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Abstract

We consider a class of Schrödinger operators — referred to as Schrödinger opera-
tors over circle maps — that generalize one-frequency quasiperiodic Schrödinger op-
erators, with a base dynamics given by an orientation-preserving homeomorphism of
a circle T1 = R/Z, instead of a circle rotation. In particular, we consider Schrödinger
operators over circle diffeomorphisms with a single singular point where the deriva-
tive has a jump discontinuity (circle maps with a break) or vanishes (critical circle
maps). We show that in a two-parameter region — determined by the geometry
of dynamical partitions and α — the spectrum of Schrödinger operators over every
sufficiently smooth such map, is purely singular continuous, for every α-Hölder-
continuous potential V . For α = 1, the region extends beyond the corresponding
region for the Almost Mathieu operator. As a corollary, we obtain that for every
sufficiently smooth such map, with an invariant measure µ and with rotation number
in a set S depending on the class of the considered maps, and µ-almost all x ∈ T1,
the corresponding Schrödinger operator has a purely continuous spectrum, for every
Hölder-continuous potential V . For circle maps with a break, this set includes some
Diophantine numbers with a Diophantine exponent δ, for any δ > 1.

1 Introduction

We consider a class of Schrödinger operators H = H(T, V, x) on a space of square-
summable sequences `2(Z), defined by

(Hu)n := un−1 + un+1 + V (T nx)un, u ∈ `2(Z), (1.1)
∗Email: skocic@olemiss.edu
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where V : T1 → R is a potential function, T : T1 → T1 is an orientation-preserving
homeomorphism of the circle T1 = R/Z, and x ∈ T1. For an overview of recent results on
spectral theory of Schröedinger operators over dynamically defined potentials the reader
is directed, e.g., to [4] (see also [13]).

When the rotation number ρ of T is irrational, this class of operators is a natural
generalization of the one-frequency quasiperiodic Schrödinger operators for which T = Rρ,
where Rρ : x 7→ x + ρ mod 1 is the rigid rotation. In this case, T is topologically
semi-conjugate to the rotation, i.e., there is a continuous map ϕ : T1 → T1, such that
T ◦ ϕ = ϕ ◦ Rρ. Hence, if ρ is irrational, T n ◦ ϕ = ϕ ◦ Rn

ρ , for every n ∈ N, and we have
H(T, V, x) = H(Rρ, V ◦ ϕ, y), where x = ϕ(y), y ∈ T1.

In some cases, the spectral properties of H(T, V, x) can be deduced directly from the
spectral properties of the corresponding Schrödinger operator over Rρ, using this identity.
In particular, if T is an analytic circle diffeomorphism with rotation number satisfying
Yoccoz’s H arithmetic condition [25], it follows from the theory of Herman [10] and Yoc-
coz [25] that ϕ is analytic, and the spectral properties of H(T, V, x), with V analytic [12]
follow directly from Avila’s global theory of one-frequency quasiperiodic Schrödinger op-
erators over rotations [1]. Although for circle diffeomorphisms T with Liouville rotation
numbers the conjugacy to the corresponding rotation can even be singular, certain spec-
tral properties of H(T, V, x), with potentials of the same regularity, are still analogous
to those of the one-frequency quasiperiodic Schrödinger operators over rotations with the
same rotation numbers.

In this paper, we initiate the study of Schrödinger operators over more general circle
maps. We are interested in rigidity properties of these systems, i.e., properties of these
systems that are the same in a large class. We are interested in the spectral phase diagram
of Schrödinger operators over circle maps and, in particular, the singular continuous phase.
Such a phase diagram emerges in one of most studied examples — the almost Mathieu
family — which corresponds to T = Rρ and V (x) = λ cos(2πx). It was conjectured
by Jitomirskaya [11] (Problem 8 therein), and proved by Avila, You and Zhou [2], that
the almost Mathieu operator has a purely singular continuous spectrum in the region
0 < L(E) < β and that L(E) = β is the boundary between continuous and pure point
spectrum, for almost all x ∈ T1, where L(E) is the Lyapunov exponent and

β = β(ρ) := lim sup
n→∞

ln kn+1

qn
, (1.2)

with kn and pn
qn
, n ∈ N, being the partial quotients and rational convergents of ρ ∈ (0, 1)\Q

(see section 2.2). It was shown in [12] that, in the same region, the spectrum is singular
continuous for Schrödinger operators H(T, V, x) with Lipschitz continuous potentials V
over C1+BV -smooth circle diffeomorphisms T , for almost all x ∈ T1, suggesting that
L(E) = β could be the boundary between continuous and pure point spectrum, in this
case as well. A natural question to ask is if the latter holds for Schrödinger operators
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over general circle maps, for sufficiently regular potentials. The main result of this paper
provides a negative answer to that question.

Here, we focus on spectral properties of Schrödinger operators over circle diffeomor-
phisms with a singularity, i.e., smooth circle diffeomorphisms with a single singular point
where the derivative vanishes (critical circle maps) or has a jump discontinuity (circle
maps with a break). Over the last couple of decades, these maps played a central role in
the rigidity theory of circle maps — an extension of Herman’s theory on the linearization
of circle diffeomorphisms [9, 14, 15, 18].

In the case of circle maps with a break at xbr, the type of singularity is characterized
by the size of the break

c :=

√
T ′−(xbr)

T ′+(xbr)
6= 1. (1.3)

In the case of critical circle maps, we assume that in some open neighborhood of the critical
point xc, the derivative of the map is of the order |x−xc|γ−1, i.e., T ′(x) = Θ(|x−xc|γ−1),
for some γ > 1, and the type of singularity is characterized by the order of the critical
point γ. We call a diffeomorphism with such a critical point, or with a break point,
a diffeomorphism with a singularity. A diffeomorphism with a singularity is said to be
Cr-smooth if it is Cr-smooth outside the singularity point.

We begin with a few more definitions. A number ρ ∈ R\Q is called Diophantine of
class D(δ), for some δ ≥ 0, if there exists C > 0 such that |ρ − p/q| > C/q2+δ, for every
p ∈ Z and q ∈ N. The set of all Diophantine numbers is denoted by D := ∪δ≥0D(δ) and
the complement of this set in R\Q is the set of Liouville numbers. If ρ ∈ D(δ) ∩ (0, 1),
then lim supn→∞

ln kn+1

ln qn
≤ δ and, thus, β(ρ) = 0. We call a Liouville number ρ ∈ (0, 1)

exponentially Liouville if β(ρ) > 0 and super Liouville if β(ρ) = ∞. The set of all super
Liouville numbers will be denoted by SL.

Let
βe = βe(ρ) := lim sup

n→∞

k2n+1

q2n

, and βo = βo(ρ) := lim sup
n→∞

k2n

q2n−1

. (1.4)

The following theorem, which is a corollary of the main results of this paper holds for
r > 2 and S = Sbr ∪SL, in the case of circle maps with break, and for r ≥ 3 and S = SL,
in the case of critical circle maps. Here, Sbr is the set of ρ ∈ (0, 1)\Q such that βbr =∞,
where βbr = βbr(ρ) := βe if the size of the break c < 1, and βbr = βbr(ρ) := βo if the size of
the break c > 1. Since the rotation number ρ of T is irrational, T is uniquely ergodic [7].
We will denote by µ the unique invariant probability measure of T .

Theorem 1.1 For every Cr-smooth circle diffeomorphism with a singularity T , with ro-
tation number ρ ∈ S and the invariant measure µ, and µ-almost all x ∈ T1, the cor-
responding Schrödinger operator H(T, V, x) has a purely continuous spectrum, for every
Hölder-continuous potential V : T1 → R.
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Remark 1 For C1+BV -smooth circle diffeomorphisms and a set S = SL, an analogous
claim was proved in [12]. A map is said to be C1+BV -smooth if it is C1-smooth with the
logarithm of the derivative of bounded variation.

Remark 2 The set S = Sbr ∪ SL of rotation numbers for which the theorem holds in
the case of circle maps with a break contains not only Liouville numbers but also some
Diophantine numbers of class D(δ), for any δ > 1.

Ergodic Schrödinger operators are intimately related to a family of cocycles — dynam-
ical systems associated with each eigen-equation Hu = Eu. In the case of Schrödinger
operators over circle maps with irrational rotation numbers, the cocycle is given by

(T,A) : (x, y) 7→ (Tx,A(x,E)y), (1.5)

where A ∈ SL(2,R), x ∈ T1, y ∈ R2. If u = (un)n∈Z is a sequence satisfying Hu = Eu,
then (

un+1

un

)
= An(x,E)

(
un
un−1

)
, where An(x,E) :=

(
E − V (T nx) −1

1 0

)
(1.6)

is the transfer matrix. Thus, (
un
un−1

)
= Pn(x,E)

(
u0

u−1

)
, (1.7)

where Pn(x,E) :=
∏0

i=n−1Ai(x,E) = An−1(x,E) . . . A0(x,E).
We define the Lyapunov exponent

L(E) := lim
n→∞

∫
Ln(x,E) dµ, where Ln(x,E) :=

1

n
ln ‖Pn(x,E)‖. (1.8)

Due to submultiplicativity of Pn(x,E), L(E) exists. Since T is ergodic, by Kingman’s
ergodic theorem, for almost every x,

L(E) = L(x,E) := lim
n→∞

1

n
ln ‖Pn(x,E)‖. (1.9)

Different components of the spectrum of an operator H(T, V, x) are denoted by σac
(absolutely continuous), σsc (singular continuous) and σpp (pure point). We also denote
by Spp(x) the set of eigenvalues of H(T, V, x), with σpp(x) = Spp(x). Finally, we set H =
`2(Z), Hsc(x) the corresponding singular continuous subspace, and PA(x) the operator of
spectral projection on a Borel set A, corresponding to H(T, V, x).

