SOLVABILITY IN THE SENSE OF SEQUENCES FOR SOME
FOURTH ORDER NON-FREDHOLM OPERATORS

Messoud Efendiéey Vitali Vougalter
! Helmholtz Zentrum Miinchen, Institut fiir ComputationabBgy, Ingolstadter Landstrasse 1
Neuherberg, 85764, Germany
e-mail: messoud.efendiyev@helmholtz-muenchen.de

Department of Mathematics, University of Toronto, Torqr@mtario, M5S 2E4, Canada
e-mail: vitali@math.toronto.edu

Abstract: We study solvability of some linear nonhomogeneous edliptoblems
and establish that under reasonable technical conditi@nsdnvergence ih?(R?)
of their right sides implies the existence and the convergém/*(R¢) of the solu-
tions. The problems contain the squares of the sums of serdednon- Fredholm
differential operators and we use the methods of the spectthscattering theory
for Schrodinger type operators. We especially emphabegehtere we deal with the
fourth order operators in contrast to the second order ¢@wsran [29] and investi-
gate the dependence of the solvability conditions on thesdsion of our problem
when the constant = 0. We also consider the case of solvability with a single
potential in an arbitrary dimension.
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1. Introduction

Consider the problem
—Au+V(x)u —au = f, (1.1)

whereu € E = H*(R?) andf € F = L?(R%), d € N, ais a constant and the scalar
potential functionV/(x) tends to0 at infinity (it is well known that ifV (z) — oo
as|r| — oo, it leads only to the discreteness of the spectrum). &~or 0, the
essential spectrum of the operatér: £ — F corresponding to the left side of
equation (1.1) contains the origin. Consequently, thisatoe fails to satisfy the
Fredholm property. Its image is not closed, for- 1 the dimensions of its kernel
and the codimension of its image are not finite. The presemk vgodevoted to
the studies of certiain properties of the operators of timsl k Let us recall that



elliptic equations containing non Fredholm operators wesated extensively in
recent years (see [14], [23], [24], [25], [26], [27], [28]lsa [6]) along with their
potential applications to the theory of reaction-diffusiequations (see [8], [9]).
Non-Fredholm operators are also very significant when stgdyave systems with
an infinite number of localized traveling waves (see [1])pémticular, whermw = 0
the operatoA satisfies the Fredholm property in certain properly choseighed
spaces (see [2], [3], [4], [5], [6], [10], [11], [12], [13])However, the case of
a # 0 is considerably different and the method developed in tiaesks cannot be
applied.

One of the important questions about problems with non{tokd operators
concerns their solvability. We address it in the followiredtsng. Letf, be a se-
quence of functions in the image of the operatoisuch thatf,, — f in L?>(R%) as
n — oo. Denote byu,, a sequence of functions froit?(R?) such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenaaay
not be convergent. Let us call a sequengehe solution in the sense of sequences
of the equationdu = f if Au, — [ (see [23]). If such sequence converges to
a functionu in the norm of the spacé&, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thistcages usual solution.
However, in the case of the non-Fredholm operators, thigergence may not hold
or it can occur in some weaker sense. In such case, solutitreisense of se-
guences may not imply the existence of the usual solutiothdrpresent work we
will find sufficient conditions of equivalence of solutiomsthe sense of sequences
and the usual solutions. In the other words, the conditiansemuenceg, under
which the corresponding sequenagsare strongly convergent. Solvability in the
sense of sequences for the sums of non-Fredholm Schradymgeoperators was
studied in [29]. In the first part of the work we consider sugem@tors squared,
namely

{—A$+V(ZE) —Ay+U(y)}2U—(Z2U: f(xay)a T,y €< Rga (12)
with the constant > 0. The operator
Hy v ={-A, +V(z) - A, +U(y)}* : H*(R®) — L*(R%) (1.3)

under the technical conditions on the scalar potentialtians V' (z) and U(y)
stated below. Here and throughout the article the LaplasgadbprsA, and A,
are with respect to the andy variables respectively, such that cumulativély=
A, + A,. Similarly for the gradientsy, andV, are with respect to the and
y variables respectively. In the applications the sum of @ $chrodinger type
operators has the physical meaning of the resulting hanitoof the two non-
interacting quantum particles.



