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Abstract

We consider a class of Schrödinger operators — referred to as Schrödinger opera-
tors over circle maps — that generalize one-frequency quasiperiodic Schrödinger op-
erators, with a base dynamics given by an orientation-preserving homeomorphism of
a circle T1 = R/Z, instead of a circle rotation. In particular, we consider Schrödinger
operators over multicritical circle maps, i.e., circle diffeomorphisms with a finite
number of singular points where the derivative vanishes. We show that in a two-
parameter region — determined by the geometry of dynamical partitions and α —
the spectrum of Schrödinger operators over every sufficiently smooth such map, is
purely singular continuous, for every α-Hölder-continuous potential V . For α = 1,
the region extends beyond the corresponding region for the almost Mathieu opera-
tor. As a corollary, we obtain that for every sufficiently smooth such map, with an
invariant measure µ and with rotation number in a set S, and µ-almost all x ∈ T1,
the corresponding Schrödinger operator has a purely continuous spectrum, for every
Hölder-continuous potential V .

1 Introduction

We consider a class of Schrödinger operators H = H(T, V, x) on a space of square-
summable sequences `2(Z), defined by

(Hu)n := un−1 + un+1 + V (T nx)un, x ∈ T1, u ∈ `2(Z), (1.1)
∗Email: skocic@olemiss.edu
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where V : T1 → R is a potential function on a circle T1 = R/Z, and T : T1 → T1 is a mul-
ticritical circle map, a circle map in a particular class of orientation-preserving homeomor-
phisms of a circle. Schrödinger operators over more general circle maps, i.e., orientation-
preserving circle homeomorphisms, have been introduced in [22]. For an overview of
recent results on the spectral theory of Schrödinger operators over dynamically defined
potentials the reader is directed, e.g., to [6] (see also [17]).

A map T : T1 → T1 is called a multicritical circle map if it is a Cr-smooth homeomor-
phisms having s > 1 critical points ξ0, . . . , ξs−1 such that, in a neighborhood of each critical
point ξi, in a suitable coordinate system, the map takes the form x 7→ T (ξi) + x|x|βi−1,
for some βi > 1. The real number βi is called the order of the critical point ξi.

When the rotation number ρ of T is irrational, Schrödinger operators over circle
maps are a natural generalization of one-frequency quasiperiodic Schrödinger operators
for which T = Rρ, where Rρ : x 7→ x+ρ mod 1 is the rigid rotation. When T is transitive,
it is topologically conjugate to the rotation, i.e., there is a homeomorphism ϕ : T1 → T1,
such that T ◦ ϕ = ϕ ◦Rρ. Hence, in that case, T n ◦ ϕ = ϕ ◦Rn

ρ , for every n ∈ N, and we
have H(T, V, x) = H(Rρ, V ◦ ϕ, y), where x = ϕ(y), y ∈ T1.

In some cases, the spectral properties of H(T, V, x) can be deduced directly from the
spectral properties of the corresponding Schrödinger operator over Rρ, using this identity.
In particular, if T is an analytic circle diffeomorphism with rotation number satisfying
Yoccoz’s H arithmetic condition [28], it follows from the theory of Herman [14] and Yoc-
coz [28] that ϕ is analytic, and the spectral properties of H(T, V, x), with V analytic [16]
follow directly from Avila’s global theory of one-frequency quasiperiodic Schrödinger op-
erators over rotations [1]. Although for circle diffeomorphisms T with Liouville rotation
numbers the conjugacy to the corresponding rotation can even be singular, certain spec-
tral properties of H(T, V, x), with potentials of the same regularity, are still analogous
to those of the one-frequency quasiperiodic Schrödinger operators over rotations with the
same rotation numbers [16].

