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Abstract. We prove the existence in the sense of sequences of solutions for some system of
integro-differential type equations in two dimensions containing the normal diffusion in one
direction and the anomalous diffusion in the other direction in H*(R? RY) using the fixed
point technique. The system of elliptic equations contains second order differential opera-
tors without the Fredholm property. It is established that, under the reasonable technical
assumptions, the convergence in L'(R?) of the integral kernels yields the existence and con-
vergence in H?(R? RY) of the solutions. We emphasize that the study of the systems is more
difficult than of the scalar case and requires to overcome more cumbersome technicalities.
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1 Introduction

We recall that a linear operator L acting from a Banach space E into another Banach space
I satisfies the Fredholm property if its image is closed, the dimension of its kernel and the
codimension of its image are finite. Consequently, the equation Lu = f is solvable if and only
if ¢;(f) = 0 for a finite number of functionals ¢; from the dual space F*. Such properties
of the Fredholm operators are broadly used in many methods of the linear and nonlinear
analysis.

Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy the Fred-
holm property if the ellipticity condition, the proper ellipticity and the Shapiro-Lopatinskii
conditions are fulfilled (see e.g. [1], [6], [20], [23]). This is the main result of the theory of
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the linear elliptic problems. In the case of the unbounded domains, such conditions may
not be sufficient and the Fredholm property may not be satisfied. For example, the Laplace
operator, Lu = Au, in R? fails to satisfy the Fredholm property if considered in Holder
spaces, L : C*T*(R?) — C%(R?), or in Sobolev spaces, L : H?(R?) — L*(R?).

Linear elliptic equations in unbounded domains satisfy the Fredholm property if and only if,
in addition to the conditions given above, the limiting operators are invertible (see [24]). In
certain simple cases, the limiting operators can be constructed explicitly. For example, if

Lu = a(zx)u” 4+ b(x)u" + c¢(x)u, = €R,

where the coefficients of the operator have the limits at the infinities,

we = Mg ole) be= Bp M) cw= B clo)

the limiting operators are:

Liu=awu" +biu + ciu.

Because the coefficients here are constants, the essential spectrum of the operator, that is
the set of complex numbers A for which the operator L — \ does not satisfy the Fredholm
property, can be found explicitly by using the standard Fourier transform, so that

Ae(6) = —a & +byil+cy, LER.

The invertibility of the limiting operators is equivalent to the condition that the origin does
not belong to the essential spectrum.

For the general elliptic equations, the same assertions hold true. The Fredholm property is
satisfied if the essential spectrum does not contain the origin or if the limiting operators are
invertible. However, such conditions may not be written explicitly.

In the case of the non-Fredholm operators the usual solvability relations may not be appli-
cable and the solvability conditions are, in general, unknown. There are certain classes of
operators for which the solvability relations are obtained. Let us illustrate them with the
following example. Consider the equation

Lu=Au+au=f (1.1)

in R?, d € N, where a is a positive constant. Such operator L coincides with its limiting
operators. The homogeneous problem admits a nonzero bounded solution. Thus, the Fred-
holm property is not satisfied. However, since the operator has the constant coefficients,
we can use the standard Fourier transform and find the solution explicitly. The solvability
conditions can be formulated as follows. If f € L*(R%) and xf € L'(R?), then there exists
a unique solution of such equation in H?(R?) if and only if

ipx

€
x), =0, €S ae.
<f( ) (QW)%>L2<Rd> reov
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(see [29]). Here Sil/a denotes the sphere in R? of radius /a centered at the origin. Hence,
though our operator fails to satisfy the Fredholm property, the solvability conditions are
formulated similarly. However, such similarity is only formal since the range of the operator
is not closed.

In the case of the operator with a scalar potential,

Lu = Au+ a(z)u = f,

the standard Fourier transform is not applicable directly. Nevertheless, the solvability rela-
tions in R3 can be obtained by a rather sophisticated application of the theory of self-adjoint
operators (see [28]). As before, the solvability conditions are formulated in terms of the
orthogonality to the solutions of the homogeneous adjoint problem. There are several other
examples of the linear elliptic non Fredholm operators for which the solvability relations can
be derived (see [12], [14], [24], [25], [27], [29]).

The solvability conditions play a significant role in the analysis of the nonlinear elliptic
equations. In the case of the non-Fredholm operators, in spite of a certain progress in
understanding of the linear problems, there exist only few examples where the nonlinear
non-Fredholm operators were analyzed (see [5], [9], [10], [13], [14], [15], [26], [29],
[30], [31], [32]). The large time behavior of the solutions of a class of fourth-order parabolic
problems defined on unbounded domains using the Kolmogorov e-entropy as a measure was
studied in [8]. The article [7] deals with the finite and infinite dimensional attractors for
the evolution equations of mathematical physics. The attractor for a nonlinear reaction-
diffusion system in an unbounded domain in R* was investigated in [16]. The works [17]
and [22] are devoted to the understanding of the Fredholm and properness properties of
quasilinear elliptic systems of second order and of the operators of this kind on RY. The
exponential decay and Fredholm properties in the second-order quasilinear elliptic systems
were discussed in [18]. The present work is devoted to another class of stationary nonlinear
systems of equations, for which the Fredholm property may not be satisfied:

82uk (_ 82

92 —2) up+ | Grle—y)Fr(u1(y), ua(y), ..., un(y),y)dy =0, 0<s, <1, (1.2)
.:Cl 8I2 R2

where 1 <k <N, N >2, z=(11,15) € R?, y = (y1,92) € R%. Here and further down the
vector function

w = (uy, Uy, ..., uy)’ € RV, (1.3)
The nonlocal operators
82 82 Sk
Ly =—=—+ <——2) CH*(R?) — L*(R?), O0<sp<1, 1<k<N, N2>2(14)
Oy O3

are defined via the spectral calculus. The existence of solutions of the single equation anal-
ogous to system (1.2) was covered in [13]. The novelty of the works of this kind is that
in each diffusion term we add the standard negative Laplacian in the x; variable to the



minus Laplacian in x5 raised to a fractional power. These models are new and not much is
understood about them, especially in the context of the integro-differential equations. The
technical difficulty we have to overcome is that such problems become anisotropic and it is
more difficult to derive the desired estimates when dealing with them. In the population dy-
namics in the Mathematical Biology the integro-differential equations describe models with
the nonlocal consumption of resources and intra-specific competition (see e.g. [2], [3]). It is
very important to study the problems of this kind in unbounded domains from the point of
view of the understanding of the spread of the viral infections, since many countries have to
deal with the pandemics. We use the explicit form of the solvability relations and prove the
existence of solutions of such nonlinear equations. In the case of the standard Laplacian in-
stead of (1.4), the system analogical to (1.2) was treated in [26] and [32]. The solvability of
the integro-differential problems containing in the diffusion terms only the negative Laplace
operator raised to a fractional power was actively discussed in recent years in the context of
the anomalous diffusion (see e.g. [10], [14], [30], [31]). The anomalous diffusion can be
described as a random process of particle motion characterized by the probability density
distribution of jump length. The moments of such density distribution are finite in the case
of the normal diffusion, but this is not the case for the anomalous diffusion. The asymptotic
behavior at the infinity of the probability density function determines the value of the power
of the Laplacian (see [21]). The chapter [11] deals with the necessary condition of the
preservation of the nonnegativity of the solutions of a system of parabolic equations in the
case of the mixed diffusion.

2 Formulation of the results

The technical conditions of the present article will be analogous to the ones of [13], adapted
to the work with vector functions. Performing the analysis in the Sobolev spaces for vector
functions is more complicated. The nonlinear part of system (1.2) will satisfy the following
regularity conditions.

Assumption 1. Let 1 < k < N. Functions Fj,(u,z) : RY x R2 — R are satisfying the
Caratheodory condition (see [19]), such that

(u,7) < Klulgy +h(z) for uweRY, zcR? (2.1)

with a constant K > 0 and h(z) : R* — R, h(z) € L*(R?). Furthermore, they are
Lipschitz continuous function, so that for any uV® € RN, z € R?:

N
> (Fr(u®,z) = F(u®, 2))? < Lju® — u®|gx (2.2)
k=1



with a constant L > 0.

Here and below the norm of a vector function given by (1.3) is:

The solvability of a local elliptic problem in a bounded domain in R" was discussed in
[4].  The nonlinear function there was allowed to have a sublinear growth. In order to
establish the existence of solutions of (1.2), we introduce the auxiliary system of equations
with 1 <k < N, N > 2, namely

02uk < (92

Sk
T (- am) w [ Gl - DAL ) ) 0< s <L 23

Let us denote

(h(@), fol@)) 2y = | fi(@) fo(x)dz, (2.4)

with a slight abuse of notations when these functions do not belong to L?(R?). Indeed,
if fi(z) € LY(R?) and fy(z) € L*>(R?), like for instance those involved in orthogonality
condition (4.5) further down, the integral in the right side of (2.4) is well defined. In the
article we consider the situation in the space of the two dimensions, so that the appropriate
Sobolev space is equipped with the norm

197222y = 101722y + [AGNZ2m2)- (2.5)

Then for a vector function (1.3), we have

N N
||u||§{2(R2,RN) = Z ||Uk||%12(11@2) = Z{||uk||2L2(R2) + ||Auk||2L2(]R2)}' (2.6)
k=1 k=1

Let us also use the norm N
||u||%2(]R2,RN) = Z ||uk||2L2(]R2)'
k=1

By virtue of Assumption 1 above, we are not allowed to consider the higher powers of
the nonlinearities, than the first one, which is restrictive from the point of view of the
applications. But this guarantees that our nonlinear vector function is a bounded and
continuous map from L?(R2 RY) to L?(R% RY). In the system above we are dealing with
the operators Ly, defined in (1.4). By means of the standard Fourier transform (4.1), it can
be trivially obtained that the essential spectrum of L, is given by

Aeo(p) =7+ Ipo|*, p=(p1,p2) €ER?, 1< k<N (2.7)
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Clearly, each set (2.7) contains the origin. Hence, our operators Ls, do not satisfy the
Fredholm property, which is the obstacle to solve our system of equations.

The similar situations but in linear equations, containing both self- adjoint and non self-
adjoint differential operators without the Fredholm property have been studied extensively
in recent years (see [24], [25], [28], [29]). Our present article is related to our work [12]
because we also deal with the non Fredholm operators, now involved in the system, which
is not linear anymore and contains the nonlocal terms. Presently, as distinct from [12], the
space dimension is restricted to d = 2 to avoid the extra technicalities.

