. The first term differs from the first order Euler integrator by
the argument shift x ! x+ τv; t ! t + τ . As will be shown soon,
this small modification makes a big difference: it makes the in-
tegrator second order, and symplectic. In numerical examples
one finds surprising stability properties (see e.g. figures 2 and
7) that usually are considered consequences of symplecticity. The
present paper indicates that they are also—and more directly—
consequences of the action principle.

2. The term involving the third derivation of the potential 5 is famil-
iar from the equation of motion for the center of a wave packet
as resulting from Ehrenfest’s theorem. Let us compare (23) with
the particularly explicit treatment of the topic in [5]: There,
the mean-square deviation of the position of a one-dimensional
wave packet is denoted χ and the formula for the acceleration
of the mean-position of this wave packet is given in equations
[5],(VI.8),(VI.9) such that it agrees with (23) if χ is identified with
(∆vτ)2

3 . Now, the two paths under consideration associate two posi-
tions with the particle at any instant of time. With this discrete
distribution, there is associated a well defined mean-square de-
viation, which changes periodically between zero and (∆vτ)2 at a
period equal to the time step. The timewise mean value is easily
calculated as

R 1
0 dxx2

(∆vτ)2 = (∆vτ)2
3 . The most natural identifica-

tion of χ with a property of the two path geometry thus leads to
identical results for the acceleration. It is to be noted however,
that for the two path method (∆vτ)2

3 is constant in time, whereas χ
growths with time. For minimum-width wave packets, χ is nearly
constant for sufficiently long time spans to make a comparison of
trajectories resulting from (23) with trajectories of wave packet
centers meaningful.

5for the present discussion we ignore the argument shift as irrelevant for small τ
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For macro-mechanical applications the span ∆vτ has to be chosen small
enough that it has no effect on the solution. Figure 4 illustrates the
dependence on this parameter in a numerical example.

In the limit ∆v! 0 we get

a=�V 0
(x+ τv; t+ τ)

m
: (24)

Then, we don’t need the two velocities any longer and have a time-
stepping scheme given by (24), (15), (16) which, for future reference,
will be denoted

(v;x; t) = Φ1
∆t(v;x; t) : (25)

This is a well-known second order integrator for the the differential
equation of motion

ẍ=�V 0
(x; t)
m

=: f (x; t) (26)

belonging to the Lagrangian (1). It is also known to be symplectic 6, i.e.
to satisfy

dv^ dx= dv^ dx : (27)

It goes most frequently under the name ’Leap-Frog method’ and, then,
is mostly interpreted as consisting of two steps acting effectively only
on positions and velocities respectively. See [8], (3.3.11). The present
interpretation as a single step is better conveyed by the name ’explicit
midpoint method’ which appropriately expresses the relation to the
more common ‘implicit midpoint method’. A direct identification holds
with the method (8.9) of [7], here the Leap-Frog interpretation is de-
scribed also. It is instructive to decompose (25) into factors: Defining
the symplectic mappings

Th(v;x; t) := (v;x+hv; t+h) ; Fh(v;x; t) := (v+h f(x; t);x; t) (28)

we easly verify

Φ1
h = Th

2
�Fh�Th

2
: (29)

6see [7],[8] on how this basic concept of Hamiltonian mechanics became recognized
in numerical analysis
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It is very natural to consider just this expression: The most simple
combinations of T and F into integrators for (26) are Ah := Th �Fh and
Bh := Fh �Th, These are the symplectic first order integrators denoted
(1)[1] and [1](1) in [7], p. 105. One expects to get a more accurate in-
tegrator by reducing the arbitrariness inherent in selecting just one of
these two integrators. This can be achieved by combining them. Then
a new arbitrariness (on a lower level, though) arises since there are
two combinations: Φh :=Ah

2
�Bh

2
and Ψh :=Bh

2
�Ah

2
. The first of the two is

just the explicit midpoint method and the second one is known as the
Verlet velocity algorithm and is among the integrators called Störmer
methods in [6](equation (16.5.2) for m=1). It is also mentioned in [8],
exercise 8.1.5. There are interesting relations between the first order
and second order integrators, for instance

Φh = Th
2
�Bh�T

� h
2
; (30)

which carries over to the powers of these operators

(Φh)
n
= Th

2
� (Bh)

n�T
� h

2
: (31)

Although Φ and B are of different order, the corresponding time evolu-
tion operators for arbitrarily long time spans are related via the fixed
symplectic operator Th

2
. In a sense, which could be worthwhile to be

made more explicit, the two t keep close together.