In [22], we initiated the study of Schrödinger operators over more general circle maps,
in particular circle maps with a break and critical circle maps. Here, we extend the work
to include Schrödinger operators over multicritical circle maps. We are interested in the
spectral phase diagram of Schrödinger operators over circle maps and, in particular, the
singular continuous phase. Such a phase diagram emerges in one of most studied examples
— the almost Mathieu family — which corresponds to T = Rρ and V (x) = λ cos(2πx). It
was conjectured by Jitomirskaya [15] (Problem 8 therein), and proved by Avila, You and
Zhou [2], that the almost Mathieu operator has a purely singular continuous spectrum
in the region 0 < L(E) < β of the Lyapunov exponent L(E), and that L(E) = β is the
boundary between continuous and pure point spectrum, for almost all x ∈ T1. Here,

β = β(ρ) := lim sup
n→∞

ln kn+1

qn
, (1.2)
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with kn and pn
qn
, n ∈ N, being the partial quotients and rational convergents of ρ ∈ (0, 1)\Q

(see section 2.2). It was shown in [16] that, in the same region, the spectrum is singular
continuous for Schrödinger operators H(T, V, x) with Lipschitz continuous potentials V
over C1+BV -smooth circle diffeomorphisms T , for almost all x ∈ T1, suggesting that
L(E) = β could be the boundary between continuous and pure point spectrum, in this
case as well and more generally. The class of Schrödinger operators over multicritical
circle maps considered here provides an example where this is not the case.

Circle maps with a singularity, i.e., smooth circle diffeomorphisms with a single sin-
gular point where the derivative vanishes (critical circle maps) or has a jump discon-
tinuity (circle maps with a break) have played a central role in the rigidity theory of
circle maps — an extension of Herman’s theory on the linearization of circle diffeomor-
phisms [4,5,9,13,18–21] — over the last couple of decades. More recent focus has included
circle maps with several critical or break points [7, 8].

We begin with a few more definitions. A number ρ ∈ R\Q is called Diophantine of
class D(δ), for some δ ≥ 0, if there exists C > 0 such that |ρ − p/q| > C/q2+δ, for every
p ∈ Z and q ∈ N. The set of all Diophantine numbers is denoted by D := ∪δ≥0D(δ) and
the complement of this set in R\Q is the set of Liouville numbers. If ρ ∈ D(δ) ∩ (0, 1),
then lim supn→∞

ln kn+1

ln qn
≤ δ and, thus, β(ρ) = 0. We call a Liouville number ρ ∈ (0, 1)

exponentially Liouville if β(ρ) > 0 and super Liouville if β(ρ) = ∞. The set of all super
Liouville numbers will be denoted by SL.

The following theorem is a corollary of the main results of this paper. Since the
rotation number ρ of T is irrational, T is uniquely ergodic [11]. We will denote by µ the
unique invariant probability measure of T .

Theorem 1.1 For every Cr-smooth, r ≥ 3, multicritical circle map T , with rotation
number ρ ∈ SL and the invariant measure µ, and µ-almost all x ∈ T1, the correspond-
ing Schrödinger operator H(T, V, x) has a purely continuous spectrum, for every Hölder-
continuous potential V : T1 → R.

Remark 1 For C1+BV -smooth circle diffeomorphisms and a set S = SL, an analogous
claim was proved in [16]. A map is said to be C1+BV -smooth if it is C1-smooth with the
logarithm of the derivative of bounded variation.

Ergodic Schrödinger operators are intimately related to a family of cocycles — dynam-
ical systems associated with each eigen-equation Hu = Eu. In the case of Schrödinger
operators over circle maps with irrational rotation numbers, the cocycle is given by

(T,A) : (x, y) 7→ (Tx,A(x,E)y), (1.3)

where A ∈ SL(2,R), x ∈ T1, y ∈ R2. If u = (un)n∈Z is a sequence satisfying Hu = Eu,
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then (
un+1

un

)
= An(x,E)

(
un
un−1

)
, where An(x,E) :=

(
E − V (T nx) −1

1 0

)
(1.4)

is the transfer matrix. Thus, (
un
un−1

)
= Pn(x,E)

(
u0

u−1

)
, (1.5)

where Pn(x,E) :=
∏0

i=n−1Ai(x,E) = An−1(x,E) . . . A0(x,E).
We define the Lyapunov exponent

L(E) := lim
n→∞

∫
Ln(x,E) dµ, where Ln(x,E) :=

1

n
ln ‖Pn(x,E)‖. (1.6)