For circle maps with a break, we have the following claim.
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Theorem 1.2 Let T : T1 → T1 be a C2+ε-smooth (ε > 0) circle diffeomorphism with a
break of size c 6= 1, a rotation number ρ ∈ (0, 1)\Q, and an invariant measure µ. For
µ-almost all x ∈ T1, and any α-Hölder-continuous potential V : T1 → R, α ∈ (0, 1], we
have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αmax{1
2
βbr| ln c|, 2β}} = ∅,

(ii) P{E:0<L(E)<αmax{ 1
2
βbr| ln c|,2β}}(x)H ⊂ Hsc(x).

For critical circle maps, we have the following claim.

Theorem 1.3 Let T : T1 → T1 be any Cr-smooth critical circle map, r ≥ 3, with a
rotation number ρ ∈ (0, 1)\Q, and an invariant measure µ. For µ-almost all x ∈ T1, and
any α-Hölder-continuous potential V : T1 → R, α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < 2αβ} = ∅,

(ii) P{E:0<L(E)<2αβ}(x)H ⊂ Hsc(x).

Remark 3 The regions in the (β, L(E)) plane with purely singular continuous spectrum
in Theorem 1.2 and Theorem 1.3 extend beyond the corresponding region in Theorem 1.5
of [12] for circle diffeomorphisms and, for α = 1, beyond the corresponding region for the
almost Mathieu family (Theorem 1.1 of [2]).

Theorem 1.2 and Theorem 1.3 can be stated in a unified way, and the main result of
this paper can be formulated as follows. Let

δmax := lim sup
n→∞

| ln `n|
qn

, (1.10)

where `n = min
I∈Pn+1,I⊂∆

(n−1)
0
|τn(I)| is the length of the smallest renormalized interval of

partition Pn+1 inside the fundamental interval ∆
(n−1)
0 of partition Pn (see section 2.2).

Theorem 1.4 Let T : T1 → T1 be any Cr-smooth, r ≥ 3, circle diffeomorphism with a
singularity, with an irrational rotation number ρ ∈ (0, 1), and an invariant measure µ.
For µ-almost all x ∈ T1, and any α-Hölder-continuous potential V : T1 → R, α ∈ (0, 1],
we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αδmax} = ∅,

(ii) P{E:0<L(E)<αδmax}(x)H ⊂ Hsc(x).

Remark 4 This theorem can be extended to circle diffeomorphisms with finitely many
critical or break points.
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Remark 5 It seems reasonable to expect that for Schrödinger operators over sufficiently
smooth circle maps, in a large class of maps including circle diffeomorphisms with singu-
larities, for µ-almost all x ∈ T1, and sufficiently regular potentials, the boundary between
the continuous and pure point spectrum is given by L(E) = δmax, i.e., that the spectrum
is pure point with exponentially decaying eigenfunctions for L(E) > δmax.

The proofs of these theorems use tools of both spectral theory of Schrödinger operators
and one-dimensional circle dynamics. In the next section, we state a sharp version of
Gordon’s theorem, and introduce dynamical partitions of a circle and renormalizations of
circle maps that play an important role in our analysis. In section 3, we define two sets of
full invariant measure for circle maps with a break, and prove Theorem 1.2. In section 4,
we define a set of full invariant measure for critical circle maps, and prove Theorem 1.3.
In section 5, we give a proof of Theorem 1.4.

2 Preliminaries

2.1 A criterion for the absence of eigenvalues

In this section, we state a sharp version [12] of a theorem of Gordon [8] that has been used
to prove absence of point spectra of one-dimensional operators since the pioneering work
of Avron and Simon [3]. Such a sharp version was used in [2] to establish the singular
continuous phase for the almost Mathieu operator.

Consider a Schrödinger operator H on `2(Z) given by the action on u ∈ `2(Z), as

(Hu)n = un+1 + un−1 + V (n)un. (2.1)

As in (1.6), we can define the transfer matrix An(E) and, as in (1.7), the n-step
transfer-matrix Pn(E) =

∏0
i=n−1Ai(E). Let also P−n(E) =

∏−1
i=−n (Ai(E))−1. Let

Λ(E) := lim sup
|n|→∞

ln ‖Pn(E)‖
n

. (2.2)

Clearly, for bounded V, Λ(E) <∞, for every E.

Theorem 2.1 ([12]) Assume that there exists β > 0, and an increasing sequence of
positive integers qn diverging to infinity, such that the sequence {V (n)}n∈Z in (2.1) satisfies

max
0≤j<qn

|V (j)− V (j ± qn)| ≤ e−βqn . (2.3)

If β > Λ(E), then E is not an eigenvalue of operator (2.1).
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Proof. We give the proof of Theorem 2.1 for completeness of the presentation. Since E is
fixed, we will suppress it from the notation. Taking into account that P−qn =

∏qn−1
i=0 A−1

i−qn

= (
∏0

i=qn−1Ai−qn)−1 = (P
(−qn)
qn )−1, and P2qn =

∏0
i=2qn−1Ai = (

∏0
i=qn−1Ai+qn)Pqn =

P
(qn)
qn Pqn , where P

(k)
n :=

∏0
i=n−1Ai+k, and applying the telescoping identity1, to P−1

qn and
(P

(−qn)
qn )−1, and Pqn and P (qn)

qn , respectively, we obtain that, for any ε > 0, and sufficiently
large n, we have

‖P−qn − P−1
qn ‖ < e(Λ−β+ε)qn , (2.4)

‖P2qnv − P 2
qnv‖ < e(Λ−β+ε)qn‖Pqnv‖. (2.5)

Assume there is a decaying u such that Hu = Eu. Let v = (u0, u−1)T and assume
‖v‖ = 1. Then, for sufficiently large n we have max{‖Pqnv‖, ‖P−qnv‖, ‖P2qnv‖} < 1/2.
Since, by the characteristic equation, Pqn − TrPqnI + P−1

qn = 0, using (A.2) (assuming
ε < β − Λ) and applying the characteristic equation to v, we obtain |TrPqn| < 1, for n
large enough. Applying another form of the characteristic equation, P 2

qn−TrPqnPqn+I = 0,
again to v and using (2.5), we obtain, for large enough n, ‖P2qnv‖ > 1/2, which leads to
a contradiction. QED

Consider the Schrödinger operator (2.1) with Vn = V (T nx) where V : T1 → R is a
bounded real-valued function on the circle and T is an orientation-preserving homeomor-
phism of a circle with an irrational rotation number ρ. Let the Lyapunov exponent L(E)
be defined as in (1.8). We then have

Theorem 2.2 Assume that for some x ∈ T1, C > 0 and β̄ > 0, there is a sequence of
positive integers qn →∞ such that

sup
0≤i<qn

|Vi±qn(x)− Vi(x)| < Ce−β̄qn . (2.6)

If L(E) < β̄, then E is not an eigenvalue of the Schrödinger operator H(T, V, x).

Proof. In order to apply Theorem 2.1, it suffices to prove lim sup|n|→∞
ln ‖Pn(E)‖

n
≤ L(E).

This follows from a result of Furman [6]. QED

For a sequence qn →∞, let

β̂ = β̂(x) := lim inf
n→∞

ln(sup0≤i<qn |xi − xi±qn|)−1

qn
, (2.7)

where xi = T ix.
Let σpp, PA,H,Hsc be as in Theorem 1.2 and Theorem 1.3.

1P̂n − P̃n =
∑n−1

i=0 Ân−1 . . . Âi+1(Âi − Ãi)Ãi−1 . . . Ã0
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Theorem 2.3 Let V : T1 → R be a α-Hölder continuous real-valued function on the
circle, with α ∈ (0, 1). Then, we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂} = ∅,

(ii) P{E:0<L<αβ̂}(x)H ⊂ Hsc(x).

Proof. It suffices to prove part (i) of the claim, i.e., to exclude the point spectrum. Part
(ii) of the claim then follows from Kotani’s theory [19, 20, 21], x-independence of the
absolutely continuous spectrum [22], and the minimality of T , since the set {E : L(E) > 0}
does not support any absolutely continuous spectrum.

If L < αβ̂, then vi = V (T ix) satisfy the assumption (2.6) of Theorem 2.2 for any β̄
satisfying L < β̄ < αβ̂. The claim follows. QED

In order to prove Theorem 1.2, and Theorem 1.3, we need appropriate bounds on β̂(x).

2.2 Dynamical partitions of a circle and renormalization

The quantity β̂(x) involves the information about the geometry of the dynamical parti-
tions of a circle. These partitions are obtained by using the continued fraction expansion
of the rotation number ρ ∈ (0, 1) of the circle map T . Every irrational ρ ∈ (0, 1) can be
written uniquely as

ρ =
1

k1 + 1
k2+ 1

k3+...

=: [k1, k2, k3, . . . ], (2.8)

with an infinite sequence of partial quotients kn ∈ N. Conversely, every infinite sequence
of partial quotients defines uniquely an irrational number ρ as the limit of the sequence
of rational convergents pn/qn = [k1, k2, . . . , kn], obtained by the finite truncations of the
continued fraction expansion (2.8). It is well-known that pn/qn form a sequence of best
rational approximations of an irrational ρ, i.e., there are no rational numbers, with denom-
inators smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents
can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, starting
with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the dynamical partitions of an orientation-preserving homeomorphism T :
T1 → T1, with an irrational rotation number ρ, we start with an arbitrary point x0 ∈ T1,
and consider the semi-orbit xi = T ix0, with i ∈ N. The subsequence (xqn)n∈N, indexed
by the denominators qn of the sequence of rational convergents of the rotation number
ρ, is called the sequence of dynamical convergents. It follows from the simple arithmetic
properties of the rational convergents that the sequence of dynamical convergents (xqn)n∈N,
for the rigid rotation Rρ has the property that its subsequence with n odd approaches
x0 from the left and the subsequence with n even approaches x0 from the right. Since
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all circle homeomorphisms with the same irrational rotation number are combinatorially
equivalent, the order of the dynamical convergents of T is the same.