For later reference, we put together the definition of three second or-
der integrators: The non-symplectic second-order Runge-Kutta (mid-
point) method [6], equation (16.1.2), the symplectic Störmer method
mentioned above

a = f (x; t) ;

x = x+∆t v+ 1
2(∆t)2a ;

vRunge-Kutta = v+∆t f (x+ τv; t+ τ) ; (32)

vStörmer = v+∆t
a+ f (x; t+∆t)

2
: (33)

and the symplectic implicit midpoint method [8], p. 217

a = f (x+ τv+ τ2a; t+ τ) ; (34)
v = v+∆t a ;

x = x+∆t
v+v

2
:
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More sophisticated integrators evaluate the function f at even more
positions, but it is not natural for them to change the derivative V0 into
a finite difference quotient as it appears in (11). There are, however,
integrators for Hamiltonian systems which evaluate the Hamiltonian
rather than partial derivatives of it (e.g. [8], (8.1.24–25)). Returning to
the case ∆v> 0, we show that (20) is also symplectic. For this purpose,
and to prepare the argument for a similar integrator to be defined later,
we consider integrators of the form

v = v+2τa ; (35)
x = x+ τ(v+v) :

Then we have

dv^ dx= (dv+2τda)^ (dx+ τdv+ τdv)

= (dv+2τda)^ (dx+2τdv+2τ2da)

= dv^ dx+ da^ (dx+ τdv) :

Therefore, an integrator (35) is symplectic if and only if

da^ (dx+ τdv) = 0 : (36)

In the case of (20) we have

da=
V 0
(x+ τ(v�∆v); t+ τ)�V 0

(x+ τ(v+∆v); t+ τ)
2τ∆vm

(dx+ τdv) ; (37)

so that (36) is satisfied, and (20) is a symplectic integrator. That it is of
second order can be seen from

Φ1
2∆t;∆v(v;x; t)�Φ1

∆t;∆v(Φ1
∆t;∆v(v;x; t)) = (O(∆t3

);O(∆t3
);0) : (38)

If V depends on time only through t2, this integrator is also invariant
with respect to motion reversal:�

T �Φ1
∆t;∆v�T �Φ1

∆t;∆v
�
(v;x; t) = (v;x; t) ; (39)

where the motion reversal operation is T : (v;x; t) 7! (�v;x;�t). Both re-
lations involve lengthy calculations and are conveniently verified using
a symbolic manipulation package such as Mathematica.

After having seen how the method works, let us look back to the logic
in selecting expression (3). The point of view suggested so far was to
consider (3) the most simple expression that can be proposed for the
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action along a short path from which we only know that it starts at
(x; t), reaches the point (x0; t 0), and ends at (x; t). Since the expression is
‘algebraic’ we don’t need to know about differentiation and integration
to define it. The action for longer paths can be obtained equally well by
summation of expressions (3) or by integration of the Lagrangian with
v replaced by the derivative ẋ. It should also be noted that S(x; t;x0; t 0;x; t)
can be expressed in terms of L alone, not making use of the separation
into T and V. There is, however, a more conventional interpretation of
expression (3): It is the exact value of the traditional action associated
with a piecewise rectilinear path connecting the given triplet of points
and a modified Lagrangian in which V is changed into an impulse po-
tential, active only at time t0.

It is instructive to replace (3) by an expression based on integrating
the actual (non-impulsive) Lagrangian (1) along differentiable paths:
We consider the parabolic paths which are uniquely determined by the
initial point (x; t), the initial velocities vp, and the condition that they
merge at the point (x; t). Since we want the paths to be differentiable,
there is no ambiguity in updating the velocities: The final velocities
from one time step have to be taken for the initial velocities of the next
time step. We calculate the action along a path—exactly for the kinetic
part, and approximately, by Simpson’s rule, for the potential part:

Sp =
1
3τm

 
v2

p�2vp
x�x
2τ

+2

����x�x
2τ

����
2
!
� (40)

1
3τ
�
V(x; t)+4V(x0p; t

0
)+V(x; t)

�
:

As before, the point x0p is the position at time t 0 on path p. Since the
path is parabolic now, this point is not simply given as x+ τvp. After
some algebra we get

S1�S2 =
1
3m(v1�v2)

�
x�x+2τv+2τ2a

�
; (41)

where, again, a is given by (11). The intermediate points x0p also depend
on a :

x0p = x+
τ
2
(v+vp+ τa) ; (42)

thus creating an implicit system of equations for determining a. It can
be shown that equation S1�S2 = 0, together with differentiability of
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paths yields equations (15)–(19). This defines a time-stepping scheme
denoted

(v;x; t) = Φ2
∆t;∆v(v;x; t) : (43)

The equations (11) and (42) are most conveniently solved for a by iter-
ation 7:

a0 := 0 ; (44)

y := x+
τ
2
(v+v1+ τan) ;

y0 := x+
τ
2
(v+v2+ τan) ;

an+1 :=
V(y0; t+ τ)�V(y; t+ τ)

m(y�y0)
:

The value a1 in this scheme coincides with the result of the original
method (20). It is interesting that the implicit nature of the defining
equations neither is a serious obstacle for an effective solution nor for
a proof of symplecticity. From (11) and (42) we have

a=
V(x+ τ(v� ∆v

2 + τa); t+ τ)�V(x+ τ(v+ ∆v
2 + τa); t+ τ)

2τ∆vm
: (45)

Thus

da= g(dx+ τdv+ 1
2τ2da) ; (46)

where

g=
V 0
(x+ τ(v� ∆v

2 + τa); t+ τ)�V 0
(x+ τ(v+ ∆v

2 + τa); t+ τ)
2τ∆vm

: (47)

Therefore

da=
g

1� 1
2gτ2

(dx+ τdv) ; (48)

so that (36) is satisfied and (43) is a symplectic integrator. As for the
integrator (20), we can form the limit ∆v! 0 and get an ordinary inte-
grator Φ2

∆t . As is easily seen from (45), this is just the implicit midpoint
integrator (34).

7 Although the iteration step for solving x= f (x) is written as xn+1 = f (xn), in nu-
merical examples I always use x� = f (xn);x�� = f (x�);xn+1 =

1
2(x�+ x��), which effec-

tively suppresses oscillatory behavior.
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Figure 1: Optical analogy to path geometry

Integrators for differentiable paths will not be pursued in this paper8.
Although they may be capable of increasing the accuracy for suffi-
ciently regular potentials, they certainly are less intuitive and simple
than the method using piecewise rectilinear paths.

A series of consecutive evolution steps creates two polygonal space-time
paths such that maximum separation between the two paths occurs at
half steps, and intersection of the paths occurs at full steps. A concise
visualization of such a geometry is given by two light rays in a plane
which run through a system of equi-spaced thin lenses which all have
the same focal length equal to a fourth of the lens spacing, as indicated
in figure 1.

This optical analogy suggests a physical characterization of the state
changes during the course of time9. In the intersection points (full
steps) we have well defined positions and maximum spread of velocity,
whereas at the lens position (half steps) we have maximum spread of
position and a well defined direction of propagation: in a more realistic
representation of the light rays inside the lenses those would be paral-
lel (and parallel to the auxiliary lines in figure 1 which pass through
the lens centers). Thus the system oscillates between two states, which
in quantum mechanics would be called complementary. The duality of

8Method (43) will be included in the examples in the next section, though.
9notice that only the initial and final state allow an interpretation in terms of a

classical trajectory
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these states allows to group the process differently: So far we counted
steps from focal point to focal point. We also may count from lens plane
to lens plane. Then the roles of positions and velocities in determining
an initial state are reversed, and one may arrive at a formulation which
reflects the symmetry between positions and momenta in mechanics.

If the time step tends to zero, the two paths get closer and closer to-
gether so that in this limit the conventional one-path representation is
retained. In spaces of dimension higher than one, we will need more
than two paths, so that multiple path method (MPM) is an indicative
name for the method under consideration.

It is clear that after each full step, we are free to change the timestep;
this is essential for practical applications where the time step should
be adjusted such that no relevant detail of the trajectory remains un-
resolved. This can be done by comparing the result of a single ∆t step
with the result of two consecutive 1

2∆t steps.