Due to submultiplicativity of Pn(x,E), L(E) exists. Since T is ergodic, by Kingman’s
ergodic theorem, for almost every x,

L(E) = L(x,E) := lim
n→∞

1

n
ln ‖Pn(x,E)‖. (1.7)

Different components of the spectrum of an operator H(T, V, x) are denoted by σac
(absolutely continuous), σsc (singular continuous) and σpp (pure point). We also denote
by Spp(x) the set of eigenvalues of H(T, V, x), with σpp(x) = Spp(x). Finally, we set H =
`2(Z), Hsc(x) the corresponding singular continuous subspace, and PA(x) the operator of
spectral projection on a Borel set A, corresponding to H(T, V, x).

The main result of this paper is the following.

Theorem 1.2 Let T : T1 → T1 be any Cr-smooth multicritical circle map, r ≥ 3, with
a rotation number ρ ∈ (0, 1)\Q, and an invariant measure µ. For µ-almost all x ∈ T1,
and any α-Hölder-continuous potential V : T1 → R, α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < 2αβ} = ∅,

(ii) P{E:0<L(E)<2αβ}(x)H ⊂ Hsc(x).

Remark 2 The regions in the (β, L(E)) plane with purely singular continuous spectrum
in Theorem 1.2 extend beyond the corresponding region in Theorem 1.5 of [16] for circle
diffeomorphisms and, for α = 1, beyond the corresponding region for the almost Mathieu
family (Theorem 1.1 of [2]).
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The main result of this paper can be reformulated in the following way. Let

δmax := lim sup
n→∞

| ln `n|
qn

, (1.8)

where `n = min
I∈Pn+1,I⊂∆

(n−1)
0
|τn(I)| is the length of the smallest renormalized interval of

partition Pn+1 inside the fundamental interval ∆
(n−1)
0 of partition Pn (see section 2.2).

Theorem 1.3 Let T : T1 → T1 be any Cr-smooth multicritical circle map, r ≥ 3, with
a rotation number ρ ∈ (0, 1)\Q, and an invariant measure µ. For µ-almost all x ∈ T1,
and any α-Hölder-continuous potential V : T1 → R, α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αδmax} = ∅,

(ii) P{E:0<L(E)<αδmax}(x)H ⊂ Hsc(x).

Remark 3 An anologous theorem was proved for circle maps with a single singular crit-
ical or break point in [22].

Remark 4 It seems reasonable to expect that for Schrödinger operators over sufficiently
smooth circle maps, in a large class of maps including circle diffeomorphisms with singu-
larities, for µ-almost all x ∈ T1, and sufficiently regular potentials, the boundary between
the continuous and pure point spectrum is given by L(E) = δmax, i.e., that the spectrum
is pure point with exponentially decaying eigenfunctions for L(E) > δmax.

The proofs of these theorems use tools of both the spectral theory of Schrödinger
operators and one-dimensional circle dynamics. In the next section, we state a sharp
version of Gordon’s theorem [16], and introduce dynamical partitions of a circle and
renormalizations of circle maps, which play an important role in our analysis. In section 3,
we define a set of full invariant measure for critical circle maps, and prove Theorem 1.2
and Theorem 1.3.

2 Preliminaries

2.1 A criterion for the absence of eigenvalues

In this section, we state a sharp version [16] of a theorem of Gordon [12] that has been
used to prove absence of point spectra of one-dimensional operators since the pioneering
work of Avron and Simon [3]. Such a sharp version was used in [2] to establish the singular
continuous phase for the almost Mathieu operator.

5



Consider a Schrödinger operator H on `2(Z) given by the action on u ∈ `2(Z), as

(Hu)n = un+1 + un−1 + V (n)un. (2.1)

We can define the transfer matrix An(E) and the n-step transfer-matrix Pn(E) =∏0
i=n−1Ai(E), as in (1.4) and (1.5), respectively. Let also P−n(E) =

∏−1
i=−n (Ai(E))−1.

Let
Λ(E) := lim sup

|n|→∞

ln ‖Pn(E)‖
n

. (2.2)

Clearly, for bounded V, Λ(E) <∞, for every E.