The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 .

We also define ∆
(n)
i = T i(∆

(n)
0 ). Certain number of images of ∆

(n−1)
0 and ∆

(n)
0 , under

the iterations of a map T , cover the whole circle without intersecting each other except
possibly at the end points, and form the n-th dynamical partition of the circle

Pn := {T i(∆(n−1)
0 ) : 0 ≤ i < qn} ∪ {T i(∆(n)

0 ) : 0 ≤ i < qn−1}. (2.9)

Intervals ∆
(n−1)
0 and ∆

(n)
0 are called the fundamental intervals of Pn. These partitions are

nested, in the sense that intervals of partition Pn+1 are obtained by dividing intervals of
partition Pn into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism T : T1 → T1,
with rotation number ρ, with respect to partition-defining point x0 ∈ T1, is a function fn :
[−1, 0]→ R, obtained from the restriction of T qn to ∆

(n−1)
0 , by rescaling the coordinates.

If τn is the affine change of coordinates that maps xqn−1 to −1 and x0 to 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.10)

If we identify x0 with zero, then τn is just multiplication by (−1)n/|∆(n−1)
0 |. Here, and in

what follows, |I| denotes the length of an interval I on T1.
In the following, we will use the singularity point (i.e., the break point xbr, in the case

of circle maps with a break, or the critical point xc, in the case of critical circle maps) as
the partition-defining point x0.

3 Schrödinger operators over circle maps with a break

3.1 Renormalizations of circle maps with a break

A Cr-smooth circle diffeomorphism (map) with a break is a map T : T1 → T1, for which
there exists xbr ∈ T1 such that T ∈ Cr([xbr, xbr + 1]); T ′(x) is bounded from below by a
positive constant on [xbr, xbr + 1]; the one-sided derivatives of T at xbr are such that the
size of the break,

c :=

√
T ′−(xbr)

T ′+(xbr)
6= 1. (3.1)

The following properties of renormalizations of C2+ε-smooth circle maps with a break,
with ε ∈ (0, 1), will be crucial to prove Theorem 1.2.

Let V := Varx∈T1 lnT ′(x) <∞.
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(A) | ln(T qn)′(x)| ≤ V , for all x ∈ T1 (at points where the derivative has breaks, both
left and right derivatives are considered);

(B) There exists K1 > 0 such that ‖fn‖C2 ≤ K1, for all n ∈ N;

(C) There exists K2 > 0 such that f ′n(x) ≥ K2, for x ∈ [−1, 0], for all n ∈ N;

(D) There exists K3 > 0 such that, for sufficiently large even n, if c < 1, and odd n, if
c > 1, f ′′n(x) ≤ −K3, for x ∈ [−1, 0];

(E) There exists K4 > 0 such that, for sufficiently large even n, if c > 1, and odd n, if
c < 1, f ′′n(x) ≥ K4, for x ∈ [−1, 0].

Estimate (A), that we will refer to as Denjoy’s lemma, has been proven in [17, 23].
Estimates (B), (C) and (D) have been proven in [14].

From the estimates proved in [14], we also have the following. Let an =
|∆(n)

0 |
|∆(n−1)

0 |
and

cn = c(−1)n .

Proposition 3.1 There exists λ ∈ (0, 1) such that f ′n(−1) − c−1
n = O(an + λn) and

f ′n(0)− cn = O(an + λn).

We will also formulate and use the following lemma that is a generalization of a lemma
by Yoccoz [5]. Yoccoz’s lemma applies to C3-smooth negative Schwarzian derivative
diffeomorphisms (see section 4.1), and does not apply to renormalizations of circle maps
with a break, which approach fractional linear transformations. In the following lemma,
negative Schwarzian derivative condition is replaced by conditions (ii) and (iii). We give
a proof of this lemma in the appendix. Let k ∈ N and let ∆1,∆2, . . . ,∆k+1 be consecutive
closed intervals on an interval or a circle.

Lemma 3.2 Let I = ∆1 ∪ ∆2 ∪ · · · ∪ ∆k and let f : I → ∆2 ∪ ∆3 ∪ · · · ∪ ∆k+1 be a
C2+ε-smooth diffeomorphism, ε ∈ (0, 1), satisfying f(∆i) = ∆i+1. Assume that there exist
constants K,K ′, K ′′ > 0 such that

(i) ‖f‖C2 ≤ K;

(ii) the set BK′ := {z ∈ I : f(z)− z ≤ K ′} is either an open interval or empty;

(iii) f ′′(z) ≥ K ′′, for every z ∈ BK′.

If |∆1|, |∆k| ≥ σ|I|, for some σ > 0, then there exists a constant C > 1, such that

C−1 1

min{i, k + 1− i}2
≤ |∆i|
|I|
≤ C

1

min{i, k + 1− i}2
. (3.2)
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3.2 Concave renormalization graphs and set E of full measure

In this section, we construct a set of full invariant measure for which we have appropriate
control on the distances of dynamical convergents, i.e, control of the quantity β̂ in (2.7),
in the case of circle maps with a break. The crucial facts behind these constructions are
that the graphs of the renormalizations fn of circle maps with a break, for sufficiently
large n, alternate between being convex and concave and that, in the concave case, the
lengths of the intervals of the next level partition Pn+1, inside a fundamental interval
∆

(n−1)
0 of dynamical partition Pn, grow exponentially near the end points of this interval,

as the distance from these points increases as follows from Proposition 3.1.
Let (σn)n∈N, be an increasing subsequence of 2N, if c < 1, or an increasing subsequence

of 2N− 1, if c > 1, such that the corresponding sequence (kσn+1)n∈N of partial quotients
diverges to infinity. In this section, we assume that such a subsequence exists.

The following proposition provides estimates on the derivatives of the concave renor-
malizations near the end points of the renormalization interval [−1, 0].

Proposition 3.3 For every ε > 0, and sufficiently large n ∈ N, |f ′σn(x) − c−1
σn | ≤ ε, for

x ∈ [−1,−1 + Θ(ε)], and |f ′σn(x)− cσn| ≤ ε, for x ∈ [−Θ(ε), 0].

Proof. It follows directly from Proposition 3.1, since aσn decreases exponentially in kσn+1.
QED

Using this proposition, we can obtain estimates on the number of iterates of renormal-
izations in constant size intervals near the end points, and the size of the smallest interval
of partition Pσn+1 inside Pσn .

Proposition 3.4 For every ε > 0, if

N1 = card{τσn(∆
(σn)
qσn−1+iqσn

) ⊂ [−1,−1 + ε)|i = 0, . . . , kσn+1 − 1},

N2 = card{τσn(∆
(σn)
qσn−1+iqσn

) ⊂ (−ε, 0]|i = 0, . . . , kσn+1 − 1},
(3.3)

then N1 = 1
2
kσn+1 +O(ε)kσn+1 and N2 = 1

2
kσn+1 +O(ε)kσn+1.

Proof. To be specific, let us assume that N1 > N2; the proof in the opposite case is
similar. From Proposition 3.3, we have

|τσn(∆(σn)
qσn−1

)| ≤ Θ((c+ Θ(ε))N1), (3.4)

and
|τσn(∆

(σn)
qσn−1+(kσn+1−1)qσn

)| ≥ Θ((c−Θ(ε))N2). (3.5)

Since, by the Denjoy estimate (A), |τσn(∆
(σn)
qσn−1)| = Θ(|τσn(∆

(σn)
qσn−1+(kσn+1−1)qσn

)|), we have

N1−N2 = O(ε)kσn+1. SinceN1+N2 = kσn+1, and the number of intervals τσn(∆
(σn)
qσn−1+iqσn

) 6⊂

11



[−1,−1+ ε)∪ (−ε, 0], for i = 0, . . . , kσn+1−1, is bounded by a constant, the claim follows.
QED

Corollary 3.5 For every ε > 0, and sufficiently large n ∈ N,

Θ((cσn − ε)
1
2

(1+Θ(ε))kσn+1) ≤ min
0≤i≤kσn+1−1

|τσn(∆
(σn)
qσn−1+iqσn

)| ≤ Θ((cσn + ε)
1
2

(1−Θ(ε))kσn+1).

(3.6)

Let ε > 0. Let ηn ∈ (0, 1/2), n ∈ N. For n ∈ N, let

In,0 :=
{
I ∈ Pσn+1 | I ⊂ ∆

(σn−1)
0 \∆(σn+1)

0 , |τσn(I)| ≤ (cσn + ε)ηnkσn+1

}
. (3.7)

Let
En,0 :=

⋃
I∈In,0

I, and En,i := T i(En,0), for i = 1, . . . , qσn − 1. (3.8)

We define

En :=

qσn−1⋃
i=0

En,i, (3.9)

and
E := lim sup

n→∞
En =

⋂
n≥1

⋃
j≥n

Ej. (3.10)

Let (ηn)n∈N be a sequence such that the series
∑∞

n=1 ln(2ηn) diverges. It suffices to take
ηn = η ∈ (0, 1/2). In particular, ηnkσn+1 →∞, as n→∞.