The boundedness of the gradient of a solution for the bi-baroequation was
established in [18]. The behavior near the boundary of smiatto the Dirichlet
problem for the biharmonic operator was studied in [19].idet [20] is devoted
to the Dirichlet problem in Lipschitz domains for higher erelliptic systems with
rough coefficients. Solvability conditions for a lineadz€ahn-Hilliard equation
were obtained in [25].

The scalar potential functions involved in operator (118 assumed to be shal-
low and short-range, satisfying the assumptions analotgotle ones of [26] and
[27]. We also add a few extra regularity conditions.

Assumption 1. The potential function® (z), U(y) : R? — R satisfy the estimates

C C
< - < T 1 Jar. -
|V (z)| < T 5 zpore U(y)| < 1+ [yPote

with some:= > 0 andz,y € R? a.e. such that

19 _2
B2 IV g IVIEy o <1 (1.4)
B3 24m) U e lU1F, <1 (1.5)
8 Loo(R3) L3 (R3) !
and

\/CHLSHVHL%(RS) < 4, \/CHLSHUHL%(RS) < A4r.
Moreover,| V..V ()], A,V (z), |[V,U(y)|, A,U(y) € L=(R?).

Here and further down' denotes a finite positive constant ang,s given on
p.98 of [17]is the constant in the Hardy-Littlewood-Sobaleequality

/ hahty )dl’dy < cursllfill®s i€ LE(R?).
rs Jrs |7 — y[?

L3 ®3)’

The norm of a functionf; € LP(R?), 1 < p < oo, d € N is designated as
[ fill o ey

Proposition. The functionl/ (z) = whereC' is small enough satisfies As-

1+ |zt
sumption 1.

Proof. A straightforward computation yields

4C |z |3

V.V (z)| = ENEDE

€ L®(R?)
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and
5|z — 3|x|°

(1+ |z1)?
as well. u

A,V (z) = —4C e L®(R?)

Let us denote the inner product of two functions as

() gt = [ fe)gla)ds (16)

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, iff (z) € L'(R?) andg(z) is bounded, like for example the functions of the
continuos spectrum of the Schrodinger operators disdussew (see Corollary 2.2
of [27]), then the integral in the right side of (1.6) makess® We use the spaces
H?*(R?) and H*(R?) equipped with the norms

lull gy = lullzoa) + 1 A2 @) 1.7)

and
HuH?{‘l(Rd) = HuH%Q(Rd) + ”AQUH%%W) (1.8)

respectively. Throughout the work, the sphere of radius0 in R centered at the
origin will be designated by, the unit sphere is denoted 15§ and|S?| stands for
its Lebesgue measure. By means of Lemma 2.3 of [27], undemAsson 1 above
on the scalar potentials, operator (1.3) considered asgaicti’.?(R°) with domain
H*(RY) is self-adjoint and is unitarily equivalent fo-A, — A, }? on L?(R°) via
the product of the wave operators (see [16], [22])

it(— AtV (2)) itAe

Q‘i, =5 — lim_zo0€ Q[i] =5 — IimH%Oe”(*Ay*U(y))ezmy,

)

with the limits here understood in the stroid sense (see e.g. [21] p.34, [7]
p.90). Hence, operator (1.3) has no nontrivia[R%) eigenfunctions. Its essential
spectrum fills the nonnegative semi-afis+occ). Therefore, operator (1.3) does
not satisfy the Fredholm property. On the contrary, the ajoer