4 A numerical example

We consider the radial motion in the Kepler problem, since it is a non-
trivial, natural, and exactly solvable problem with one degree of free-
dom. As we have seen from (22), the harmonic oscillator would not be
a good example since the influence of the velocity spread parameter ∆v
cancels out in this case. The harmonic oscillator is covered, however,
since the radial Kepler motion approximates harmonic oscillation for
the numerical eccentricity ε tending to zero. What would be denoted
(ṙ; r) in the context of the Kepler problem will be denoted (v;x) here, in
order to have the same notation as in the previous section. Restricting
ourselves to orbits of non-vanishing angular momentum and choosing
suitable units we get the following Lagrangian of the system:

L(v;x) = T(v)�V(x) = 1
2v2� 1

x

�
1
2x
�1

�
: (49)

Although the exact solution of the corresponding equation of motion is
well known for all initial values, we restrict ourselves here to the bound
states, which perform an oscillatory motion. These states are charac-
terized by having negative total energy: T(v)+V(x) < 0. Let the state
(v;x) for t = 0 satisfy this condition. Then the state (vt ;xt) = φt(v;x) for
any other time t can be computed from the following chain of formulae,
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which essentially goes back to Kepler. Here, it also defines the func-
tions a(�; �) and M(�; �) which are useful in comparing the exact solution
to the various discrete approximations.

a := a(v;x) :=� 1
2(T(v)+V(x))

; (50)

E := arg
�

1� x
a
+ i

vxp
a

�
;

ε :=

r
1� 1

a
;

M := M(v;x) := E� εsinE ;

n := a�3=2
;

Mt := M+nt ;

Et := solution of Et = Mt + εsinEt ;

xt := a(1� εcosEt) ;

vt := ε
a2

xt
nsinEt :

The method for solving Kepler’s equation E = M+ εsinE for E, which
will be used in the numerical example, is iteration (see footnote 7)

E0 = M ; En+1 = M+ εsinEn : (51)

As can be seen from the previous equations, the function t 7! a(vt ;xt)

is constant, and t 7! M(vt ;xt) is linear (up to jumps of height 2π). Re-
placing the exact solution by an approximate solution generated by
successively applying a numerical integrator, defines a family of evo-
lution operators φ̂t for which we write (v̂t ; x̂t) = φ̂t(v;x). The deviation of
φ̂ from the exact evolution φ, results in t 7! a(v̂t ; x̂t) being no longer con-
stant and t 7! M(v̂t ; x̂t) deviating from the linear function of the exact
solution.

Figures 2 and 3 show this deviation for the four integration methods
to be considered in this section. These are three symplectic meth-
ods: Störmer (St) (33), MPM1 (20), MPM2 (43), and the non-symplectic
second-order Runge-Kutta method (RK2) (32). The following measures
will be used in the figures for comparing computed with and exact tra-
jectories: Absolute errorq

(v̂t �vt)
2+(x̂t �vt)

2 ;
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Figure 2: Relative amplitude error versus time

relative amplitude error

log

����a(v̂t ; x̂t)�a(v;x)
a(v;x)

���� ;
and phase error

argei(M(v̂t ;x̂t)�M(vt ;xt)) :

All figures deal with the same trajectory of the system: In the terminol-
ogy of the Kepler problem, we consider an orbit of numeric eccentricity
ε = 0:3, start the integration at perihelion (v0 = 0, x0 = minimum) and
extend it over 8 revolutions.

For all diagrams except of figure 5, the number of steps per revolution
is 32. For all diagrams except of figure 4, the parameter ∆v is 10�4

times the mean velocity vmean = 4a=tperiod. For the symplectic integra-
tors the curves in figures 2 and 3 follow an interesting pattern. The
amplitude error seems to be periodic and the phase error shows a weak
linear trend with some periodic modulation on top. This means that
the discretized trajectory has a slightly different frequency than the
exact one. One should be able to calculate this frequency shift.

Figure 4 shows the dependence of the method MPM1 on the veloc-
ity spread parameter ∆v. The four curves corresponding to ∆v =
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Figure 5: Total error versus step number

10�2; : : :;10�8 coincide within the resolution of the graphics, and the
same holds true for the amplitude error (not shown). So the trajec-
tory is virtually independent of this parameter over at least six or-
ders of magnitude. For ∆v approaching the relative accuracy of the
computer’s number representation, the results become increasingly af-
fected by roundoff errors and attain the random walk nature seen in
the upper curve. For ∆v becoming too large, the situation is similar
to having the time step ∆t chosen too large: the dynamics described
by the discrete integrator and the exact dynamics become increasingly
unrelated.