Proposition 3.6 For sufficiently large n ∈ N, µ(En) ≥ 1− 2ηn.

Proof. For sufficiently large n, the number of the elements I of partition Pσn+1 inside
of ∆

(σn−1)
0 \∆(σn+1)

0 , that do not belong to En,0 is smaller than 2ηnkσn+1 − 2. Otherwise,
there exists C0 > 0 such that, for ε > 0 not larger than that of Proposition 3.3, a Θ(ε)-
neighborhood of at least one of the end points of [−1, 0] contains at least ηnkσn+1−C0−1

rescaled intervals τσn(I) with I ∈ Pσn+1 and I ⊂ ∆
(σn−1)
0 \∆(σn+1)

0 , but I /∈ In,0. Here,
we have also used the fact that the number of such intervals I with τσn(I) ∩ (−1 +
Θ(ε),−Θ(ε)) 6= ∅ is less than 2C0, for some constant C0 > 0. Since the length of these
rescaled intervals increases exponentially in these ε-neighborhoods near the end points −1
and 0, as one moves away from the end points, with rate at least c−1

σn − ε, the length of
the largest of them would be at least

(cσn + ε)ηnkσn+1(c−1
σn − ε)

ηnkσn+1−C0−1 =
(1 + (c−1

σn − cσn)ε− ε2)ηnkσn+1

(c−1
σn − ε)C0+1

> Θ(ε), (3.11)
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for sufficiently large n, if ε > 0 has been chosen small enough, which leads to a contradic-
tion.

Since the partition Pσn consists of qσn “large” intervals ∆
(σn−1)
i = T i(∆

(σn−1)
0 ), for

i = 0, . . . , qσn − 1, each of which has invariant measure µ(∆
(σn−1)
0 ) and qσn−1 “small”

intervals ∆
(σn)
i = T i(∆

(σn)
0 ), for i = 0, . . . , qσn−1 − 1, each of which has invariant measure

µ(∆
(σn)
0 ), and since the interval ∆

(σn−1)
0 consists of the union of kσn+1 disjoint (except at

the end points) intervals ∆
(σn)
qσn−1+iqσn

∈ Pσn+1, for i = 0, . . . , kσn+1 − 1, each of which has
invariant measure µ(∆

(σn)
0 ), and ∆

(σn+1)
0 ⊂ ∆

(n)
qσn+1 , we have that the invariant measure of

the complement of En is

µ(Ec
n) ≤ (2ηnkσn+1 − 2)qσnµ(∆

(σn)
0 ) + qσnµ(∆

(σn+1)
0 ) + qσn−1µ(∆

(σn)
0 ), (3.12)

and, hence,
µ(Ec

n) ≤ 2ηnkσn+1qσnµ(∆
(σn)
0 ) ≤ 2ηnqσn+1µ(∆

(n)
0 ) ≤ 2ηn. (3.13)

Here, we have also used that qσn−1 ≤ qσn . The claim follows. QED

Proposition 3.7 µ(E) = 1.

Proof. Each “large” interval of partition Pi is partitioned into ki+1 “large” intervals and
one “small” interval of partition Pi+1. Each “small” interval of partition Pi is a “large”
interval of partition Pi+1. This partitioning occurs in an identical way as the partitioning
of the whole circle T1, which is the only interval of partition P0. For a fixed m ∈ N, the
ratio

µ(Ec
n ∩∆

(σm)
0 )

µ(∆
(σm)
0 )

= |Ẽc
ñ| (3.14)

where Ẽñ is defined analogously to (3.9) and (3.8) for the rotation Rρ̃, with the rotation
number ρ̃ = [kσm+2, kσm+3, . . . ], ñ = n−m, σ̃ñ = σn − σm, and with

Ĩñ,0 := {∆q̃σ̃ñ−1+iq̃σ̃ñ
: ∆

(σn)
qσn−1+iqσn

∈ In,0, 0 ≤ i ≤ kσn+1}, (3.15)

for all ñ ∈ N.
Following the same reasoning as at the end of the proof of Proposition 3.6, we ob-

tain that the Lebesgue measure of the complement of Ẽñ, |Ẽc
ñ| ≤ 2ηn, for ñ ∈ N, this

immediately gives us, for a fixed m ∈ N,

µ(Ec
n ∩ Ec

m) = |Ẽc
ñ|µ(Ec

m) ≤ 2ηnµ(Ec
m), (3.16)

and, thus,
µ(∪j≥nEj) = 1− µ(∩j≥nEc

j ) ≥ 1−
∏
j≥n

(2ηj). (3.17)

If the sequence ηj is such that the series
∑∞

j=n ln(2ηj) diverges, µ(∪j≥nEj) = 1, for any
n ∈ N. The claim follows. QED

13



3.3 Distance of dynamical convergents

In the following, we consider the class C1+BV of orientation-preserving homeomorphisms
of a circle T , C1-smooth outside a singularity point χ0 ∈ T1, with an irrational rotation
number and bounded variation V := Varξ∈T1 lnT ′(ξ) < ∞. In particular, C1-smooth
circle maps with a break belong to this class. The following proposition holds for all
intervals I0 ⊂ ∆

(n−1)
0 such that I0 ∈ Pn+1, and the corresponding intervals Ii = T i(I0),

i ∈ Z. The point that defines the partitions Pn is chosen to be the singularity point χ0.

Proposition 3.8 If T is a C1+BV orientation-preserving circle homeomorphism with a
singularity at χ0 ∈ T1, with an irrational rotation number, there exists C1 > 0 such that
|Ii| ≤ C1|∆(n−1)

i | |I0|
|∆(n−1)

0 |
, for all i = 0, . . . , qn − 1, and all n ∈ N.

Proof. For i = 0, . . . , qn− 1, there exist ζi−1 ∈ Ii−1 ⊂ ∆
(n−1)
i−1 and ξi−1 ∈ ∆

(n−1)
i−1 such that

|Ii|
|∆(n−1)

i |
=
|T (Ii−1)|
|T (∆

(n−1)
i−1 )|

=
T ′(ζi−1)

T ′(ξi−1)

|Ii−1|
|∆(n−1)

i−1 |
. (3.18)

This implies the estimate

|Ii|
|∆(n−1)

i |
≤
(

1 +
|T ′(ζi−1)− T ′(ξi−1)|

T ′(ξi−1)

)
|Ii−1|
|∆(n−1)

i−1 |
. (3.19)

By iterating this inequality, we obtain that, for some ζj, ξj ∈ ∆
(n−1)
j ,

|Ii|
|∆(n−1)

i |
≤

i−1∏
j=0

(
1 +
|T ′(ζj)− T ′(ξj)|

minξ∈T1 T ′(ξ)

)
|I0|
|∆(n−1)

0 |
. (3.20)

Using the obvious inequality 1 + x ≤ ex, we obtain

|Ii|
|∆(n−1)

i |
≤ exp

(
i−1∑
j=0

|T ′(ζj)− T ′(ξj)|
minξ∈T1 T ′(ξ)

)
|I0|
|∆(n−1)

i−1 |
. (3.21)

Since, for i = 0, . . . , qn− 1, the intervals ∆
(n−1)
i do not overlap except possibly at the end

points, we have
qn−1∑
j=0

|T ′(ζj)− T ′(ξj)| ≤ max
ξ∈T1

T ′(ξ)

qn−1∑
j=0

| lnT ′(ζj)− lnT ′(ξj)| ≤ V max
ξ∈T1

T ′(ξ), (3.22)

where V = Varξ∈T1 lnT ′(ξ). Since T ′ is bounded both from below and from above by
positive constants, the claim follows. QED

Let ln = maxξ∈T1 |T qnξ − ξ|. If T is a C1+BV orientation-preserving circle homeomor-
phism, the Denjoy estimate (A) implies (see Lemma 2 in [23]) that, for some C̄ > 0,
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(F) ln ≤ C̄λ̄n, where λ̄ = 1
1+e−2V .

Proposition 3.9 If T is a C2+ε-smooth (ε > 0) circle diffeomorphism with a break of
size c ∈ R+\{1}, then there exists C2 > 0 such that, for all x ∈ E, there are infinitely
many n ∈ N such that

|T qσnx− x| ≤ C2|∆(σn−1)
j |(cσn + ε)ηnkσn+1 , (3.23)

where ∆
(σn−1)
j is an element of partition Pσn containing x.

Proof. For every x ∈ E, there are infinitely many n, such that x ∈ En. Further-
more, there exists an element Ij of partition Pσn+1 inside En,j ⊂ ∆

(σn−1)
j , for some j =

0, . . . , qσn − 1, such that x ∈ Ij. It follows from the definition of En,0 and Proposition 3.8
that there exists χ ∈ En,j, such that Ij = [χ, T qσnχ] and |Ij| ≤ C1|∆(σn−1)

j |(cσn + ε)ηnkσn+1 .
Therefore,

|x− χ| ≤ |T qσnχ− χ| ≤ C1|∆(σn−1)
j |(cσn + ε)ηnkσn+1 . (3.24)

Since, by the mean value theorem, there exists ζ ∈ Ii such that

T qσnx = T qσnχ+ (T qσn )′(ζ)(x− χ), (3.25)

using the Denjoy estimate (A) and the first inequality in (3.24), we obtain the following
estimate

|T qσnx− x| ≤ (T qσn )′(ζ)|x− χ|+ |T qσnχ− χ|+ |x− χ| ≤ (eV + 2)|T qσnχ− χ|. (3.26)

The claim now follows using the second inequality in (3.24). QED

Let xi = T ix and let Ii := [xi−qn , xi], if n is even, and Ii := [xi, xi−qn ], if n is odd. Let
χ0 ∈ T1, χj = T jχ0, and let ∆

(n−1)
j (χ0) := [T qn−1χj, χj], if n is even, and ∆

(n−1)
j (χ0) :=

[χj, T
qn−1χj], if n is odd.