By, v = =0y +V(2) — Ay +U(y) +a

considered as acting ih?(R%) with domain H*(RR%) satisfies the Fredholm prop-
erty, has only the essential spectrum, which fills the irgkfw, +00), such that
the inverseh, ', : L*(R°) — H*(R®) is bounded. The functions of the continuos
spectrum of the first operator involved in (1.3) are the sohs of the Schrodinger
equation

[~As + V(@)|pi(a) = Ki(x), kR,
in the integral form the Lippmann-Schwinger equation (sge 1] p.98)

ikx

e 1 etlkllz—yl
o) = oy g L Ty Ve 1.9)
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for the perturbed plane waves and the orthogonality caoruhti

(pr(@), r, (7)) 2R3y = 0(k — k1), k, k1 € R®.
The integral operator involved in (1.9)

1 etlkllz—yl

(Qp)(z) := (Vo) (y)dy, o(z) € L=(R?).

dr R |7 — Y
Let us considef) : L>°(R?) — L>(R?). Its norm||Q|| < 1 under Assumption 1
via Lemma 2.1 of [27]. In fact, this norm is bounded above y/ithndependent
guantity, which is the left side of inequality (1.4). Simlig for the second operator
involved in (1.3) the functions of its continuous spectruwtve

[_Ay + U(y)]nq(?/) = Qan(y)a qc jo

in the integral formulation

( ) elay 1 / etlally—z (U )( )d (1.10)
=— — — _— z)dz, .
Ma\Y (271')5 47 R3 ‘y — Z| g

such that the orthogonality conditiotw, (y), 7, (v)) r2rs) = 6(¢ — ¢1), ¢, @1 € R?
hold. n,(y) will correspond to the case gf= 0. The integral operator involved in
(1.10) is

1 etlally—z

(Pn)(y) := (Un)(z)dz, n(y) € L™(R?).

Am Jrs |y — 2|
For P : L>(R?) — L>(R?) its norm|| P||., < 1 under Assumption 1 by means of
Lemma 2.1 of [27]. As before, this norm can be estimated frowva by theg-
independent quantity(U), which is the left side of inequality (1.5). Let us denote
by the double tilde sign the generalized Fourier transfoiith the product of these
functions of the continuous spectrum

fkoq) = (f(@,9), or(2)19(y)) r2e),  Foq € R, (1.11)
(1.11) is a unitary transform oh*(IR%). Our first main proposition is as follows.

Theorem 2. Let Assumption 1 holdy > 0 and f(z,y) € L*(R%). Assume also
that |z|f(x,v), |y|f(z,y) € L*(R®). Then problem (1.2) has a unique solution
u(x,y) € HY(R®) if and only if

(f (@), eu(@)ng (1) r2e) =0, (k,q) € Sy ace. (1.12)



In the very special case when the scalar potential functiopag andU (y) van-
ish identically inR?, condition (1.12) gives us the orthogonality to the produat
the corresponding standard Fourier harmonics. Then wenturattention to the is-
sue of the solvability in the sense of sequences for our euakhe corresponding
sequence of approximate equations witk N is given by

{_AJ»‘ + V(ZL‘) - Ay + U(y)}Qun - a2un = fn(xv y)v T,y € R37 (113)

with the constant. > 0 and the right sides converge to the right side of (1.2) in
L?*(R%) asn — oc.

Theorem 3.Let Assumption 1 hold, > 0, n € Nandf,(z,y) € L*(R®), such that
fo(z,y) — f(x,y)in L*(R®) asn — oco. Letin addition|z| f,.(z, y), |y|f.(z,y) €

LY(R%), n € N, such thatiz|f,(x,y) = |z|f(x,y), |ylfulz,y) = [ylf(z,y) in
L'(R%) asn — oo and the orthogonality relations

(a2, 9), or()04(Y) 12@s) = 0, (k,q) € SYz  ace. (1.14)

hold for alln € N. Then problems (1.2) and (1.13) admit unique solutions y) €
H*R®) and u,(x,y) € H*R®) respectively, such that,(z,y) — u(x,y) in
H*(R®) asn — oo.