In our current work we manage to demonstrate that under the reasonable technical conditions
system (2.3) defines a map Ty,  : H*(R?,RY) — H?(R?,RY), which is a strict contraction.

Theorem 1. Let N > 2 1 <k <N, 0<s, <1, 1 <M<N —1, the functions Gi(x) :
R? — R, such that Gi(z) € L'(R?) and 2*Gy(x) € L*(R?). Furthermore, (—A)'™*Gy(x) €
LY(R?) and Assumption 1 holds.

1
Let us also assume that for 1 < k < M we have 0 < s, < 3 and orthogonality relations

1
(4.5), (4.6) are valid. Moreover, for M +1 < k < N we have 5 < 8, < 1 and orthogonality

conditions (4.5), (4.6) and (4.7) hold and that 2/27 Ny, L < 1, where Ny , is defined in
(4.4). Then the map v — Ty v = u on H*(R*,RY) defined by system (2.3) has a unique
fized point vy s, which is the only solution of the system of equations (1.2) in H*(R* RY).

This fized point vo s is nontrivial provided that for some 1 < k < N the intersection of

—

supports of the Fourier transforms of functions suppFy(0,z) N suppé\k is a set of nonzero
Lebesgue measure in R?.

Related to system (1.2) in the space of two dimensions, we consider the sequence of the
approximate systems of equations with m € N, namely

0%uy" O \* om) ),y m) (m)
e (= o) 7 [ Grnle = DRG0 =0 28
7 Oxs R2

with 0 < s, <1, 1 <k <N, N > 2. Each sequence of kernels {Gy,(x)}r_, converges to
Gr(z) as m — oo in the appropriate function spaces discussed further down. Let us prove
that, under the appropriate technical assumptions, each of systems (2.8) possesses a unique
solution u(™ (z) € H?(R?,RY), the limiting system of equations (1.2) has a unique solution
u(z) € H*(R%RY), and v™ (x) — u(x) in H*(R* RY) as m — oo. This is the so-called
existence of solutions in the sense of sequences. In such case, the solvability conditions can
be formulated for the iterated kernels Gy ,,. They imply the convergence of the kernels in
terms of the Fourier transforms (see the Appendix) and, consequently, the convergence or
the solutions (Theorem 2). The analogous ideas in the context of the standard Schrédinger
type operators were used in [12], [14], [27]. Our second main result is as follows.

Theorem 2. Letm e N, N>2 1 <k<N, 0<s,<1, 1<M<N —1, the functions
Gem(z) : R? = R, Gpn(z) € LYR?), 22Gyn(z) € LY(R?) are such that Gy (x) —
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Gr(z), 2°Grm(z) = 22°Gi(x) in LY(R?) as m — oco. Moreover, (—A)' ™Gy (x) € L' (R?),
so that (—A) =Gy (z) = (—A)'7**Gy(z) in L' (R?) as m — oo and Assumption 1 holds.

1
Suppose 0 < s, < 5 for 1 < k < M and orthogonality relations (4.24), (4.25) are wvalid,

1
5 <8k < 1 for M +1 < k < N and orthogonality conditions (4.24), (4.25) and (4.26) hold.
Furthermore, we assume that (4.27) is valid for all m € N with some fivred 0 < e < 1.

Then each system of equations (2.8) has a unique solution u'™ (z) € H*(R%RYN), limit-
ing system (1.2) admits a unique solution u(r) € H*(R* RY), so that u™ (x) — u(z) in
H?(R%,RY) as m — occ.

The unique solution u'™ (z) of each system of equations (2.8) does not vanish identically in
our space of two dimensions provided that for some 1 < k < N the intersection of supports

—

of the Fourier transforms of functions suppFy(0,z) N suppC/hg; 1s a set of nonzero Lebesque
measure in R?. Analogously, the unique solution u(x) of limiting system (1.2) is nontrivial if

—

suppFy(0,z) N suppé; is a set of nonzero Lebesque measure in R? for a certain 1 <k < N.

Remark 1. In the article we deal with the real valued vector functions due to the assumptions
on Fi(u,z), Ggm(z) and Gi(z) involved in the integral terms of the approzimate and limiting
systems discussed above.

Remark 2. The importance of Theorem 2 of our work is the continuous dependence of the
solutions with respect to the integral kernels.

3 Proofs Of The Main Results

Proof of Theorem 1. First we suppose that for some v(z) € H*(R?,RY) there exist two
solutions uM?) () € H?(R? RY) of system (2.3). Then their difference w(z) := uM(x) —
u®(z) € H*(R?,RY) will satisfy the homogeneous system of equations

A% wy, 9%\ **
AT . =0, 1<Ek<N\.
o3 ( 83:%) Wk ’ -

Evidently, each operator L, : H*(R?*) — L?(R?) defined in (1.4) does not possess any non-
trivial zero modes. Hence, the vector function w(z) is trivial in the space of two dimensions.
Let us choose an arbitrary v(z) € H?(R* RY) and apply the standard Fourier transform
(4.1) to both sides of system (2.3). This yields

. P
Czk(p)fkglz?’ 2 (p) = 27 QGk(p)fz;gp)’
i+ [pa* pi+ [paf

uy(p) = 27 1 <k<N, (3.1)



where fi,(p) stands for the Fourier image of F(v(z), ). Clearly, we have the upper bounds
[@(p)| < 2Ns, o |fe(p)] and  [p*@(p)| < 27No, | fi(p)l, 1<k <N