Proposition 3.10 If T is a C1+BV orientation-preserving circle homeomorphism with a
singularity at χ0 ∈ T1, with an irrational rotation number ρ ∈ (0, 1), and x ∈ ∆

(n−1)
j (χ0),

then there exists C3 ≥ 1 such that

|Ii| ≤ C3|∆(n−1)
i (χj−qn)| |Iqn|

|∆(n−1)
j (χ0)|

, (3.27)

for all i = 0, . . . , qn − 1.

Proof. It follows from the mean value theorem that, for i = 0, . . . , qn − 1, i 6= qn − j,
there exist ξi ∈ ∆

(n−1)
i (χj−qn) ∪∆

(n)
i (χj−qn) and ζi ∈ ∆

(n−1)
i (χj−qn), such that

|Ii|
|∆(n−1)

i (χj−qn)|
=

|T−1(Ii+1)|
|T−1(∆

(n−1)
i+1 (χj−qn))|

=
|Ii+1|

|∆(n−1)
i+1 (χj−qn)|

T ′(ζi)

T ′(ξi)
. (3.28)
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This implies the estimate

|Ii|
|∆(n−1)

i (χj−qn)|
≤ |Ii+1|
|∆(n−1)

i+1 (χj−qn)|

(
1 +
|T ′(ζi)− T ′(ξi)|
|T ′(ξi)|

)
. (3.29)

For i = qn − j, the same estimates hold, just that ξi is not necessarily a point in
∆

(n−1)
i (χj−qn) ∪ ∆

(n)
i (χj−qn), but just some point ξi ∈ T1. Namely, if Iqn−j contains the

singularity point χ0, Iqn−j and Iqn−j+1 can be divided into two subintervals, such that the
ratios of lengths of the corresponding subintervals equals the values of T ′ at some points
in these subintervals. Therefore, the ratio |Iqn−j+1|/|Iqn−j| is between the minimum and
maximum value of T ′ and such a value is achieved at some point ξqn−j on the circle.

By iterating the latter inequality, we obtain

|Ii|
|∆(n−1)

i (χj−qn)|
≤ |Iqn|
|∆(n−1)

j (χ0)|
exp

(
qn−1∑
k=i

|T ′(ζk)− T ′(ξk)|
minξ∈T1 |T ′(ξ)|

)
. (3.30)

Since the intervals ∆
(n−1)
i (χj−qn), for i = 0, . . . , qn − 1, belong to the same partition of a

circle, for k = i, . . . , qn − 1, we obtain

|Ii|
|∆(n−1)

i (χj−qn)|
≤ |Iqn|
|∆(n−1)

j (χ0)|
exp

(
maxξ∈T1 |T ′(ξ)|
minξ∈T1 |T ′(ξ)|

3V

)
. (3.31)

Factor 3 appears by using again the first inequality in (3.22), using the triangle inequality
taking into account all possible orderings of the points ζk and ξk (e.g. ζi+qn−1 < ξi <
ξi+qn−1 < ζi), and estimating the term

| lnT ′(ζqn−j)− lnT ′(ξqn−j)| ≤ | lnT ′(ζqn−j)− lnT ′(ξ?qn−j)|+ | lnT
′(ξ?qn−j)− lnT ′(ξqn−j)|,

(3.32)
where ξ?qn−j is any point in ∆

(n−1)
0 (χ0). The claim follows. QED

Proposition 3.9, Proposition 3.10 and Denjoy estimate (A) imply the following lemma.

Lemma 3.11 If T is C2+ε-smooth (ε > 0) circle diffeomorphism with a break of size
c ∈ R+\{1}, with an irrational rotation number ρ ∈ (0, 1), then there exists C4 > 0 such
that, for all x ∈ E, there are infinitely many n ∈ N such that, for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn | ≤ C4lσn−1(cσn + ε)ηnkσn+1 . (3.33)

Proof. For i = qσn , the claim holds directly from Proposition 3.9, with C4 ≥ C2.
Proposition 3.9 and Proposition 3.10 together imply (3.33) for i = 0, . . . , qσn − 1, with
C4 ≥ C2C3. Using the Denjoy estimate (A), the bound (3.33) can be extended to i = qσn+
1, . . . , 2qσn−1, with C4 ≥ C2C3e

V , since |xi+qσn−xi| ≤ eV |xi−xi−qσn |, for i = 1, . . . , qσn−1.
QED
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3.4 Convex renormalization graphs and set E of full measure

In this section, we construct another set of full invariant measure for which we have
appropriate control on the distances between points of an orbit and their dynamical
convergents, i.e, control of the quantity β̂ in (2.7), for circle maps with a break.

Let (σn)n∈N, be an increasing subsequence of 2N − 1, if c < 1, or an increasing sub-
sequence of 2N, if c > 1, such that the corresponding sequence kσn+1 of partial quotients
diverges to infinity. In this section, we assume that such a subsequence exists. Let (ηn)n∈N
be any sequence of positive numbers converging to zero such that the sequence ηnkσn+1

diverges to infinity as well, and ln ηn
qσn

converges to zero, as n→∞. Consider partitions Pn
defined with the partitions defining point χ0 being the break point xbr.

Proposition 3.12 If T is C2+ε-smooth circle map (ε > 0) with a break of size c 6= 1 and
irrational rotation number, then there exists a constant C > 1, such that, for sufficiently
large n,

C−1 1

min{i+ 1, kσn+1 − i}2
≤ τσn(∆

(σn)
qσn−1+iqσn

) ≤ C
1

min{i+ 1, kσn+1 − i}2
, (3.34)

for i = 0, . . . , kσn+1 − 1.

Proof. For sufficiently large n, renormalizations fn of C2+ε-smooth circle maps with a
break, and intervals τσn(∆

(σn)
qσn−1+iqσn

), for i = 0, . . . , kσn+1 − 1, satisfy the assumptions of
Lemma 3.2. Clearly τσn(∆

(σn)
qσn−1+(i+1)qσn

) = fn(τσn(∆
(σn)
qσn−1+iqσn

) and if follows from prop-
erty (C) that, for sufficiently large n, renormalizations fn are C2+ε-smooth circle diffeo-
morphisms on [−1, 0] ⊃ ∪kσn+1−1

i=0 τσn(∆
(σn)
qσn−1+iqσn

). It follows from the Denjoy estimate (A)
that there exists σ > 0 such that the lengths of τσn(∆

(σn)
qσn−1) and τσn(∆

(σn)
qσn−1+(kσn+1−1)qσn

)

are of the same order and at least σ, due to property (E). Condition (i) follows from
property (B). Convexity property (E) assures conditions (ii) and (iii). The claim follows
directly from the assertion of this lemma. QED

For each n ∈ N, let

En,0 :=
⋃

I∈Jn,0

I, Jn,0 :=

{
I ∈ Pσn+1|I ⊂ ∆

(σn−1)
0 \∆(σn+1)

0 , |τσn(I)| ≤ 1

(ηnkσn+1)2

}
,

(3.35)
and let

En,i := T i(En,0), for i = 1, . . . , qσn − 1. (3.36)

We define

En :=

qσn−1⋃
i=0

En,i, (3.37)
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and
E := lim sup

n→∞
En =

⋂
n≥1

⋃
j≥n

Ej. (3.38)

Proposition 3.13 µ(E) = 1.

Proof. It follows from Proposition 3.12 that, for sufficiently large n, the number of the
elements I of partition Pσn+1 inside of ∆

(σn−1)
0 , that do not belong to En,0 is bounded

from above by C5ηnkσn+1, for some C5 > 0. Since the invariant measure of the intervals
τ−1
σn ([f i−1

σn (−1), f iσn(−1)]) is independent of i and equal to µ(∆
(σn)
0 ), for i = 1, . . . , kσn+1,

and ∆
(σn+1)
0 ⊂ τ−1

σn ([f i−1
σn (−1), f iσn(−1)]), for i = kσn+1 + 1, we have

µ(En,0)/µ(τ−1
σn ([−1, 0])) ≥ 1− C5ηnkσn+1µ(∆

(σn)
0 )

kσn+1µ(∆
(σn)
0 ) + µ(∆

(σn+1)
0 )

≥ 1− C5ηn. (3.39)

By the invariance of the measure µ, µ(En,i)/µ(∆
(σn−1)
i ) ≥ 1− C5ηn. Since

qσn−1∑
i=0

µ(∆
(σn−1)
i ) +

qσn−1−1∑
i=0

µ(∆
(σn)
i ) = qσnµ(∆

(σn−1)
0 ) + qσn−1µ(∆

(σn)
0 ) = 1, (3.40)

qσn−1 ≤ qσn and µ(∆
(σn)
0 ) = µ(τ−1

σn ([−1, fσn(−1)])), we have

µ(En) ≥ (1− C5ηn)
kσn+1

kσn+1 + 1
. (3.41)

Since µ(∪j≥nEj) ≥ µ(Ei), for any i ≥ n, and µ(Ei) → 1 as i → ∞, it follows that
µ(∪j≥nEj) = 1, for any n ∈ N. The claim follows. QED

Repeating the steps of the previous section, analogously to Lemma 3.11, we can prove
the following.