The second part of the article is devoted to the studies cddlo@tion
(-0 = Ay +U@W)Yu—a*u=d(z,y), z€R, yeR,  (1.15)

whered € N, the constant > 0 and the scalar potential function involved in (1.15)
is shallow and short-range under Assumption 1 above. The iagular case of
a = 0 will be treated in the Appendix below in higher dimensioneeTperator

Ly = {-A, — A, + U(y)}? : HHR™3) — L2(R*3). (1.16)

Similarly to (1.3), under the given assumptions operatat@lconsidered as act-
ing in L?(R4+3) with domainH*(R**?) is self-adjoint and is unitarily equivalent to
{—A, — A, }?. Thus, operator (1.16) does not have nontrivia[R?3) eigenfunc-
tions. Its essential spectrum fills the nonnegative sensi{@x+occ). Therefore,
operator (1.16) is non Fredholm. On the contrary, the operat

ly=—-A, — Ay +U(y)+a

considered as acting ih?(R**3) with domain H?(R*3) satisfies the Fredholm
property, has only the essential spectrum, which fills tiberiml [a, +00), such that
the inversd, ! : L?(R4"3) — H?(R%+?) is bounded. Let us consider another gen-
eralized Fourier transform with the standard Fourier hariceand the perturbed
plane waves

cg(k,q) = (cb(l“,y), gm(y)) , keRY qeR%. (1.17)
L2(Rd+3)

(27)
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(1.17) is a unitary transform ob?(R?*3). We have the following statement.

Theorem 4. Let the potential functiord/(y) satisfy Assumption 12 > 0 and
additionally(x,y) € L2(R**3), |x|o(z,y), |y|o(x,y) € L}(RY*3), d € N. Then
problem (1.15) possesses a unique solution i) € H*(R4*3) if and only if

ikx

(&
(é(x,y), dnq(y)> =0, (kq) €S ae (1.18)
2 LQ(Rd+3)

Our final main proposition is devoted to the issue of the dmlitg in the sense
of sequences for our problem. The corresponding sequenggpobximate equa-
tions withn € N is given by

(=0, =2y +U )Y up—a’u, = du(z,y), zeR?, deN, yeR’ (119)
where the right sides converge to the right side of (1.19)%fR*3) asn — oo.

Theorem 5. Let the potential functiod/(y) satisfy Assumption L, > 0, n € N
and ¢, (z,y) € L?*(R%3), d € N, such thatp, (z,y) — ¢(z,y) in L*(R43) as
n — oo. Letin addition|z|d, (z,y), |y|¢n(z,y) € L (R43), such that

|zl on(2,y) = |2l ), [ylon(z, y) = [ylo(z, )
in L1(R¥*3) asn — oo and the orthogonality relations

ik

<¢n(x,y), im(.v)) =0, (kq) €S ae (1.20)
2 L2(Rd+3)

hold for all n € N. Then problems (1.15) and (1.19) admit unique solutions
u(r,y) € HY(R¥3) andu,(x,y) € H*(R3) respectively, such that,(z,y) —
u(x,y) in H*(R43) asn — oo.

Remark 1. Let us note that (1.12), (1.14), (1.18), (1.20) are the ogtaality
conditions containing the functions of the continuous spet of our Schadinger
operators, as distinct from the Limiting Absorption Pripia in which one orthogo-
nalizes to the standard Fourier harmonics (see e.g. Lem®ard Proposition 2.4
of [15]).

Remark 2. In Theorems 2-5 above we assume that the right sides of oatieqs
belong toL! after the multiplication byz| or |y|. In the case of the Poisson equation
this condition can be weakened (see Lemma 3.3 of [30])

Remark 3. It is worth noting that the proofs of our theorems with a sengbtential
will be identical in the presence of the scalar potentialgrdtal V' (z) whenU (y)
vanishes in the whole space.