Theorem 2.1 ( [16]) Assume that there exists β > 0, and an increasing sequence of
positive integers qn diverging to infinity, such that the sequence {V (n)}n∈Z in (2.1) satisfies

max
0≤j<qn

|V (j)− V (j ± qn)| ≤ e−βqn . (2.3)

If β > Λ(E), then E is not an eigenvalue of operator (2.1).

Consider the Schrödinger operator (2.1) with Vn = V (T nx) where V : T1 → R is a
bounded real-valued function on the circle and T is an orientation-preserving homeomor-
phism of a circle with an irrational rotation number ρ. Let the Lyapunov exponent L(E)
be defined as in (1.6). We then have

Theorem 2.2 Assume that for some x ∈ T1, C > 0 and β̄ > 0, there is a sequence of
positive integers qn →∞ such that

sup
0≤i<qn

|Vi±qn(x)− Vi(x)| < Ce−β̄qn . (2.4)

If L(E) < β̄, then E is not an eigenvalue of the Schrödinger operator H(T, V, x).

Proof. In order to apply Theorem 2.1, it suffices to prove lim sup|n|→∞
ln ‖Pn(E)‖

n
≤ L(E).

This follows from a result of Furman [10]. QED

For a sequence qn →∞, let

β̂ = β̂(x) := lim inf
n→∞

ln(sup0≤i<qn |xi − xi±qn|)−1

qn
, (2.5)

where xi = T ix.
Let σpp, PA,H,Hsc be as in Theorem 1.2.

Theorem 2.3 Let V : T1 → R be a α-Hölder continuous real-valued function on the
circle, with α ∈ (0, 1). Then, we have
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(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂} = ∅,

(ii) P{E:0<L<αβ̂}(x)H ⊂ Hsc(x).

Proof. It suffices to prove part (i) of the claim, i.e., to exclude the point spectrum.
Part (ii) of the claim then follows from Kotani’s theory [23–25], x-independence of the
absolutely continuous spectrum [26], and the minimality of T , since the set {E : L(E) > 0}
does not support any absolutely continuous spectrum.

If L < αβ̂, then vi = V (T ix) satisfy the assumption (2.4) of Theorem 2.2 for any β̄
satisfying L < β̄ < αβ̂. The claim follows. QED

In order to prove Theorem 1.2, we need appropriate bounds on β̂(x).

2.2 Dynamical partitions of a circle and renormalization

The quantity β̂(x) involves information about the geometry of the dynamical partitions
of a circle. These partitions are obtained by using the continued fraction expansion of the
rotation number ρ ∈ (0, 1) of the circle map T . Every irrational ρ ∈ (0, 1) can be written
uniquely as

ρ =
1

k1 + 1
k2+ 1

k3+...

=: [k1, k2, k3, . . . ], (2.6)

with an infinite sequence of partial quotients kn ∈ N. Conversely, every infinite sequence
of partial quotients defines uniquely an irrational number ρ as the limit of the sequence
of rational convergents pn/qn = [k1, k2, . . . , kn], obtained by the finite truncations of the
continued fraction expansion (2.6). It is well-known that pn/qn form a sequence of best
rational approximations of an irrational ρ, i.e., there are no rational numbers, with denom-
inators smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents
can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, starting
with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the dynamical partitions of an orientation-preserving homeomorphism T :
T1 → T1, with an irrational rotation number ρ, we start with an arbitrary point x0 ∈ T1,
and consider the semi-orbit xi = T ix0, with i ∈ N. The subsequence (xqn)n∈N, indexed
by the denominators qn of the sequence of rational convergents of the rotation number
ρ, is called the sequence of dynamical convergents. It follows from the simple arithmetic
properties of the rational convergents that the sequence of dynamical convergents (xqn)n∈N,
for the rigid rotation Rρ has the property that its subsequence with n odd approaches
x0 from the left and the subsequence with n even approaches x0 from the right. Since
all circle homeomorphisms with the same irrational rotation number are combinatorially
equivalent, the order of the dynamical convergents of T is the same.
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The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 .