Figure 5 shows how the absolute error after eight revolutions declines
if the number of integration steps increases. If the absolute error and
the step number both are shown on a logarithmic scale, as is done here,
the order of an integrator is closely related to the slope of a straight line
shown in such a diagram. So the indication is that all methods are of
the same order, which thus is 2. This is surprising at least at a first
glance, since one could imagine that going from polygon paths to piece-
wise parabolic paths in approximating the action integral would make
MPM2 higher order than MPM1.
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5 A more general holonomic mechanical
system

In this section we extend the method to many-particle systems includ-
ing friction to make collisions inelastic—the kind of problems for which
I developed the method and for which I still use it intensively. The em-
phasis here is on obtaining an economic system of equations for the
time step and not on the structural properties of the method. These
are only exemplified in the next section.

We assume the configuration space X of the system as a Cartesian prod-
uct of n subsystems each having a d-dimensional configuration space
Xi

10. This allows an easy application to systems of point particles for
d = 3, or systems of rigid bodies for d = 6. For a system which doesn’t
fall into subsystems, one can use all following formulas for n= 1 and d
equal to the number of degrees of freedom of the system. Then the ma-
trix (77) to be inverted may be rather large. In a first reading it might
be helpful to take the forces F as zero and to assume the dependence
of the kinetic energy T on x and t to be trivial. Then one has a famil-
iar text-book situation and the following derivations become smooth
generalizations of those in section 3. Let us call this the special case.

We shall assume the following form for the Lagrangian

L(v;x; t) = T(v;x; t)�V(x; t) ; (52)
x = (x1; : : :;xn); xi = (xi1; : : :;xid) 2 Xi ;

v = (v1; : : :;vn); vi = (vi1; : : :;vid) 2 Rd
;

T(v;x; t) =

n

∑
i=1

Ti(vi;xi ; t) ;

where Ti(vi ;xi; t) depends on its argument vi as a non-degenerate
quadratic form:

Ti(ξ;xi ; t) =
d

∑
a;b=1

ξaMi(xi ; t)abξb : (53)

10These spaces are manifolds of system configurations, each structured by a choice
of a global system of generalized coordinates. Operationally, this implies (i) that
points of Xi and elements of Rd can be added to give points in Xi , and (ii) points
of Xi can be subtracted from points of Xi to give elements of Rd . An unambiguous
physical meaning of these operations and the validity of affine geometry rules for
them are given only approximately—the closer the points together and the shorter
the numerical vectors the better.
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We use the same name for the corresponding bilinear form:

T(v;w;x; t) =
n

∑
i=1

Ti(vi ;wi ;xi; t) =
n

∑
i=1

d

∑
a;b=1

viaMi(xi ; t)abwib : (54)

Such a form of T allows the subsystems to be rigid bodies (orientation
described by Euler angles), which change their geometry under the in-
fluence of a slow external process, such as solid spheres that change
their moment of inertia through thermal expansion in an externally
controlled heat bath.

Further, we allow for forces which are not represented by the potential
V and which may or may not be conservative:

Fia(v;x; t) : (55)

Then the equations of motion are

d
dt

∂L
∂via

� ∂L
∂xia

= Fia ; i 2 f1; : : :;ng ; a2 f1; : : :;dg : (56)

Due to the F ’s, the usual action integral is no longer stationary around
the physical path but shows a first order dependence on the path shift
given by the forces [4]. This allows to form a new expression which
is stationary and replaces the action in the formulation of maximum
constructive interference of paths: For a path which is obtained from
a physical trajectory by a variation δx, satisfying δx(t1) = δx(t2) = 0, we
get

Z t2

t1
L(v+ d

dt δx;x+δx; t)dt = (57)
Z t2

t1
L(v;x; t)dt+

Z t2

t1

�
∂L
∂x

� d
dt

∂L
∂v

�
dxdt =

Z t2

t1
L(v;x; t)dt�

Z t2

t1
F(v;x; t)δxdt :

Thus the values of the following expressions are stationary at δx= 0:
Z t2

t1

�
L(v+ d

dt δx;x+δx; t)+F(v;x; t)δx
�

dt ; (58)

Z t2

t1

�
L(v+ d

dt δx;x+δx; t)+F(v+ d
dt δx;x+δx; t)δx

�
dt : (59)
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For δx! 0, they both converge to the action integral
R t2
t1 L(v;x; t)dt . For

the present purpose, (59) is more suitable, since it minimizes the refer-
ence to the physical trajectory. The physical trajectory only enters as
the ‘starting point’ of δx (since δx= (x+ δx)� x) and will cancel out in
the expressions to be considered.