We proceed to the proof of our statements.
2. Solvability in the sense of sequences with two potentials

Proof of Theorem 2First of all, let us observe that it is sufficient to solve efa
(1.2) in H?(IR%), since this solution will belong té/*(IR®) as well. Indeed, it can
be easily shown that

Atu+ V() + U (y)lu — [AV (2) + AU (y)]u = 2[V(2) + U(y)| Au—

—2V,V(2).V,u — 2V, U(y).V,u+2V(2)U(y)u — a*u = f(x,y), (2.1)

with u(z, ) a solution of (1.2) belonging té/%(R®). The dot symbol in the fifth
and the sixth terms in the left side of (2.1) and throughoataticle denotes the
standard scalar product of two vectorsRA. Evidently, all the terms in the left
side of (2.1) starting from the second one are square irtegsance according to
Assumption 1 our scalar potential functions are boundexigatath

VoV (@), [VyU(y)l, AV (2), AyU(y)

andu(z,y) € H?*(R%). The right side of (2.1) is square integrable as well as as-
sumed. Therefored?u(x,y) € L?(R®), which yields that:(z, y) € H*(RS).

To show the uniqueness of solutions for our equation, we cspphat prob-
lem (1.2) admits two solutions, (x, y), us(x,y) € H*(RS). Then their difference
w(z,y) = u(z,y) — us(x,y) € H*(R®) solves the equation

Hy vw = a*w.

But the operatoi;; v : H*(R®) — L*(R®) has no nontrivial eigenfunctions as
discussed above. Therefore(zr, y) vanishes irR°.

Let us apply the generalized Fourier transform (1.11) td lsades of problem
(1.2). This yields

i~ f k:a
u(kv Q) - (k‘2 +(€’2)g)_ a2'
Hence ) ) 3
ﬂ(k7Q) :gl(k,Q)+,§~]2(k,Q), (22)
where
.o k) N (LX)
gk, q) = 2a(k* + ¢®> —a)’ g2k q) = 2a(k2+ @ +a)

It is worth noting that in the right side of (2.2) the first tegm(k, ¢) appeared in
[26]. The second term theig(k, ¢) is the new one which reflects the presence of



the fourth order operator. Evidently, the function$z, y) andg(x, y) satisfy the
equations

(=80 + V(@) = A, + Uly)}or — g1 = - f(.0) 23)
and .
{—Ax+V(ZE) _Ay+U(y)}92+a92 = —%f(l‘,y) (24)

respectively. The operator involved in the left side of peo (2.4) has a bounded
inverseh, !, : L*(R%) — H?*(R°) as discussed above and the right side of (2.4) is
square integrable as assumed. Therefore, equation (2jsaa unique solution
g2(z,y) € H*(R%). By means of the part a) of Theorem 3 of [26], under the given
conditions equation (2.3) has a unique solutiefw,y) € H?*(R®) if and only if
orthogonality condition (1.12) holds. Note that the solirgbof problem (2.3) in
L*(R®) is equivalent to its solvability inF/?(IR®) since the right side of (2.3) is
square integrable and the scalar potentials involved B) @&e bounded according
to the one of our assumptions. [ |

Let us turn our attention to the solvability in the sense afusmces for our
equation in the case of two scalar potentials.

Proof of Theorem 3First of all, let us demonstrate thatifz, y) andu,(z,y), n €
N are the uniqué?*(IR%) solutions of (1.2) and (1.13) respectively angdx,y) —
u(x,y) in H*(R®) asn — oo, then we haveu,(z,y) — u(x,y) in HY(R®) as
n — oo as well. Indeed, (1.2) and (1.13) yield that foe N andz, y € R?