Note that all Ny, ,, here are finite by virtue of Lemma 3 of the Appendix under the stated
assumptions. This allows us to derive the estimate from above on the norm

N
el Fre e vy = Y G (0) 1 Z2re) + 1P° @ (9) | Z2ze) } <
k=1

N
<8230 N A, )l 32)
k=1
The right side of (3.2) is finite by means of (2.1) of Assumption 1 since v(z) € H*(R? RY).
Obviously, v, (z) € H*(R?) C L>(R?), 1 < k < N via the Sobolev embedding. Hence, for
an arbitrary v(z) € H*(R? RY) there exists a unique solution u(z) € H%(R? RY) of system
(2.3), so that its Fourier image is given by (3.1). Therefore, the map 75, 5 : H*(R* RY) —
H?(R?,RY) is well defined. This enables us to choose arbitrary vector functions v(1-?)(z) €
H?(R%, RY), so that their images uV)® := T, 012 ¢ H2(R2 RY). By virtue of (2.3), we
have for 1 <k < N

Puy 0 \™ ) W) O 0
- 8252 + - T uk = R Gk(x - y)Fk(Ul (y)7 U2 (y)v ceey UN (y)7 y)dyv (33)
1 2

0*uy” 0’ \™ @\ @ @)
- 8252 + - 8252 uk = Gk(l‘ - y)Fk(Ul (y)7 Ch) (y)v -~ Un (y)7 y)dyv (34)
1 2 R2

where 0 < s, < 1. We apply the standard Fourier transform (4.1) to both sides of systems
(3.3), (3.4) above. This gives us for 1 <k < N

_ =\ () _ 2 p(1)

B Ge(p)f () o p’Gr(p)fy (p)

u — oMk )2, —or , 3.5
e () Pt [pa2er P 2 P34 |pa|? (3:5)
_ N2 _ 0\ 72

(2) Gk(p)fk (p) 2 (2) p Gk(p)fk (p)

u — o BTk )2, = 3.6
F ) = e P ) pi + [pa|? 30

In the formulas above flil)(p) and f]f) (p) designate the Fourier images of Fj,(v")(x),x) and
Fi.(v®(z), x) respectively. Using (3.5) and (3.6), we obtain the estimates from above

—_

V) = 12 ()

)

)~ u? )] < 270,

Pl () = Pl ()| < 20, 10 () = 10 0)]
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with 1 < k < N. Hence, we derive the upper bound for the norm

2 RN RN 2

/1\ /2\ 1 2
lu®™ = u® | F g vy = Y {HU,i '(p) — u} )(p)‘ . sz [u’(f '(#) — )(p)] } L2(R2)} =

k=1

N

L2(R?

N
< 87N3 Y IE W (@), 2) = F(v® (), 2) 1 72z2),
k=1

where Ny  is defined in (4.4). Clearly, v,il)’(z)(x) € H?*(R?) C L*(R?) due to the Sobolev
embedding. Condition (2.2) of Assumption 1 above yields

||T2’ S’U(l) — Tg, SU(2)||H2(R2,RN) S 2\/§7TN2’ SLHU(I) - U(2)HH2(R2,RN)' (37)

The constant in the right side of inequality (3.7) is less than one as assumed. Therefore, by
virtue of the Fixed Point Theorem, there exists a unique vector function vy, 4 € H*(R% RY),
so that Th svs s = Vg 5, which is the only solution of the system of equations (1.2) in
H?*(R?,RY). Suppose vy, 4(z) is trivial in the whole space of two dimensions. This will
contradict to the given condition that for a certain 1 < k < N the Fourier images of G(z)
and F(0,z) do not vanish on a set of nonzero Lebesgue measure in R?. |

We proceed to establishing the solvability in the sense of sequences for our system of integro-
differential equations in the space of two dimensions.

Proof of Theorem 2. By means of the result of Theorem 1 above, each system of equations
(2.8) admits a unique solution u™(z) € H?(R?,RY), m € N. Limiting system (1.2) pos-
sesses a unique solution u(x) € H?(R* RY) by virtue of Lemma 4 below along with Theorem
1. We apply the standard Fourier transform (4.1) to both sides of the systems of equations
(1.2) and (2.8). This givesus for 1 <k <N, meN

_ CiD)Zi) o G (D) P ()

i =21 , U = 27— : , 3.8

«(p) P+ Ipof?e F ) Pt + |paf* 35
GG o G ()

pT + |p2|s* pi + |p2|s*

Here @5(p) and @y, (p) designate the Fourier images of F(u(x),r) and Fy(u'™(z), ) re-
spectively. Obviously,

o R Grm(p) Gr(p) _
|¢km—w@MS%' m(P)__ o)+
g P+ P2l P+ P2l || e ey
Grm(D) . _
—|—27r' s |Pkm(P) — Pr(p)]-
pi+ [pa* L (R?)
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Thus,

Grem(p) — Gi(p)
P+ [p2|® pi A+ |po|?n

ul™ — ug|| 22y < 27 | P (u(z), )| 22y +

Lo (R2)
Grom(P)
2| s | F(u™ (), 2) = Fi(u(x), )| 12g2)-
p% + |p2|2sk Lo (R2) L2(R?)