In close analogy to section 3 we represent expression (59) along a short
path

(x; t)! (x0; t 0)! (x; t) (60)

by

S(x; t;x0; t 0;x; t) := (61)

(t 0� t)L(x0�x
t 0�t ;x

0; t 0)+(t� t 0)L(x�x0

t�t 0 ;x0; t 0)+

(t� t)F(x0�x
t 0�t ;x

0; t 0)(x0�x0exact) :

The effect of F has to be considered as an impulse at time t0 in order to
make the description of conservative forces by either a potential or a
force term equivalent. Therefore δx comes in only as δx(t0). Describing
even conservative forces that way, offers a speed advantage. One gets
an integrator which evaluates the force term only once per step and,
therefore, is nearly as fast as the Euler method (see (84) and method
MPMF in the next section).

Given a position x (in configuration space) of the initial state, we have
to consider a system of paths which allows to determine the n�d compo-
nents of the end position x after a time step. We will see that a sufficient
set of paths can be constructed by prescribing N := d+1 velocities for
each subsystem. As in section 3, the time step algorithm will update
these velocities after each step. Therefore, it is only once, at the begin-
ning of a trajectory, that we have to assign values to these velocities.
This shall be done as follows: We choose a family η= (η1; : : :;ηN

) of unit
vectors in R

d such that
N

∑
p=1

ηp
= 0 ; (62)

and each subsystem of d vectors is linearly independent. These vectors,
together with a family v= (v1; : : :;vn);vi 2 Rd , of initial (mean) velocities
of the subsystems, and a family ∆v= (∆v1; : : :;∆vn);∆vi 2 R, of velocity
spread parameters, will be used to define n �N paths

Πip i 2 f1; : : :;ng ; p2 f1; : : :;Ng :
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First we define the start velocities vip of Πip :

vip := v+∆vip
; where (∆vip

) j := δi j ηp∆vi (63)

and the corresponding intermediate positions

y := x+ τv ; yip := x+ τvip
= y+ τ∆vip

: (64)

The n �N paths then unite in a single end position (x; t) .

Πip : (x; t)! (yip
; t 0)! (x; t) ; t 0 := t+ τ ; t := t 0+ τ : (65)

These paths reflect the subsystem structure. On path Πip every sub-
system j with j 6= i follows a path which is independent of p. The action
along Πip is given by (compare (9))

Sip := S(x; t;yip
; t 0;x; t) = (66)

τT(vip
;yip

; t 0)+ τT(x�x
τ �vip;yip; t 0)�

�2τV(yip
; t 0)+2τ(yip�yexact)F(v

ip
;yip

; t 0) : (67)

Stated generally, the principle for selecting the end configuration x is to
minimize the variation of Sip from path to path. If we characterize the
spread of the Sip by a suitable function of merit, we can use numerical
minimization methods for selecting x. In that case, we easily take into
account constraints of the system (even non-holonomic ones) by simply
imposing them to the search space for x without changing the function
of merit. This will, however, not be carried out here. We shall rather
look for an analytical solution of a simple concrete version of the gen-
eral principle. The first step is an approximation, which in the special
case is an identity, and which keeps in p-dependent terms the lowest
order in τ only.