We also define ∆
(n)
i = T i(∆

(n)
0 ). Certain number of images of ∆

(n−1)
0 and ∆

(n)
0 , under

the iterations of a map T , cover the whole circle without intersecting each other except
possibly at the end points, and form the n-th dynamical partition of the circle

Pn := {T i(∆(n−1)
0 ) : 0 ≤ i < qn} ∪ {T i(∆(n)

0 ) : 0 ≤ i < qn−1}. (2.7)

Intervals ∆
(n−1)
0 and ∆

(n)
0 are called the fundamental intervals of Pn. These partitions are

nested, in the sense that intervals of partition Pn+1 are obtained by dividing intervals of
partition Pn into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism T : T1 → T1,
with rotation number ρ, with respect to partition-defining point x0 ∈ T1, is a function fn :
[−1, 0]→ R, obtained from the restriction of T qn to ∆

(n−1)
0 , by rescaling the coordinates.

If τn is the affine change of coordinates that maps xqn−1 to −1 and x0 to 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.8)

If we identify x0 with zero, then τn is just multiplication by (−1)n/|∆(n−1)
0 |. Here, and in

what follows, |I| denotes the length of an interval I on T1.
We use the notation f(x) = Θ(g(x)), if there exist constants C1,C2 > 0, such that

C1g(x) ≤ f(x) ≤ C2g(x), for all x.

3 Multicritical circle maps and proof of the main the-
orem

3.1 Geometry of dynamical partitions

We consider a multicritical circle map T with s critical points. If ξ0 is a critical point
of T , we can form dynamical partitions of the circle Pn associated to it. Let sn be the
number of the critical points of T qn in ∆

(n−1)
0 .

Let a(n)
0 = 0, a(n)

sn = kn+1 and let 0 < a
(n)
1 < a

(n)
2 < · · · < a

(n)
sn−1 < kn+1 be the indices

i of the (right-end open) intervals ∆
(n)
qn−1+iqn

containing the critical points of T qn . These
intervals will be referred to as critical. Clearly, sn ≤ s.

For each 0 ≤ j < sn, let F
(n)
j = ∪a

(n)
j+1−1

i=a
(n)
j +1

∆
(n)
qn−1+iqn

be the j-th “bridge” of ∆
(n−1)
0 ,

consisting of max{a(n)
j+1 − a

(n)
j − 1, 0} adjacent intervals between the critical ones.

We define F (n)
j,i = T i(F

(n)
j ). Clearly, ∆

(n−1)
i \∆(n+1)

i = ∪sn−1
j=0 ∆

(n)

i+qn−1+a
(n)
j qn
∪ F

a
(n)
j ,i

.

To prove Theorem 1.2, we will use some properties of multicritical circle maps. The
following estimates have been proven by Estevez and de Faria in [7]. There exists a
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constant κ > 0 such that, for every C3-smooth multicritical circle map T with an irrational
rotation number, and sufficiently large n (depending on T ), the following holds.

(a) For every two adjacent intervals I, J ∈ Pn,

κ−1 ≤ |I|
|J |
≤ κ.

(b) For every non-empty bridge F (n)
j,i , for all 0 ≤ i < qn and 0 ≤ j ≤ sn,

κ−1 ≤
|F (n)
j,i |

|∆(n−1)
i |

≤ κ.

(c) For all 0 ≤ i < qn and 0 ≤ j ≤ sn,

κ−1 ≤
|∆(n)

i+qn−1+a
(n)
j qn
|

|∆(n−1)
i |

≤ κ.

(d) For all 0 ≤ i < qn, 0 ≤ k < sn and a(n)
k < j < a

(n)
k+1,

κ−1 1

(min{j − a(n)
k , a

(n)
k+1 − j})2

≤
|∆(n)

i+qn−1+jqn
|

|∆(n−1)
i |

≤ κ
1

(min{j − a(n)
k , a

(n)
k+1 − j})2

.

We emphasize that constant κ is universal, i.e., it does not depend of the map T ,
for sufficiently large n, but only on the orders of the critical points. Estimate (a) (with
non-universal constant κ), reflecting the bounded geometry of these maps, follows from
Swiatek’s estimates [27].