Inequality (2.2) of Assumption 1 yields

N
D I E(ut (@), @) = Fi(u(x), 2)[F2@e) < Lllu™ (2) = u(2)l| 22 mv). (3.10)
k=1

Clearly, u}j’”‘)(x), ur(z) € H*(R?) € L>®(R?) with 1 < k < N, m € N by virtue of the
Sobolev embedding. Hence, we obtain

N - - 2
[ut™ (x) — u(@) |72 gy < 872 f’“’m(pg - Gk(p)z 1 Fr(u(z), )12 o)+
7 i 1P1 + |p2| fkoopi+ |p2| Sk L= (R2)

2
872 | N3] L2 () — (@) g

<

where NQ(mS) is defined in (4.23). Using (4.27), we derive |u(™ (z) — u(:v)||2L2(]RZ Ry <

8r?
= e(2—¢) Z

k=1

Grm(p) — Gi(p)
pi+ [paf?> P+ [pof?on

1 Fi(u(@), ) |22 me)-
Lo (R?)
By means of upper bound (2.1) of Assumption 1, we have F,(u(z),r) € L*(R?), 1< k<N
for u(x) € H*(R* RY). Let us recall the result of Lemma 4 below. Therefore, under the
stated conditions
u™(z) = u(z), m— oo (3.11)

in L?(R?,RY). Using (3.9), we arrive at

2 (m) 2.~ P°Grm(p) p’Gr(p) -
™ () - Palp) | < 2 - )|+
‘ pi+ ol Pt P2l || e e
o
—|—27r' Lo |Pkm(P) — @r(P)]-
p% + |p2|28k Lo (R2)

Hence,

P2Grm(p) p*Gr(p)

Au™ (2) — Aup () || 2wy < 27 —
|| k ( ) ( )HL (R?) p%+|p2|25k p%+|p2|25k

1F(u(), )l L2m2) +
L (R2)
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P*Grm(p)

_— F.(u'™(2), 2) — Fy(u(z), z )
Ll IR @).0) ~ Alu(e).2) e

+27T‘
Loo(R2)

Upper bound (3.10) allows us to derive the estimate from above

P’Gem(p)  p°Gi(p)
pi+ [p2|® i+ 2|

|Au™ () — Aug(2)|| 2@y < 27

[F(u(), )l 22y +

L>(R2)
2/\
o || 2 km\P) L™ (2) — u(z)| p2gge zv)-
p% + |p2|25k L (R2) LARERY)

We recall the result of Lemma 4 of the Appendix and use (3.11). This yields
Au™(z) = Au(z) in L*(R%LRY), m — .

By virtue of the definition (2.6) of the norm we establish that «(™ (z) — u(z) in H?(R? RYN)
as m — 0.

Let us suppose the unique solution u™(z) of the system of equations (2.8) discussed above
is trivial in our space of two dimensions for some m € N. This will contradict to the stated
condition that the Fourier transforms of Gg,,(z) and Fj(0,z) do not vanish on a set of
nonzero Lebesgue measure in R? for a certain 1 < k < N. The similar argument holds for
the unique solution u(x) of limiting system (1.2). |

4 Appendix

Let Gi(x) be a function, Gj(z) : R? — R. We denote its standard Fourier transform using

the hat symbol as
— 1 ,
Gi(p) :== —/ Gr(z)e P dr, pe R (4.1)
2T R2
Evidently,

—~ 1
1Gr(P)] e re) < %HG;@(I)HLI(RZ) (4.2)

1 —~ )
and Gy(x) = o /2 Gr(q)e"*dq, x € R% For the technical purposes we introduce the aux-
R

iliary expressions
p*Gir(p)
pE+ |pof?*

Grlp)

Ny = max{ pif T ol

, ‘ }, 0< s <1, (4.3)
Lo (R?) L (R2)

where 1 < k < N, N > 2. Under the conditions of Lemma 3 below, all the quantities (4.3)
will be finite. Hence
]\/‘27 s = maxlSkSNNz s, < OQ. (44)
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The auxiliary lemmas below are the adaptations of the ones established in [13] for the
studies of the single integro-differential equation with mixed diffusion, analogous to system
(1.2). We provide them for the convenience of the readers.

Lemma 3. Let N > 2, 1 <k <N, 0<s, <1, 1 <M< N —1, the functions
Gr(z) : R? = R, so that Gi(x) € LY(R?) and 2°Gyr(x) € LY(R?). Let us also assume that
(—A)=Gy(z) € LL(R2).

1
a) Suppose 0 < s < 3 for1 <k <M. Then Ny 5, < oo if and only if

(Gr(x), )22y = 0, (4.5)
(Gk(l’), (L’l)LQ(R2) =0. (46)

1
b) Let 3 <sp<1forM+1<k<N. Then N, 4 < oo ifand only if orthogonality relations
(4.5) and (4.6) along with
(Gr(x), 22)12(R2) = 0 (4.7)
are valid.