Lemma 3.14 If T is C2+ε-smooth circle map with a break (ε > 0) with an irrational
rotation number ρ ∈ (0, 1), then there exists C6 > 0 such that, for all x ∈ E, there are
infinitely many n ∈ N such that, for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn | ≤ C6lσn−1
1

(ηnkσn+1)2
. (3.42)

3.5 Singular continuous phase

Proof of Theorem 1.2. If L(E) < αmax{1
2
βbr| ln c|, 2β}, then either L(E) < 1

2
αβbr| ln c|

or L(E) < 2αβ. Assume first that L(E) < 1
2
αβbr| ln c|. Then the rotation number ρ is
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such that βbr > 0, and there is an increasing sequence σn, of even numbers if c < 1, or of
odd numbers if c > 1, such that βbr = limn→∞

kσn+1

qσn
. Let ε > 0 and η < 1/2 be such that

L(E) < αηβbr| ln(min{c, c−1} + ε)| and let ηn ∈ (η, 1/2), for n ∈ N. We use this ε and
these sequences to construct the set E, as in section 3.2. By Proposition 3.7, µ(E) = 1.
For every x ∈ E, by Lemma 3.11, there are infinitely many n, such that estimate (3.33)
holds. This implies β̂ ≥ ηβbr| ln(min{c, c−1} + ε)|. Hence, L(E) < αβ̂, and the claim
follows from Theorem 2.3.

If L(E) < 2αβ, then β > 0, and there is an increasing sequence (σn)n∈N of either
odd or even numbers such that β = limn→∞

ln kσn+1

qσn
. If (σn)n∈N is a sequence of even

numbers if c < 1, or of odd numbers if c > 1, then βbr = ∞ and the claim holds for
the set E, as discussed above. We assume that (σn)n∈N is an increasing sequence of odd
numbers if c < 1, or of even numbers if c > 1. In that case, we choose a sequence (ηn)n∈N
of positive numbers converging to zero such that ηnkσn+1 diverges to infinity, and ln ηn

qσn
converges to zero, as n → ∞. We use these sequences to construct a set of full measure
E as in section 3.4. For every x ∈ E, by Lemma 3.14, there are infinitely many n, such
that estimate (3.42) holds. This implies β̂ ≥ 2β. Hence, L(E) < αβ̂, and the claim again
follows from Theorem 2.3. QED

4 Schrödinger operators over critical circle maps

4.1 Renormalizations of critical circle maps

A Cr-smooth critical circle maps is a Cr-smooth orientation-preserving homeomorphism
T : T1 → T1, for which there exists a point xc ∈ T1 such that T ′(xc) = 0; Varξ∈I lnT ′(ξ) <
∞, for every compact interval I ⊂ T1 such that xc 6∈ I; and A|t|γ−1 ≤ T ′(xc+t) ≤ B|t|γ−1,
for some A,B, γ, ε > 0, and every |t| < ε.

To prove Theorem 1.3, we will use some properties of critical circle maps that follow
from real a priori bounds. Let T be a C3-smooth critical circle map with an irrational
rotation number. The following estimates have been proved in [5].

(a) There exist constants κ1,κ2 ∈ (0, 1) such that, for all n ∈ N,

κ1 ≤
∆

(n+1)
i

∆
(n−1)
i

≤ κ2, 0 ≤ i < qn; (4.1)

(b) There exists K1 > 0 such that ‖fn‖C3 ≤ K1, for all n ∈ N;

(c) There exists K2 > 0 such that f ′n(x) ≥ K2δ
2, for x ∈ [−1,−δ], for all n ∈ N;
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(d) There existsK3 > 0 such that, for sufficiently large n, Sfn(x) ≤ −K3, for x ∈ [−1, 0),

where Sf := f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

, is the Schwarzian derivative of f .

Constants κ1,κ2,K1,K2,K3 are universal, i.e., they do not depend of the map T , for
sufficiently large n, but only on the order of the critical point. Estimate (a) (with non-
universal constants κ1 and κ2), reflecting the bounded geometry of these maps, follows
from Swiatek’s estimates [24]. Estimate (b) follows, in part, from Denjoy’s lemma, which
was, for critical circle maps, proved by Yoccoz [26].

Proposition 4.1 If T is C3-smooth critical circle map with an irrational rotation num-
ber, for sufficiently small ε > 0 and sufficiently large n ∈ N, the set F(ε) = {z ∈
[−1, 0], fn(z)− z < ε} is either an open interval or empty. Also, there is δ > 0 such that
the distances from points −1 and 0 to the set F(ε) are larger than δ. Furthermore, there
exists C > 1 such that, for sufficiently large n ∈ N,

C−1 1

min{i+ 1, kn+1 − i}2
≤ τσn(∆

(n)
qn−1+iqn

) ≤ C 1

min{i+ 1, kn+1 − i}2
, (4.2)

for i = 0, . . . , kn+1 − 1.

Proof. For sufficiently small ε > 0, the constant size intervals near −1 and 0 do not
belong to F(ε), due to (a) and (b). Assume that for some small ε > 0, F(ε) is not empty.
For every x ∈ F(ε), f ′n(x) must be close to 1; otherwise, since by (a) f ′′n is bounded, the
graph of fn would intersect the diagonal, which is impossible, since the rotation number
of T is irrational. Furthermore, f ′′n(x) must be positive and of order 1. Namely, if it
were of order 1 and negative, the graph would again intersect the diagonal. If it were
small, then it follows from the negative Schwarzian derivative property (d) that f ′′′n (z)
would be negative and with magnitude of order 1 and, again, the graph would intersect
the diagonal.

Clearly, F(ε) cannot be a union of more than one interval. Namely, if this were the
case, there would be some region between such two intervals where the f ′′n(x) is negative
and consequently, there would be a point y such that f ′′n(y) = 0 and f ′′′n (y) > 0 (since
f ′′n(x) changes sign from negative to positive at y). Since y′n(y) > 0, due to (c), this would
violate property (d).

For sufficiently large n, renormalizations fn of C3-smooth critical circle maps, and
intervals τn(∆

(n)
qn−1+(i+1)qn

) = fn(τn(∆
(n)
qn−1+iqn

), for i = 0, . . . , kn+1 − 1, satisfy the assump-
tions of Lemma 3.2. We have already verified conditions (ii) and (iii). Property (b) verifies
assumption (i). Properties (a) and (b) also assure that τn(∆

(n)
qn−1) and τn(∆

(n)
qn−1+(kn+1−1)qn

)

are of length at least σ. Bounds (4.2) follow directly from this lemma. QED
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4.2 Set E of full measure

In this section, we construct a set of full invariant measure E for which Theorem 1.3 holds,
i.e., we have appropriate control on the distances between points of an orbit and their
dynamical convergents, for critical circle maps.

Set E is defined analogously to set E for circle maps with a break, introduced in
section 3.4, with a sequence (σn)n∈N chosen as follows. Let (σn)n∈N, be any increasing
subsequence of N such that the corresponding sequence kσn+1 of partial quotients diverges
to infinity. We will assume that such a subsequence exists since if the sequence of partial
quotients is bounded, then β = 0. Let ηn be any sequence of positive numbers converging
to zero such that ηnkσn+1 diverges to infinity as well and the sequence ln ηn

qσn
converges to

zero, as n → ∞. Consider partitions Pn defined with the partitions defining point χ0

being the critical point xc.
For each n ∈ N, let

En,0 :=
⋃

I∈Jn,0

I, Jn,0 :=

{
I ∈ Pσn+1|I ⊂ ∆

(σn−1)
0 \∆(σn+1)

0 , |τσn(I)| ≤ 1

(ηnkσn+1)2

}
,

(4.3)
and let

En,i := T i(En,0), for i = 1, . . . , qσn − 1. (4.4)

We define

En :=

qσn−1⋃
i=0

En,i, (4.5)

and
E := lim sup

n→∞
En =

⋂
n≥1

⋃
j≥n

Ej. (4.6)

Proposition 4.2 µ(E) = 1.

Proof. The proof is analogous to that of Proposition 3.13. QED

4.3 Distance of dynamical convergents

To estimate the distance between points on an orbit and their dynamical convergents for
critical circle maps, we cannot apply directly the procedure of section 3.3 for maps with
breaks, since the distortion is not bounded in this case.

Let ε > 0 be the half-width of the neighborhood around the critical point xc, where
T ′ has the desired power law behavior (see the beginning of section 4). We consider two
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classes of intervals

F1 := {∆ ⊂ T1|∆ ∩ (xc − ε/2, xc + ε/2) = ∅} ,
F2 := {∆ ⊂ T1|∆ ⊂ (xc − ε, xc + ε)}.

(4.7)

Since the length of the intervals of partitions Pn decrease exponentially with n (due to
(a)), for sufficiently large n, every interval of partition Pn belongs either to F1 or to F2.

In what follows, we will need an estimate on the number of intervals of partition Pn
of class F2. For ε > 0, let Iε ⊂ T1 be an interval of length ε > 0, with one of the end
points being the partitions defining point x0.

Proposition 4.3 There is δ = δ(ε) > 0, approaching zero, as ε→ 0, such that for every
n ∈ N, the cardinality

card {∆(n−1)
i ⊂ Iε|i = 0, . . . , qn − 1} ≤ δqn. (4.8)

Proof. Let N ∈ N be the largest number such that Iε ⊂ ∆
(N−1)
0 . Since the partitioning of

each of the qN intervals ∆
(N−1)
i by the higher level partitions follows the same pattern —

a “large” interval of partition Pi is divided into ki+1 “large” intervals and a “small” interval
of partition Pi+1; a small interval of partition Pi becomes a “large” interval of partition
Pi+1 — it is not difficult to see that, for each n > N , the number of intervals ∆

(n−1)
i of

partition Pn inside of Iε is less than qn/qN . Since qN → ∞, as ε → 0, the claim follows.
QED

The following proposition holds for all intervals I0 ⊂ ∆
(n−1)
0 such that I0 ∈ Pn+1 and

I0 ⊂ Em,0 for sufficiently large m ∈ N, and the corresponding intervals Ii = T i(I0), i ∈ Z.
Let V1 = V1(ε) := Varξ∈T1\(xc−ε/2,xc+ε/2) lnT ′(ξ). Notice that V1 →∞, as ε→ 0.