3.2 Set E of full measure

In this section, we construct a set of full invariant measure E for which Theorem 1.2 holds,
i.e., we have appropriate control on the distances between points of an orbit and their
dynamical convergents, for multicritical circle maps.

Let σn, n ∈ N, be any increasing subsequence of N such that the corresponding
sequence kσn+1 of partial quotients diverges to infinity. We will assume that such a
subsequence exists since if the sequence of partial quotients is bounded, then β = 0. Let
ηn ∈ (0, 1), n ∈ N, be any sequence converging to 1 such that (1− ηn) ln kσn+1 diverges to
infinity, as n → ∞. Consider partitions Pn defined with the partitions defining point χ0

being a critical point xc.
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For each n ∈ N, let

En,0 :=
⋃

I∈Jn,0

I, Jn,0 :=

{
I ∈ Pσn+1|I ⊂ ∆

(σn−1)
0 \∆(σn+1)

0 , |τσn(I)| ≤ κ−1

k2ηn
σn+1

}
, (3.1)

and let
En,i := T i(En,0), for i = 1, . . . , qσn − 1. (3.2)

We define

En :=

qσn−1⋃
i=0

En,i, (3.3)

and
E := lim sup

n→∞
En =

⋂
n≥1

⋃
j≥n

Ej. (3.4)

Proposition 3.1 For sufficiently large n ∈ N, µ(En) ≥ (1−2snκkηn−1
σn+1)kσn+1qσnµ(∆

(σn)
0 ).

Proof. For sufficiently large n, the number of the elements I of partition Pσn+1 inside
of ∆

(σn−1)
0 \∆(σn+1)

0 that do not belong to En,0 is smaller than 2snκkηnσn+1. This follows
from the property (d). Since the partition Pσn consists of qσn “large” intervals ∆

(σn−1)
i =

T i(∆
(σn−1)
0 ), for i = 0, . . . , qσn − 1, each of which has invariant measure µ(∆

(σn−1)
0 ) and

qσn−1 “small” intervals ∆
(σn)
i = T i(∆

(σn)
0 ), for i = 0, . . . , qσn−1 − 1, each of which has

invariant measure µ(∆
(σn)
0 ), and since the interval ∆

(σn−1)
0 consists of the union of kσn+1

disjoint (except at the end points) intervals ∆
(σn)
qσn−1+iqσn

∈ Pσn+1, for i = 0, . . . , kσn+1 − 1,
each of which has invariant measure µ(∆

(σn)
0 ), and ∆

(σn+1)
0 ⊂ ∆

(σn)
qσn+1 , we have that the

invariant measure of the complement of En is

µ(Ecn) ≤ 2snκkηnσn+1qσnµ(∆
(σn)
0 ) + qσnµ(∆

(σn+1)
0 ) + qσn−1µ(∆

(σn)
0 ), (3.5)

and, hence,

µ(En) = 1− µ(Ec
n) ≥ kσn+1qσnµ(∆

(σn)
0 )− 2snκkηnσn+1qσnµ(∆

(σn)
0 )

≥ (1− 2snκkηn−1
σn+1)kσn+1qσnµ(∆

(σn)
0 ).

(3.6)

QED

Proposition 3.2 µ(E) = 1.

Proof. As kσn+1qσnµ(∆
(σn)
0 ) → 1, and (1 − ηn) ln kσn+1 → ∞, µ(En) → 1, as n → ∞.

Since µ(∪j≥nEj) ≥ µ(Ei), for any i ≥ n, and µ(Ei) → 1 as i → ∞, it follows that
µ(∪j≥nEj) = 1, for any n ∈ N. The claim follows. QED
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3.3 Distance of dynamical convergents

We now estimate the distance between points on an orbit and their dynamical convergents
for multicritical circle maps.