Sip � τT(vip
;y; t 0)+ τT(x�x

τ �vip;y; t 0)� (68)

2τV(yip
; t 0)+2τ(yip�yexact)F(v;y; t

0
) =: τWip

:

Instead of the unknown x, we introduce the velocity gain

u :=
x�x
2τ

�v (69)

which equals zero if there is no interaction. Then we get

Wip
= T(v+∆vip

;y; t 0)+T(v+u�∆vip
;y; t 0)� (70)

2V(yip
; t 0)+2(yip�yexact)F(v;y; t

0
)

= 2
�
T(∆vip

;y; t 0)�T(∆vip
;u;y; t 0)�V(yip

; t 0)
�
+

T(v+u;y; t 0)+T(v;y; t 0)+2(yip�yexact)F(v;y; t
0
) :
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As stated above, we aim for determining u such that the values of Wip

vary as little as possible from path to path. To get simple equations, we
stipulate for each i the quantity Wip to be strictly constant as a function
of p. This step corresponds to (8). To formulate p-independence, we
introduce a notation for removing the mean value of a list (Ap

)p2f1;:::;Ng

δpAp := Ap� 1
N

N

∑
q=1

Aq
: (71)

Obviously, the condition that A is constant, can be written as

δpAp
= 0 for all p : (72)

Posing this constancy condition for the Wip eliminates the dependence
on yexact, and replaces most quantities by their subsystem components:

0= 1
2δpWip

= (73)
�∆vi Ti(ηp

;ui;yi ; t
0
)+

δp�∆v2
i Ti(ηp

;yi ; t
0
)�V(yip

; t 0)
�
+ τ∆vi ηpFi(v;y; t

0
) :

Therefore,

d

∑
a;b=1

Mi(yi ; t
0
)ab(ηp

)auib = (74)

δp
�

∆vi Ti(ηp
;yi; t

0
)�V(yip; t 0)

∆vi

�
+ τηpFi(v;y; t

0
) :

Introducing the abbreviations

hia :=
d

∑
b=1

Mi(yi ; t
0
)abuib ; (75)

and

gip := δp
�

∆vi Ti(ηp
;yi ; t

0
)�V(yip; t 0)

∆vi

�
+ τηpFi(v;y; t

0
) ; (76)

and defining the (N;d)-matrix

Hpa := (ηp
)a (77)
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we write equation (74) in the form

d

∑
a=1

Hpahia = gip : (78)

This has the unique solution

hib =

d

∑
p=1

�
S�1�

bp gip ; (79)

where the square matrix S is obtained from H by cancelling the last
row. Let the generalized inverse [9] of H, which is a (d;N)- matrix, be
denoted by H�. Then we have the more symmetrical representation

hib =

N

∑
p=1

H�
bpgip (80)

which remains meaningful for more general prescriptions of N and η.
Finally, we get u from (75) by inverting the matrix Mi of the quadratic
form Ti :

uia =

d

∑
b=1

�
Mi(yi; t

0
)
�1�

abhib : (81)

The rest of the evolution step results easily as

v := v+u ; x := x+ τ(v+v) ; ∆vip :=�∆vip
; vip := v+∆vip

: (82)

This corresponds to equations (15)–(19) from section 3 with the identi-
fication

a∆t = u: (83)

Let us recapitulate the algorithm for the proposed integrator for La-
grangian (52):

1. Independent of the initial conditions we choose the family η (62),
define matrix H (77) and calculate the generalized inverse H�.

2. Take the families x;v;∆v from the initial conditions and calculate
the path descriptors in (63) and (64).

3. Using (71), evaluate expression (76). Evaluate (80), (81).
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4. Complete the step by calculating the quantities in (82).

Let us specialize these formulas for a system of n mass points. Here
we have Ti(w;y; t) =

1
2miw2. Then in (76) the kinetic energy contribution

vanishes and we obtain:

mi aib = Fib(v;x+ τv; t+ τ)�
N

∑
p=1

H�
bpδp

�
V(yip; t 0)

∆vi τ

�
(84)

If we describe all the interaction by forces, all dependencies on the
paths cancels out and we get the explicit midpoint argument structure
just as in (24). Notice that forces are allowed to depend on the velocities
which destroys the symplectic invariance of the system. This suggests
that the principle of least action is a deeper origin for this structure
than the symplectic symmetry of Hamiltonian mechanics.

6 A numerical Solar System example

The system under consideration consists of the sun and the nine (ma-
jor) planets, described by non-relativistic mechanics and gravitation of
point masses as the only forces. Values for positions and velocities of
these bodies with respect to an inertial system of reference were de-
rived from the heliocentric values for MJD 500120 and MJD 500320 in
[10] and from the masses given there.