Proposition 4.4 If T is a C3-smooth critical circle map with an irrational rotation num-
ber, there exists C7 > 0 and δ1 = δ1(ε) > 0, satisfying δ1 → 0 as ε→ 0, such that∣∣∣∣∣ln |Ii|

|∆(n−1)
i |

− ln
|I0|
|∆(n−1)

0 |

∣∣∣∣∣ ≤ V1 + C7δ1qn, (4.9)

for all n ∈ N and all i = 0, . . . , qn − 1.

Proof. For i = 0, . . . , qn− 1, there exist ζi−1 ∈ Ii−1 ⊂ ∆
(n−1)
i−1 and ξi−1 ∈ ∆

(n−1)
i−1 such that

|Ii|
|∆(n−1)

i |
=
|T (Ii−1)|
|T (∆

(n−1)
i−1 )|

=
T ′(ζi−1)

T ′(ξi−1)

|Ii−1|
|∆(n−1)

i−1 |
. (4.10)
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By iterating this inequality, we obtain that, for some ζj ∈ Ij and ξj ∈ ∆
(n−1)
j ,

|Ii|
|∆(n−1)

i |
=

|I0|
|∆(n−1)

0 |

i−1∏
j=0

T ′(ζj)

T ′(ξj)
=

|I0|
|∆(n−1)

0 |

i−1∏
j=0

∆
(n−1)
j ∈F1

T ′(ζj)

T ′(ξj)

i−1∏
j=0

∆
(n−1)
j ∈F2

T ′(ζj)

T ′(ξj)
. (4.11)

By taking the logarithm of this identity, we obtain

∣∣∣∣∣ln |Ii|
|∆(n−1)

i |
− ln

|I0|
|∆(n−1)

0 |

∣∣∣∣∣ ≤
i−1∑
j=0

∆
(n−1)
j ∈F1

| lnT ′(ζj)− lnT ′(ξj)|+

∣∣∣∣∣∣∣∣∣ln
i−1∏
j=0

∆
(n−1)
j ∈F2

T ′(ζj)

T ′(ξj)

∣∣∣∣∣∣∣∣∣ . (4.12)

Since, for i = 0, . . . , qn−1, the intervals ∆
(n−1)
j do not overlap, except possibly at the end

points, we have ∣∣∣∣∣ln |Ii|
|∆(n−1)

i |
− ln

|I0|
|∆(n−1)

0 |

∣∣∣∣∣ ≤ V1 + C7δ1qn, (4.13)

where C7, δ1 > 0, and δ1 → 0 as ε → 0. Here, we have used that, for some C7 > 0, and
all j such that ∆

(n−1)
j ∈ F2, ∣∣∣∣ln T ′(ζj)T ′(ξj)

∣∣∣∣ ≤ C7. (4.14)

The latter estimate follows from the following considerations. The interval I0 is a constant
fraction of |∆(n−1)

0 | away from xc, as follows from Proposition 4.1, given that I0 ⊂ Em,0
for sufficiently large m ∈ N. Due to the power-law behavior of T ′ in (xc − ε, xc + ε), the
middle value point ξ0 is at least a constant fraction of |∆(n−1)

0 | away from each of its end
points (and xc, in particular). Every other interval ∆

(n−1)
j ∈ F2, for j = 1, . . . , qn − 1,

is at least a constant fraction of its length away from xc. This follows from (a) and (b),
and the fact that the lengths of the intervals ∆

(n−1)
0 and ∆

(n)
0 are of the same order. So,

although the distortion of ratio is not necessarily bounded and we have no estimate on
the position of ζj inside of ∆

(n−1)
j , for all j = 0, . . . , qn − 1, the points ζj and ξj are

comparable distances away from the critical point, i.e., there is a constant C8 > 0, such
that |ζj/ξj| ≤ C8. Estimate (4.14) follows from power-law behavior of T ′ near xc. QED

Let ln be the maximal length interval of partition Pn.

Proposition 4.5 If T is a C3-smooth critical circle map, then there exists C9 > 0 such
that, for all x ∈ E, there are infinitely many n ∈ N such that

|T qσnx− x| ≤ C9e
V1+C7δ1qσn

|∆(σn−1)
j |

(ηnkσn+1)2
, (4.15)
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where ∆
(σn−1)
j is an element of partition Pσn containing x.

Proof. For every x ∈ E , there are infinitely many n, such that x ∈ En. Furthermore, there
exists an element Ij of partition Pσn+1 inside En,j ⊂ ∆

(σn−1)
j , for some j = 0, . . . , qσn − 1,

such that x ∈ Ij. It follows from the definition of En,0 and Proposition 4.4 that there
exists χ ∈ En,j, such that Ij = [χ, T qσnχ] and |Ij| ≤ eV1+C7δ1qn|∆(σn−1)

j |(ηnkσn+1)−2. Then,
|x− χ| ≤ |T qσnχ− χ| ≤ eV1+C7δ1qn|∆(σn−1)

j |(ηnkσn+1)−2.
Since there exists ζ ∈ Ij such that

T qσnx = T qσnχ+ (T qσn )′(ζ)(x− χ), (4.16)

we obtain the following estimate

|T qσnx− x| ≤ |T qσnχ− χ|+ |x− χ|+ (T qσn )′(ζ)|x− χ|. (4.17)

If T is a C3-smooth critical circle map, by (b), we have (T qn)′(ξ) = f ′n(τn(ξ)) ≤ K1, for
all ξ ∈ T1. The claim follows. QED

Let xi = T ix and let Ii := [xi−qn , xi], if n is even, or Ii := [xi, xi−qn ], if n is odd. Let
χ0 ∈ T1, χj = T jχ0, and let ∆

(n−1)
j (χ0) := [T qn−1χj, χj], if n is even, or ∆

(n−1)
j (χ0) :=

[χj, T
qn−1χj], if n is odd. The following proposition holds for all intervals Iqn ⊂ ∆

(n−1)
j (χ0)

such that Iqn ∈ Pn+1 and Iqn ⊂ Em,j for some m ∈ N, and the corresponding intervals
Ii = T i−qn(Iqn), i ∈ Z.

Proposition 4.6 If T is a C3-smooth critical circle map with an irrational rotation num-
ber, and x ∈ ∆

(n−1)
j (χ0), there exists C10 > 0 and δ2 = δ2(ε) > 0, satisfying δ2 → 0, as

ε→ 0, such that ∣∣∣∣∣ln |Ii|
|∆(n−1)

i (χj−qn)|
− ln

|Iqn|
|∆(n−1)

j (χ0)|

∣∣∣∣∣ ≤ V1 + C10δ2qn, (4.18)

for all i = 0, . . . , qn − 1.

Proof. It follows from the mean value theorem that, for i = 0, . . . , qn − 1, there exist
ξi ∈ Ii ⊂ ∆

(n−1)
i (χj−qn) and ζi ∈ ∆

(n−1)
i (χj−qn), such that

|Ii|
|∆(n−1)

i (χj−qn)|
=

|T−1(Ii+1)|
|T−1(∆

(n−1)
i+1 (χj−qn))|

=
|Ii+1|

|∆(n−1)
i+1 (χj−qn)|

T ′(ζi)

T ′(ξi)
. (4.19)

This implies the identity

|Ii|
|∆(n−1)

i (χj−qn)|
=

|Iqn|
|∆(n−1)

qn (χj−qn)|

qn−1∏
k=i

T ′(ζk)

T ′(ξk)
. (4.20)
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Thus, we obtain∣∣∣∣∣ln |Ii|
|∆(n−1)

i (χj−qn)|
− ln

|Iqn|
|∆(n−1)

j (χ0)|

∣∣∣∣∣ ≤
qn−1∑
k=i

∆
(n−1)
k (χj−qn )∈F1

| lnT ′(ζk)− lnT ′(ξk)|

+

qn−1∑
k=i

∆
(n−1)
k (χj−qn )∈F2

∣∣∣∣ln T ′(ζk)T ′(ξk)

∣∣∣∣ . (4.21)

Since the intervals ∆
(n−1)
i (χj−qn), for i = 0, . . . , qn − 1, belong to the same partition of a

circle, for k = i, . . . , qn − 1, we obtain∣∣∣∣∣ln |Ii|
|∆(n−1)

i (χj−qn)|
− ln

|Iqn|
|∆(n−1)

j (χ0)|

∣∣∣∣∣ ≤ V1 + C10δ2qn, (4.22)

for some C10, δ2 > 0, such that δ2 → 0, as ε→ 0. Here, we have again used estimate (4.14).
The claim follows. QED

Proposition 4.5, Proposition 4.6 and property (b) imply the following lemma.