Let ε > 0 be the half-width of the neighborhood I(i)
ε around the critical points x(i)

c ,
i = 0, . . . , s− 1, where T ′ has the desired power law behavior. We assume that ε > 0 has
been chosen sufficiently small such that no two of these neighborhoods, corresponding to
different critical points, intersect. We consider partitions Pn = Pn(x

(0)
c ) defined by one

of these critical points that we will assume is, without loss of generality, x(0)
c . Let N be

large enough such that there are intervals J (i)
N consisting of the union of at most two

elements of partition PN such that x(i)
c ∈ J (i)

N ⊂ I
(i)
ε . Such an N exists as the lengths of

the intervals of partitions PN decrease as N increases [29]. Let

J = ∪s−1
i=0J

(i)
N . (3.7)

The next proposition gives an estimate on a number of “large” intervals of partition
Pn ∈ inside of J .

Proposition 3.3 For every n ≥ N , the cardinality

card {∆(n−1)
i ⊂ J |i = 0, . . . , qn − 1} ≤ 2sqn

qN
. (3.8)

Proof. The partitioning of each of the qN intervals ∆
(N−1)
i by the higher level partitions

follows the same pattern: a “large” interval of partition Pi is divided into ki+1 “large”
intervals and a “small” interval of partition Pi+1; a small interval of partition Pi becomes
a “large” interval of partition Pi+1. Therefore, for each n > N , the number of “large”
intervals ∆

(n−1)
i of partition Pn inside of ∆

(N−1)
i is bounded by

(kN+1 + 1)qNqn
(qN+1 + qN)qN

≤ (kN+1 + 1)qn
qN+1 + qN

≤ qn
qN
, (3.9)

Here, we have used that qN+1 = kN+1qN + qN−1. Since each of the intervals J (i)
N consists

of at most two intervals of partition PN , the claim follows. QED

Let xc = x
(i)
c ∈ T1 be a critical point of order βc = βi, and Iε = I(i)

ε .

Proposition 3.4 If ∆ ⊂ Iε, and ` is the distance of xc from ∆, then

|T (∆)|
|∆|

= Θ((|∆|+ `)βc−1). (3.10)
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Proof. If the interval ∆ ⊂ Iε covers the critical point xc of order βc, xc divides ∆ into
the union of two disjoint except at xc intervals ∆1 and ∆2. Without loss of generality, we
can assume that |∆| ≥ |∆2|. It is not difficult to see that

|T (∆)|
|∆|

=
|T (∆1)|+ |T (∆2)|
|∆1|+ |∆2|

= Θ

(
|∆1|βc + |∆2|βc
|∆1|+ |∆2|

)
= Θ(|∆1|βc−1) = Θ(|∆|βc−1).

(3.11)
If the interval ∆ ⊂ Iε is at a distance ` > 0 from a critical point xc of order βc, then

|T (∆)|
|∆|

= Θ

(
(|∆|+ `)βc − `βc

|∆|

)
= Θ((|∆|+ `)βc−1). (3.12)

The claim follows. QED

The following proposition holds for all “large” intervals I0 ⊂ ∆
(n−1)
0 such that I0 ∈ Pn+1

and the corresponding intervals Ii = T i(I0), i ∈ Z.
Let V = V (N) := Varξ∈T1\Int(J ) lnT ′(ξ). Notice that V →∞, as N →∞.

Proposition 3.5 If T is a C3-smooth multicritical circle map with an irrational rotation
number, there exist δ = δ(N) satisfying δ → 0 as N →∞, such that

|Ii|
|∆(n−1)

i |
≤ |I0|
|∆(n−1)

0 |
eV+δqn , (3.13)

for all n ∈ N and all i = 0, . . . , qn − 1.

Proof. For i = 0, . . . , qn − 1, there exist ζi ∈ Ii ⊂ ∆
(n−1)
i and ξi ∈ ∆

(n−1)
i such that

|T (Ii)| = T ′(ζi)|Ii|,
|T (∆

(n−1)
i )| = T ′(ξi)|∆(n−1)

i |.
(3.14)

Using these identities, we obtain that, for some ζj ∈ Ij and ξj ∈ ∆
(n−1)
j ,

|Ii|
|∆(n−1)

i |
=

|I0|
|∆(n−1)

0 |

i−1∏
j=0

T ′(ζj)

T ′(ξj)
=

|I0|
|∆(n−1)

0 |

i−1∏
j=0

∆
(n−1)
j 6⊂J

T ′(ζj)