Proof. Tt can be easily verified that in both cases a) and b) of the lemma the boundedness
Gi(p) p*Gi(p)

of —————— implies that € L™(R?) as well. Let us express
pi+ [paf* pi + [paf?
2 24 2
p°Gr(p) p°Gr(p) p°Gr(p)
= X{pl<1} T 55— X{p|>1}- (4.8)
p% + |p2|25k p% + |p2|2sk {Ipl<1} p% + |p2|2sk {lp[>1}

Here and below x4 will stand for the characteristic function of a set A C R?. Evidently, the
first term in the right side of (4.8) can be bounded from above in the absolute value by

Gi
‘ 2 k(p)zs < 0
p1+‘p2‘ k Lo (R2)
as assumed. Inequality (4.2) yields
2(1—sp) v 1 1—sy
Pl G2y < 5 l(=A) 7 Gr(@)l| 22y < 00 (4.9)

via the one of our assumptions. In the polar coordinates we have
p = ([p|cos, |p|sind) € R?,

where 6 designates the angle variable. Obviosly, the second term in the right side of (4.8)
can be estimated from above in the absolute value as

|21 |G (p)] |[p|* =Gy (p)]

2(1—sp) v
PPT— ) o520 + | sinf]2ee L1 = < Cllpl™ M Gr(p)l- (4.10)

cos?0 + |sinf|?x —

12



Here and further down C' will denote a finite, positive constant. By virtue of (4.9), the right
side of (4.10) can be bounded from above by

C —s
%H(—A)l ka(ZL')||L1(R2) < OQ.

G
Hence, pik(pg € L™(R?) as well. Clearly,
pi+ [pof*
G(p) G(p) Gi(p)
= X T ma X . 4.11
P2 Dol pd o [po e MUPIST T 2 s AP (4.11)

The second term in the right side of (4.11) can be easily estimated from above in the absolute
value via (4.2) as

|G (P)IX{jp1>1} __ NGk@) )
|p|2cos?0 + |p|?sk|sind|?sx — 27(cos?0 + |sinf|?sx)

< Ol|Gr()]| o1 w2y < 00

due to the one of our assumptions. We can write

o 0G (0 2 Galldl, )
Gito) =G0+l g0.0)+ [T ([ Dy Nas

Equality (4.12) enables us to express the first term in the right side of (4.11) as

— s 02Gr(lql,0)
G (0) N 1P 280, 0) N T fy £l qlg))ds 1)
P2+ a2 X{lpl<1} P2+ a2 X{lpl<1} P2+ |pa|2 X{IpI<1}- :
The definition of the standard Fourier transform (4.1) gives us
G, D
k(2 ) < —HLL’2Gk( )||L1(R2) < 0 (414)
Alp|
via the one of the given conditions. It can be easily checked that
2
X<y <1, peR% (4.15)

Pt + [pa|?

Evidently, the left side of (4.15) can be trivially bounded from above as

Ip|? [p[*( )
[p2cos20 + [p|2oe|sind|zse IPIST T (pR0=s0 = [pRO-sn)sin2g + |sind|?

X{pl<1} <

[p|2( =)

= |p|2(=sk) + |sind|?sk — sin?6

X{pl<1y < 1.

13



Hence, (4.15) holds. By virtue of (4.14) along with (4.15), we derive the estimate from above
in the absolute value for the third term in (4.13) as

122G ()| L1 (2 [P)? |22 G ()] 1. (w2
5 (25), X{pl<1} = ® <
4 (pf + |pa2|***) Am

as assumed. By means of definition (4.1) of the standard Fourier transform we obtain

aGy i

—50,0) = ——

I[p| 2m
where [ stands for the angle between the vectors p and x in the plane. We introduce the
technical expressions

Gi(z)|x|cosBdz, (4.16)
R2

Q= /R2 Gi(z)rdr, Qo := Gr(z)xodx. (4.17)

R2

Obviously, under our assumptions (4.17) are well defined, because of the trivial upper bound
on the norm

e Ga() 11 ey = /

|lz|<1

2] |G(a)]di + /

|z]|Gr(z)]dz <
|z|>1
< Gr@)llrre) + [12°Gr(@) 11 g2y, (4.18)
which is finite. Formulas (4.16) and (4.17) give us
G ’
Wp’?((), )= —%{chose + Qa1 5inb}. (4.19)
By virtue of (4.19), the sum of the first two terms in (4.13) can be written as

G(0) v _ilp{ @1 kcosl + Qaxsinb} v
|p|2cos?0 + |p|?x|sind|?k {lpl=t} 27 (|p|2cos?0 + |p|?sk|sind|?sk) {lpI<1}-

(4.20)

We fix the polar angle § = 0 and let [p| — 0. Clearly, (4.20) will be unbounded unless

@(0) = @11 = 0 in both cases a) and b) of the lemma. This is equivalent to orthogonality
relations (4.5) and (4.6). Thus, it remains to consider the term

B i|p|Qaxsinb
27 (|p|2cos?0 + |p|?sr|sinb]|?sr)

X{lp|<1}- (4.21)

1
First we discuss the situation when 5 < s < 1. Let us fix the polar angle 6 = g and let

Ip| tend to zero. Then (4.21) will be unbounded unless Q2 vanishes. This is equivalent to
orthogonality condition (4.7) and completes the proof of the part b) of the lemma.

14



1
Finally, we study the case when 0 < s, < 3 Then (4.21) can be easily bounded from above
in the absolute value as

|Q2,]

o

1p]|Qa,|| 5110
27 (|p|?cos?0 + |p|?sk|sind|?sk)

1 —2s . —2s
X{lpl<1} < g\ﬂl 2k |sinf] 2 | Qo k| X (pi<1y <

which is finite as discussed above. Therefore, in the case a) of our lemma no any orthogonality
conditions other than (4.5) and (4.6) are needed. [ |

In order to study the systems of equations (2.8), we introduce the following auxiliary expres-

sions - /\
Ny = maﬁ{‘72 kmlP) : '7])2 k() } (4.22)
pi+ |pa|? Lo (R2) pi+ |pof?s L (R2)

with0 < s, <1, 1<k<N, N>2andm € N. Under the assumptions of Lemma 4 below,
all expressions (4.22) will be finite. This will allow us to define

Nz(,m) = maxlSkSNNéjﬂzk <oo, meN. (4.23)

s

Our final technical statement is as follows.