[0+ V(@) = Ay + UW)F(n — 1) — @y — ) = fulz,y) — f(,y).
Hence

A2 (u, —u) + V(@) + U ()] (un — u) = [A.V (2) + AU (y)] (un — u)—
—2[V(x) + U(y)|A(uy, — u) — 2V, V(2).Vy(u, —u) — 2V, U(y).Vy(u, — u)+

2V (2)U(y) (un — u) — a*(un —u) = folw,y) — f(2,9). (2.5)
Sinceu,,(z,y) — u(z,y) in H?(R%) asn — oo as assumed, we have here

un(2,y) = w(@,y),  Voun(r,y) = Vau(z,y), Vyu(r,y) = Vyu(z,y),

Auy(z,y) — Au(z,y)

in L?(R%) asn — oo and
Viz), Uly), VoV, AV(x), [V,UW)l, AU(y)

are bounded functions due to Assumption 1 above. Thereddirthe terms in the
left side of identity (2.5) starting from the second one témdero in L?(R®) as
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n — oo. The right side of (2.5) converges to zeralif(R%) asn — oo as assumed.
Hence A%u,, — A%uin L?(R%) asn — oco. By means of norm definition (1.8) we
obtain thatu,,(z,y) — u(z,y) in H*(R®) asn — co.

By virtue of Theorem 2 above, under the given conditions 8qn#1.13) admits
a unique solution,(z,y) € H*(R%), n € N. Let us recall formula (2.5) in the
proof of Theorem 2 of [29]. Hence, under the stated assumgtice arrive at the
limiting orthogonality relation

(f(2,y), ox(x)nq(y)) L2msy = 0, (K, q) € Sf/a a.e.

Then by means of Theorem 2 above problem (1.2) possessesjaeusnlution
u(z,y) € HY(R®). Let us apply the generalized Fourier transform (1.11) tthbo
sides of problems (1.2) and (1.13). This yields the repiasem (2.2) as in the
proof of Theorem 2 above, where the functignér, y), g.(z,y) € H*(R®) under
the given conditions are the unique solutions of equati@r3) @nd (2.4) respec-
tively. Similarly,

ﬁn(ka Q) = .él,n(kja Q) + 52,n(k7 Q)a ne Nv (26)
where
. falkoa) Julk,q)
k,q) = k,q) = — .
gl,n( 7Q) 2&(/{72 + q2 — a)’ gQ,n( 7Q) 20,(]%'2 _'_qz —|—CL>
Apparently, the functions, ,,(x, y) andg.,(x, y) solve the equations
1
and 1
{—=A; +V(z) - Ay + U(y)}gom + agon = _%fn(xa y) (2.8)

respectively. Since the operator involved in the left siflé208) has a bounded
inverseh, ) : L*(R®) — H?*(R®), such that its norm|h, .|| < co as discussed
above and the right side of (2.8) belongst&(R®) as assumed, (2.8) admits a
unique solutiony, ,(x,y) € H?*(R®). Becausef,(z,y) — f(z,y) in L*(R%) as

n — oo via the one of our assumptions, we have

1. -
1920 — Gallm2(me) < z_a”hui)H [ fn — fllz2@sy = 0, n — o0,

such thatgs ,(z,y) — ga(x,y) in H*(R®) asn — oco. By virtue of the result of
the part a) of Theorem 2 of [29], we have that equation (2.8spsses a unique
solutiong, ,,(z,y) € H*(R®), suchthay, ,(z,y) — g1(x,y) in H*(R®) asn — oo.
Using formulas (2.6) and (2.2) considered in the, space, we easily arrive at
ln(,y) — ule, y)l| mes) <

< lgin(z,y) — g1(x, Y)l| z2@e) + | 92.0(2, y) — g2z, y)|| 2 (mE) — O
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asn — oo. Thereforeu,(z,y) — u(x,y) in HY(R%) asn — oo as discussed
above. |

In the last main section of the article we treat the case wheriree Laplacian
is added to our three dimensional Schrodinger operator.