T ′(ξj)

i−1∏
j=0

∆
(n−1)
j ⊂J

T ′(ζj)

T ′(ξj)
. (3.15)

By taking the logarithm of the first product, we obtain∣∣∣∣∣∣∣∣∣ln
i−1∏
j=0

∆
(n−1)
j 6⊂J

T ′(ζj)

T ′(ξj)

∣∣∣∣∣∣∣∣∣ ≤
i−1∑
j=0

∆
(n−1)
j 6⊂J

| lnT ′(ζj)− lnT ′(ξj)| ≤ V. (3.16)
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Here, we have used that for j = 0, . . . , qn − 1, the intervals ∆
(n−1)
j do not overlap, except

possibly at the end points.
Using Proposition 3.3 and Proposition 3.4, the second product can be bounded as

i−1∏
j=0

∆
(n−1)
j ⊂J

T ′(ζj)

T ′(ξj)
≤ eδqn , (3.17)

as each term in the product is bounded from above by a positive constant by Proposi-
tion 3.4. The claim follows. QED

Let ln−1 be the length of the longest “large” interval of partition Pn.

Lemma 3.6 If T is a C3-smooth multicritical circle map with an irrational rotation num-
ber ρ ∈ (0, 1), then there exist V = V (N) > 0 and δ = δ(N) > 0, satisfying V →∞ and
δ → 0, as N → ∞, such that, for all x ∈ E, there are infinitely many n ∈ N such that,
for all i = −qσn , . . . , qσn − 1,

|T qσnxi − xi| ≤ 2lσn−1e
V+δqσn

κ
k2ηn
σn+1

. (3.18)

Proof. For every x ∈ E , there are infinitely many n, such that x ∈ En. Also, for
each such n, there exist j, j′ ∈ N, such that χj′ = T j

′
χ0 ∈ En,j and an element Ij =

[χj′ , T
qσnχj′ ] ⊂ En,j ⊂ ∆

(σn−1)
j of partition Pσn+1, for some j = 0, . . . , qσn − 1, such that

x ∈ Ij. Furthermore, it follows from the definition En,0 and properties (c) and (d) that
Ij−qσn , Ij+qσn , Ij+2qσn ⊂ ∆

(σn−1)
j , for sufficiently large n (such that kηnσn+1 ≥ 3). Estimates

|Ii+j|, |Ii+j+qσn | ≤ eV+δqσn |∆(σn−1)
i+j | κ

k2ηn
σn+1

. (3.19)

on the sizes of intervals Ii+j, Ii+j+qσn ⊂ ∆
(σn−1)
i+j , for i = −qσn , . . . , qσn−1, follow from

Proposition 3.5, definition of En,j (see (3.1) and (3.2)), and property (a). The claim
follows from the fact that [xi, T

qσnxi] ⊂ Ii+j ∪ Ii+j+qσn . QED

3.4 Proof of the main theorem

Proof of Theorem 1.2. If L(E) < 2αβ, then β > 0, and there is an increasing
sequence σn, n ∈ N such that β = limn→∞

ln kσn+1

qσn
. Furthermore, there exist δ̂ > 0 such

that L < α(2β − δ̂) as well. Let ηn ∈ (0, 1) be any sequence converging to 1 such that
(1 − ηn) ln kσn+1 diverges to infinity, as n → ∞. We use these sequences to construct

13



the set E , as in section 3.2. By Proposition 3.2, µ(E) = 1. For N ∈ N large enough, by
Lemma 3.6, there exist δ = δ(N) > 0 and V = V (N) > 0, satisfying δ → 0 as N → ∞,
such that, for every x ∈ E , there are infinitely many n, such that estimate (3.18) holds.
We assume that N > 0 has been chosen large enough such that δ ≤ δ̂. This implies
β̂ ≥ 2β − δ ≥ 2β − δ̂. Hence, L(E) < αβ̂, and the claim follows from Theorem 2.3. QED

For C3-smooth multicritical circle maps, Theorem 1.3 follows directly from Theo-
rem 1.2, as property (d) implies that `n = Θ(k−2

n+1) and, thus, δmax = 2β.
.
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