Lemma 4. Let m €¢ N, N > 2, 1 < k<N, 0< s, <1, 1 <M<N-—1, the
functions Gim(x) : R? = R, Gin(x) € LY(R?), 2°Grm(z) € LY(R?), so that Gy p,(z) —
Gr(z), 2*°Grm(r) = 2°Gr(z) in L*(R?) as m — oo. Furthermore, (—A)'" Gy .(x) €
LY(R?), such that (—A)' Gy m(x) = (=A) 75 Gy (x) in L'(R?) as m — oo.

1
a)LetO<sk§§f0r1§k§Mand
(Gk,m(x), 1)L2(R2) =0, meN, (4.24)

(Gk,m(x)yzl)LQ(R2) = 0, m € N. (425)

1
b) Suppose 5 < sk <1 for M+1 <k < N, orthogonality relations (4.24), (4.25) along with

(Gk,m(l’),xg)lg([[@) = 0, m & N (426)
are valid. Let in addition
2V2r Ny L <1 —¢ (4.27)
for all m € N with some fixred 0 < e < 1. Then, for all1 < k < N, we have
Ciom Gr(p)
5 u (pz 5 k(p)2 , M — 00, (4.28)
P [p2Pr pi A [paf*
20 207,
P*Grm(p) rép) (4.29)

% b
P+ [paf? P+ |po|
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in L>°(R?), so that

G G,
o (pgs — 2k7(p)25 . m — oo, (4.30)
P + |p2| i L (R2) pi + |p2| k Lo (R2)
2/\ 2/\
P*Gim(p) P*Gi(p)
2 2on e e ;M — 0. (4.31)
Pt ‘p2| Lo (R2) p;+ |p2| Lo (R?)
Moreover,
2V2rNy L <1—¢ (4.32)
1s valid.

Proof. By virtue of inequality (4.2) along with the one of the given conditions, we derive for
1 <k < N that

—_— —_ 1
||Gk,m(p) — Gk(p)HLOO(RQ) S %Hka(x) — Gk(I)HLl(RQ) — O, m — OQ. (433)

Clearly, under the stated assumptions by means of the result of Lemma 3 above we have
Nz(ms) < 00. Using (4.24), we estimate for 1 < k < N that

|(Gr(2), 1) 22| = [(Gr(®) — Gem (), 1) 22y| < [|Grm(®) — Gr(2) || 212y — 0, m — o0

as we assume. Hence, orthogonality relations (4.5) are valid in the limit with 1 < k < N.
By virtue of (4.25) along with the given conditions, we easily arrive at for 1 < k < N that

(Gr(®), 21) 22y = [(Gr(2) = Grom(7), 71) 2R2)| < / |Grm(z) — Gr()||71|dr <
R2

< /|$|S1 |Grom(2) — Gi()||z]dx —l—/ |Grm(z) — Gi(2)||z]de <

|z|>1
< [|Grm(2) = Gu(@) |1 ge) + 12° G (@) — 2* (@) 112y = 0, m — o0.
Thus, orthogonality conditions (4.6) hold in the limit with 1 <k < N. When M+1 <k < N,
by the similar argument we can easily demonstrate that orthogonality relations (4.7) are valid

in the limit as well. Using the result of Lemma 3 above, we obtain that Ny ; < 0.
Let us show that (4.28) yields (4.29). Evidently, we have the equality

P[Grm(@) — Ge(P)]  P°[Grm(p) — Gi(p)] P [Grm(p) — Gir(p)]
: = : + ’ o (4.34
Pt + ol RIS Pt e e (43)

Obviously, the second term in the right side of (4.34) can be bounded from above in the
absolute value as

P12 9| G (p) — Gi(p)| N [p[**=*9)| G (p) — G (p)]
|p|2(1=3k) cos20 + |sinb)|?sk tlpl>1} = cos?0 + |sinf|?sx
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e A T — C s
< Clp** = [Grm(p) = Gr(Plle(ez) < o lI(=2) 7 [Grm(@) = Gr(@)ll e

via the analog of inequality (4.9). Hence,

?

as m — oo as we assume. Clearly, the first term in the right side of (4.34) can be estimated
from above in the norm as

P*[Crom(p) — Gi(p)]
P+ |paf?x

X{lpl>1}

< (=2 7 G () — Gi(2)]] L1 g2y — 0

2 —_— — —_— —
P° | Grm(p) — Gr(p Grm(p Gr(p
‘ [ 2 ) 2s ( )]X{\p\él} = ‘ 2 : 35 T2 ( )25 — 0, m— o0
Pt + |p2|*** L (R?) pi+Ip2®  pi+ P2 || oo e

assuming that (4.28) is valid. Thus, (4.29) will hold as well. Evidently,

’ - = — X + — X . 4.35
P+ [pal®r pi o+ |pal* Pt + [pa] =ty Pt + [pa| >y (4:35)

The second term in the right side of (4.35) can be bounded from above in the absolute value
using (4.33) as