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 4First of all, we show that it is sufficient to solve problemi(3)
in H%(R%+3), because such solution will belong k6! (R?*+?) as well. Apparently,

Ay + U (y)u — 2U (y)Au — uA,U(y) — 2V, U (y).V,u — a*u = ¢(x,y), (3.1)

whereu(z,y) is a solution of (1.15), which belongs #@*(R¢+3). Clearly, all the
terms in the left side of (3.1) starting from the second oresayuare integrable
because by means of Assumption 1 our scalar potential fum&tibounded along
with |V, U(y)| and A,U(y) andu(z,y) € H?*(R3). The right side of (3.1) is
square integrable as well as assumed. Henée,c L?(R4*?), which implies that
u(z,y) € HY(R™3).

To establish the uniqueness of solutions for our equatierswppose that (1.15)
possesses two solutions(z,y), usx(z,y) € H*R3). Then their difference
w(z,y) == u(z,y) — us(z,y) € HY(RY3) satisfies the equation

Lyw = a’w.

Apparently, the operatat;; : H*(R**+?) — L?(R4*3) has no nontrivial eigenfunc-
tions as discussed above. Thusgyz, y) vanishes irR4+3,

We apply the generalized Fourier transform (1.17) to botlesiof problem
(1.15) and obtain

ik, q) = G (k, q) + Ga(k, ), (3.2)
where
o(k, q) : o(k, q)

Gl(k7Q) = GQ(k7Q) = _QCL(]{?Q +q2 +(1,)

-~ 2a(k2 4 ¢2 —a)’

Clearly, the functiongs, (z, y) andGs(x, y) solve the equations

{~B0 = Ay + UGy aGy = 5 -6(z.y) 33
and .
{=A, — A, +U(y)}Ga + aGy = —%d)(a:, ) (3.4)

respectively. The operator involved in the left side of émra(3.4) has a bounded
inversel;! : L2(R43) — H?(R%*3) as discussed above and the right side of (3.4)
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is square integrable due to the one of our assumptions. Hpraelem (3.4) pos-

sesses a unique solutidhy (z,y) € H%(R43). By virtue of the part a) of Theo-
rem 6 of [26], under the given assumptions equation (3.3)i@dmunique solu-

tion G (x,y) € H?(R*?) if and only if orthogonality relation (1.18) holds. Evi-
dently, the solvability of equation (3.3) ik? (R4+3) is equivalent to its solvability in

H?(R4*3) because the right side of (3.3) is square integrable ancttiarpotential

involved in (3.3) is bounded due to our assumptions. [ |

We finish the main part of the work with establishing the sbiiiy in the sense
of sequences for our problem when the free Laplacian is atiWladhree dimen-
sional Schrodinger operator.

Proof of Theorem 5First of all we establablish that if(z, y) andu,(z,y), n € N

are the uniqué?*(R?*3) solutions of equations (1.15) and (1.19) respectively and
un(z,y) — u(x,y) in H2(RY3) asn — oo, thenu, (z,y) — u(x,y) in H(R43)

asn — oo as well. Clearly, (1.15) and (1.19) imply that ferc N andz € R?, y €

R3 deN

(=0, = Ay + UW)}Y (un — u) — a*(up — u) = ¢u(x,y) — d(z,y).
Hence
A (un —u) + U (y) (g — ) = 2U () Aun —u) = (up — u)A,U(y)—

-2V, U(y).Vy(u, —u) — a*(u, —u) = ¢n(z,y) — ¢(z,y). (3.5)
The fact thatu,,(z, y) — u(x,y) in H?(R4"3) asn — oo as assumed implies that

un(7,y) = u(w,y), Vyuu(z,y) = Vyu(r,y), Aun(z,y) — Au(z,y)
in L2(R43) asn — oo and

Uly), VU@l AU(Y)

are bounded functions via Assumption 1. Thus, all the temtise left side of (3.5)
starting from the second one converge to zerditR%*3) asn — oo. The right
side of (3.5) tends to zero ih?(R¢*?) asn — oo via the one of our assumptions.
Therefore, A2u,(z,y) — A2u(x,y) in L2(R™?) asn — oco. By virtue of norm
definition (1.8) we have that, (x,y) — u(z,y) in H*(R*?) asn — oo.