We compare three integration methods: The same Störmer method as
in section 3 (St), the method of section 5 with interaction described
by potentials (MPM), and the method of section 5 with interaction de-
scribed by forces (MPMF), and the fourth order Runge-Kutta method
for control purposes (RK4).

The velocity spread ∆v for the MPM methods is set equal for all bodies
and is determined by

n

∑
i=1

mi

2
∆v2

= α(T(v0)+ jV(x0)j) ; (85)

where α is a dimension-less parameter, set to α = 10�4, and (v0;x0) is
the initial state.

Figure 6(a) shows the decrease of the integration error from MJD
500120 to MJD 500320 as a function of increasing step number. The
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(b) Integration over 200 days with
motion reversal after 100 days

Figure 6: Behavior for successive reduction of the time step

ordinate is the integration error, measured as log10 of the maximum
separation of a computed planet position from the Almanac position in
Astronomical Units. Not a surprise, the critical planet is always Mer-
cury, who does 2.3 orbital revolutions in 200 day. We should not expect
to get the end data exactly from the initial data since both data sets are
rounded to the same number of digits and we would need more digits
for the initial conditions. Also, the data in [10] include small effects
such as those from relativity, which are not built into the present com-
putations. Here the Störmer method is slightly more accurate than the
MPM-methods. The latter give indistinguishable curves. The fourth or-
der Runge-Kutta method reaches the final accuracy much faster than
the second order methods. As a rough estimate of the computational
complexity of the methods under consideration, these are my present
computation times for an integration step in units of the corresponding
Euler step: St 1.911, MPM 2.6, MPMF 1.24, and RK4 4.5. MPMF cor-
responds to (25) and (84) and needs only as many force evaluation as
the Euler method (as does St when implemented effectively).

Figure 6(b) shows the corresponding data for the artificial situation
that the system evolves for 100 days, then is subjected to a motion
reversal (all velocities get a minus sign), and evolves for further 100
days. An exact integration method would reproduce exactly the initial
condition. The failure to do so is quantified by the same measure as in

11here, my implementation favors simple logic over efficiency; actually the compu-
tational burden is virtually identical for St and MPMF

26



-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 50 100 150 200 250 300 350 400 450 500

E
rr

or
 in

 M
er

cu
ry

’s
 s

em
i-a

xi
s 

a

Time/days

St
MPM

MPMF
RK4

(a) The first 500 days

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

1950019550196001965019700197501980019850199001995020000

E
rr

or
 in

 M
er

cu
ry

’s
 s

em
i-a

xi
s 

a

Time/days

St
MPM

MPMF
RK4

(b) The last 500 days

Figure 7: Osculating semi-axis of Mercury as a stability test

figure 6(a). Except of RK4 the methods are motion reversal invariant:
the trajectory comes back rather precisely to the initial values even if
the accuracy in forward direction is rather poor due to a large step size.
The difference between the MPM methods reflects different roundoff
behavior.

To assess the stability of the methods, we extend the integration of our
ten-particle system from 200 to 20000 days. We monitor Mercury, the
fastest planet, who will be the first to suffer from instabilities. Figure
7 shows the (osculating) semi axis a of Mercury (actually, (a� a0)=a0,
a0 = 0:387099AU) versus time. The time step is 2 days for integra-
tion and 4 days for data points. The subfigures show the beginning
and the end of the integration. The correct value of the quantity is
constantly zero—far beyond drawing accuracy. The RK4 curve agrees
with this for the first 100 days. Later, only the other methods show
this constancy, apart from small deviations which are periodic with the
revolution period of the computed planet. The RK4-value falls with
increasing speed; a different integration with a time step of 3.5 days
resulted in a Runge Kutta trajectory of Mercury impacting the sun and
subsequently leaving the Solar System 30890 days after start. The two
MPM curves are, again, indistinguishable. The phase shift between
the St curve and the MPM curve is as suggested by the figure: It did
not yet rise to more than a fraction of a full revolution. That the MPM
curve comes closer to constancy than the Störmer curve is not sufficient
evidence for a general ranking of the methods.
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7 Outlook

The following topics seem to be within the range of the present method:

1. Practical dynamics for rigid bodies in contact.

2. Symmetric formulation with respect to position and momentum.

3. Extension to continuous systems.

4. Calculation of quantum corrections to classical mechanics.

5. Inclusion of relativity and retardation.

6. Extension to higher order.
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