Grn(p) — Gi(p)| < |Grm(p) = Gr(p)|
Ip|2cos26 + |p|2sk|sind)|2s X{lp|>1} =

< NG (D) — Ga()|| poormey <
0520 + |sinf|2sx — |Grm(p) k()L (R2) =

C
< o MGkm(@) = Gr(@)ll 2 e2),
m

so that
Grm(p) — Gilp) C
’ < —||Gpm(x) — Gp(x —0, m— o0
H P s A1) ey 5 1Grm(2) = Gr(2) | 11z2)

according to our assumption. Analogously to (4.12), we write for 1 <k < N, m € N

— — 85\7” ‘p‘ 8025\7” ,9
Gron(p) = G0 + bl 0.0+ [ ([ E0 U Dy Nas, a0

Orthogonality relations (4.5) and (4.24) imply that
Gr(0)=0, Gum(0)=0, 1<k<N, meN. (4.37)

By virtue of (4.36) along with (4.12) and (4.37) the first term in the right side of (4.35) is
equal to

dlpl alp
pi + [p2|?s

Ipl| 255(0,0) — 55:(0,0)|

X{lp|<1} T
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‘p‘ 092G m(‘q‘g 62G |Q|9
(fo [ dlar Dl ]d“”)ds

Pi A+ || X{lpl<1}- (4.38)

Using the definition of the standard Fourier transform (4.1), we easily obtain

PCrm(|pl.0)  °Gu(lpl.0)
d|p|? dlp|?

1
' < §Hx2ka(x) — 22 Gi(2) || 11 g2).- (4.39)

Inequalities (4.39) and (4.15) allow us to derive the estimate from above in the absolute
value for the second term in (4.38) as

P |[2*Grm(2) — 2°Grl@) |1 re)
AT (p? + [p2|**)

1
Xtpi<ty < 97 Grm (@) — 2 Gr(@)l| 1 e2)-
Thus,

|| 8*Crm(lal8)  92Gr(lal,0
' P (fo [ ’5|q|2q (lgl )}dm)ds

dlql?
which tends to zero as m — oo as assumed. An elementary computation gives us

X{lp|<1}

1
< EH??Qka(I) — 2*Gi(7) || 11 (r2).

pl + |p2|28k Lo (R2)

G |
a|p| (0, ‘9) —g [(Gk m( ) LEl)LQ(R2)COSH + (Ghm(l'), 1’2)L2(R2)S’Ln9], (440)
8Gk .
A —(0,0) = ~5- [(Gk(aj), 1) r2(w2)cost + (Gr(x), x2) 22y sind). (4.41)

Let us first discuss the case b) of our lemma. By virtue of orthogonality conditions (4.25) and

(4.26) along with (4.40), we have 8§| |

(4.6) and (4.7) along with (4.41) yield that g|G| (

(0,6) =0, M+1<k<N, meN. Analogously,

0,6) =0, M+1<k< N. Thus, in the

situation b), the first term in (4.38) is trivial.
Let us turn our attention to the case a) of our lemma. We recall inequality (4.18). Since it
is assumed that Gy ,,(2), 22Gy.(x) € L'(R?), we have |z|Gyn(z) € L' (R?). Similarly,

el G () l41Gi(o) 35y = |

|lz|<1

ol|Gun(e)~Gala)ldet | ol Grn(a) =Gl <

|z|>1
< [|Grm(z) = Gu(@) 1 ge) + 12° G (@) — 2*Gr(@) 112y = 0, m — 00
as we assume. Hence, |2|Gy . (x) — |z|Gi(x) in L' (R?) as m — oo. Orthogonality conditions
(4.25) along with (4.40) give us
G
Alp|

(0,0) = —%sz’né’/ Grm(x)rodr, 1<k<M, meN.
R2
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By means of (4.6) and (4.41) we obtain

9G, i
—(0,0) = ———sinb G d 1<kE<M N.
8\p|( ,0) Qﬂsm y k(7)xodr, <k<M, me

This enables us to derive the upper bound on the first term in (4.38) in the absolute value

as
pl[sind| [go [2]|Grm(z) — Gi(2)|dx

27 (|p|2cos?0 + |p|?sx|sind|?sx)

X{pl<1} <

- |p|1—2sk |$Z7’L9| 1—2s,
- 2w

1
12 Grom(@) = 2| Gr(@) L2 @2 xpi<ay < 5 l21Grm (@) = [2]Gr(2)] 21 R2),

1
since 0 < s, < 3 for 1 < k < M. Therefore, in the situation a) we derive

—

H Pl 2552(0,6) — 2(0.0)]

p| dlp|
pi + [pa|?

1
X{lpl<1} < ooz Grm(@) = l2|Gr(@)l 2 @2y — 0

Lo (R2)

as m — oo as discussed above. Thus, by means of the argument above (4.28) is valid in
both cases a) and b) of our lemma. Obviously, by virtue of the standard triangle inequality
(4.30) and (4.31) follow easily from (4.28) and (4.29) respectively. Inequality (4.32) holds
via a trivial limiting argument, which relies on (4.30) and (4.31). |

Remark 3. Note that in the parts a) of Lemmas 3 and j above for each 1 <k < M, m € N
there are only two orthogonality relations for our integral kernels required, as distinct from

the second part of the Assumption 2 of [26].

Remark 4. The existence in the sense of sequences of the solutions of our system of equa-
tions (1.2) involving the drift terms will be discussed in our consecutive article.
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