Lemma 4.7 If T is a C3-smooth critical circle map with an irrational rotation number
ρ ∈ (0, 1), then there exists C11 > 0, V = V(ε) > 0 and δ = δ(ε) > 0, satisfying V → ∞
and δ → 0, as ε→ 0, such that, for all x ∈ E, there are infinitely many n ∈ N such that,
for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn | ≤ C11lσn−1e
V+δqσn

1

(ηnkσn+1)2
. (4.23)

Proof. For i = qσn , the claim holds directly from Proposition 4.5, with C11 ≥ C9,
V ≥ V1 and δ ≥ C7δ1. Proposition 4.5 and Proposition 4.6 together imply (4.23) for
i = 0, . . . , qσn − 1, with C11 ≥ C9, V = 2V1, δ = C7δ1 + C10δ2. Using the Denjoy estimate
(T qn)′(ξ) = f ′n(τn(ξ)) ≤ K1 (that follows from (b)), for all ξ ∈ T1, the bound (4.23) can be
extended to i = qσn+1, . . . , 2qσn−1, with C11 ≥ C9K1, since |xi+qσn−xi| ≤ K1|xi−xi−qσn |,
for i = 1, . . . , qσn − 1. QED

4.4 Singular continuous phase

Proof of Theorem 1.3. If L(E) < 2αβ, then β > 0, and there is an increasing
sequence (σn)n∈N such that β = limn→∞

ln kσn+1

qσn
. Furthermore, there exist δ̂ > 0 such that

L < α(2β − δ̂) as well. Let ηn be any sequence of positive numbers converging to zero
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such that ηnkσn+1 diverges to infinity and ln ηn
qσn

converges to zero, as n→∞. We use these
sequences to construct the set E , as in section 4.2. By Proposition 4.2, µ(E) = 1. For
ε > 0, by Lemma 4.7, there exist C11 > 0, δ = δ(ε) > 0 and V = V(ε) > 0 such that, for
every x ∈ E , there are infinitely many n, such that estimate (4.23) holds. We assume that
ε > 0 has been chosen such that δ ≤ δ̂. This implies β̂ ≥ (2β − δ). Hence, L(E) < αβ̂,
and the claim follows from Theorem 2.3. QED

5 Proof of Theorem 1.4

For C2+ε-smooth circle diffeomorphisms with a break, the claim follows from Theorem 1.2,
taking into account Corollary 3.5 and Proposition 3.12. If L(E) < αδmax, then, there exists
δ > 0 such that, for every ε > 0,

L(E) < α(lim sup
n→∞

| ln Θ((cσn − ε)
1
2

(1+Θ(ε))kσn+1)|
qσn

− δ), (5.1)

where σn is a sequence of even numbers, if c < 1, or odd numbers, if c > 1, or L(E) <

α(lim sup
n→∞

| ln Θ(k−2
σn+1)|

qσn
− δ), where σn is a sequence of odd numbers, if c < 1, or even

numbers, if c > 1. For sufficiently small ε > 0, either L(E) < 1
2
αβbr or L(E) < 2αβ. The

claim now follows from Theorem 1.2.
For C3-smooth critical circle maps, the claim follows from Theorem 1.3, taking into

account Proposition 4.1. If L(E) < αδmax, then L < α lim sup
n→∞

| ln Θ(k−2
n+1)|

qn
. Hence, L(E) <

2αβ and the claim follows from Theorem 1.3. QED

A Proof of Lemma 3.2

Let ζ∗ be a point such that f ′(ζ∗) = 1. Such a point exists, for sufficiently large k, since,
by assumption, the first and the last intervals are of the same order, and on the interval
BK′ (which is non-empty for sufficiently large k), the function is convex. We will perform
an affine orientation-preserving change of variables

y = h(z) =
1

2
f ′′(ζ∗)(z − ζ∗) (A.1)

that maps ζ∗ into 0 and normalizes the second derivative of f there. Under this change
of variables f is transformed into g = h ◦ f ◦ h−1 which satisfies g′(0) = 1 and g′′(0) = 2.
Let κ := g(0) = miny{g(y)−y}. Since f is C2+α-smooth, so is g, and from (A.1), we have

|g(y)− (κ+ y + y2)| ≤ C|y|2+α, y ∈ h[−1, 0], (A.2)
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where C > 0.

Lemma A.1 ([16]) Suppose that, for a sequence of real numbers {si}i≥0, there exist
C1 > 0 and α ∈ (0, 1) such that |si+1− (si− s2

i )| ≤ C1|si|2+α, for every i ≥ 0. Then, there
exist constants D1 > 0 and d1 ∈ (0, 1) such that, as long as s0 ∈ (0, d1], the estimate∣∣∣∣si − 1

i+ s−1
0

∣∣∣∣ ≤ D1

(i+ s−1
0 )1+α

(A.3)

holds, for every i ≥ 0. Moreover, there exists D2 > 0 such that

si − si+1 =
1

(i+ s−1
0 )2

(1 + δi), (A.4)

where |δi| ≤ D2s
α
0 , for all i ≥ 0, as long as s0 ∈ (0, d1].

Lemma A.2 ([16]) Suppose that, for a sequence of real numbers {si}i≥0, there exist
C2,C3 > 0 and κ, α ∈ (0, 1) such that

1. |s0| ≤ C2κ,

2. |si+1 − (κ+ si + s2
i )| ≤ C3|si|2+α, for every i ≥ 0.

Fix arbitrary C4 > 0 and define N = κ−1/2 tan−1(C4κ
− α

2(2+α) ). Then, there exist constants
D3 > 0 and d2 ∈ (0, 1) such that, as long as κ ∈ (0, d2], the following estimate holds for
every 0 ≤ i ≤ N ,

|si −
√
κ tan(

√
κi+ a0)| ≤ D3(

√
κ tan

√
κi)1+

α(α+1)
2 , (A.5)

where a0 = tan−1(s0/
√
κ). Moreover, there exists D4 > 0 such that

si+1 − si =
κ

(cos
√
κi)2

(1 + δi), (A.6)

where |δi| ≤ D4κ
α(α+1)
2(2+α) , for all 0 ≤ i < N , as long as κ ∈ (0, d2].

Proof of Lemma 3.2. Let a and b be the left and right end points of I. t0 = h(a) and
ti = gi(t0), i.e., ti = h(f i(a)).

Since κ = g(0), there exists a unique number ic satisfying 0 < ic < k such that tic ∈
[0, κ). Let il = ic − [κ−1/2 tan−1 κ−

α
2(2+α) ] and ir = ic + [κ−1/2 tan−1 κ−

α
2(2+α) ]. Combining

tan−1 1
x

= π
2
− tan−1 x with tan−1 x = x+O(x3), x→ 0, it is easy to derive the following

asymptotic formula

κ−
1
2 tan−1 κ−

α
2(2+α) =

π

2
κ−

1
2 − κ−

1
2+α +O(κ

−1+α
2+α ), κ→ 0. (A.7)
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To obtain the desired estimates for il ≤ i ≤ ir, we can apply Lemma A.2. To obtain the
estimates for il ≤ i < ic, we can apply this lemma to si = −(tic−i−κ), where 0 ≤ i ≤ ic−il.
It immediately follows from this lemma that, for il ≤ i < ic,

ti+1 − ti = sic−i − sic−i−1 =
κi2

i2(cos(
√
κ(ic − i− 1)))2

(1 + δic−i−1). (A.8)

It is not difficult to check that the function χ(
√
κi) =

√
κi

cos(
√
κ(ic−i−1))

is monotonically in-
creasing on il ≤ i < ic. This follows from the fact that the function

√
κi tan(

√
κ(ic−i)−1)

has maximum when
√
κi = tan(

√
κ(ic−i−1))

1+tan2(
√
κ(ic−i)−1)

and, therefore, χ′(
√
κi) = 1−

√
κi tan(

√
κ(ic−i−1))

cos(
√
κ(ic−i−1))

≥
(cos(

√
κ(ic − i − 1)))−1(1 + tan2(

√
κ(ic − i − 1))−1 > 0, for il ≤ i < ic. Since ic =

k
2

+O(κ−
1−α
2 ) = π

2
κ−

1
2 +O(κ−

1−α
2 ) as κ→ 0 (Lemma 3.19 in [15]) and, from asymptotic

formula (A.7), il = κ−
1

2+α +O(κ−
1−α
2 ) and

κi2l
cos(
√
κ(ic − il − 1))

→ 1, as κ→ 0, (A.9)

the function κi2

i2(cos(
√
κ(ic−i−1)))2

is bounded and the claim follows for il ≤ i < ic. Here, we
have also used the fact that, since the second derivative of f is bounded both from above
and from below by positive constants, the lengths of the intervals [ti−1, ti] and ∆i are of
the same order. Similarly, we can obtain the desired estimates for ic ≤ i ≤ ir, by applying
Lemma A.2 to si = tic+i, where 0 ≤ i ≤ ir − ic.

For 0 ≤ i ≤ il and ir < i ≤ k, we can obtain the desired estimates by applying
Lemma A.1. This is a consequence of the convexity and the fact that it follows from
(A.5), using the (A.7), that til = κ

1
2+α + O(κ

1
2+α

+
α(α+1)
2(2+α) ) and, similarly, tir = κ

1
2+α +

O(κ
1

2+α
+
α(α+1)
2(2+α) ). We first obtain the estimates for 0 ≤ i < il. For 0 ≤ i < il − j, let

si = −ti+j. For sufficiently large k, and some fixed large j, s0 ∈ (0, d1]. Since, for such i’s,
κ < const.|ti+j|2+α, it follows from (A.2) that si satisfy the assumptions of Lemma A.1.
We can apply this lemma for 0 ≤ i < il− j. The estimate (A.4) immediately gives us the
desired bounds for 1 ≤ i < il. Similarly, by defining si = tk−j−i, for 0 ≤ i ≤ ir−j, for some
large j, we again have s0 ∈ (0, d1], for sufficiently large k. Since κ < const.|tk−j−i|2+α,
it again follows from (A.2) that si satisfy the assumptions of Lemma A.1. The estimate
(A.4) of Lemma A.1 immediately gives us the desired estimates for k − jr < i ≤ k. QED
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