By means of Theorem 4 above, under our assumptions probleif)(has a
unique solutionu,, (z,y) € H*(R4"?), n € N. We recall formula (3.6) in the proof
of Theorem 3 of [29]. Thus, under the given conditions we iobtae limiting
orthogonality relation

€
(QZS(I’, y)v d nq(y))> - 0’ (k’ Q) < Sid/—’c__ag a.c.
2 L2(Rd+3)
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Therefore, by virtue of Theorem 4 above equation (1.15) &lenunique solution
u(x,y) € H*R3). We apply the generalized Fourier transform (1.17) to both
sides of equations (1.15) and (1.19). This gives us the septation (3.2) given in
the proof of Theorem 4, where the functiofig(z, y), Go(r,y) € H*(R**3) under
our assumptions are the unique solutions of problems (B8)3.4) respectively.
Apparently,

Un(k,q) = Gk, q) + Gaon(k,q), n €N, (3.6)
where

B bk, )
20(k* +¢®>+a)

X :n k, X
Gl,n<k7Q) = d) ( q> G?,n(ku(D =

© 2a(k2+ @2 —a)’

Evidently, the functionss, ,,(z,y) andGs,,(, y) satisfy the equations

(=00 = 8y + U} G — G = 500 (2.1) 37)

and
1
{=A8; = Ay +U(y)}Gapn + aGay = —2—a¢n(f€, Y) (3.8)

respectively. Because the operator involved in the leg sifd(3.8) has a bounded
inversel;;' : L*(R%3) — H?(R+?), such that its nornij/;;'|| < oo as discussed
above and the right side of (3.8) is square integrable duegt@ne of our assump-
tions, (3.8) has a unique soluticty ,(x,y) € H*(R%*3). Sincep, (z,y) — ¢(x,y)

in L2(R4t3) asn — oo as assumed, we obtain

1.
|G — Gal| g2 (ma+sy < %HlUlH ¢ — Ol L2a+sy = 0, n — oc.

Hence, Gy, (z,y) — Ga(z,y) in H*(R3) asn — oo. By means of the re-
sult of the part a) of Theorem 3 of [29], problem (3.7) admitsnéque solution
Gin(z,y) € HY(R3), such thatd, ,,(z,y) — Gi(z,y) in H2(R43) asn — oc.
By virtue of formulas (3.6) and (3.2) considered in the space, we easily derive
[un(z,y) — u(@, y) | g2ma+s) <

|Gz, y) = G, Y) || p2rars) + (| Gon(@,y) — Gal@, y) || 2ars) — 0
asn — oo. This implies thaty,,(z,y) — u(x,y) in H4(R¥3) asn — oc. |

We would like to emphasize especially that in the applicatithe sum of the
free negative Laplacian and the Schrodinger type opena®the physical meaning
of the cumulative hamiltonian of the two non-interactingigtum particles. One of
these particles moves freely and another interacts withsamreal potential.

Let us finish the article by considering equation (1.15) with 0 in the context
of the solvability in the sense of sequences.
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4. Appendix

Theorem 6. Let the potential functior/(y) satisfy Assumption 1« = 0 and
¢(z,y) € L*(RH3), d €N, d > 4.

a) Whend = 4, 5, let in addition|z|é(x, y), |y|é(z,y) € L*(R?*3). Then problem
(1.15) has a unique solution(z, y) € H*(R*3) if and only if

(d)(xa y)7 HO(y))LQ(Rd+3) = 0. (41)

b) Whend > 6, let in additiong(x,y) € L'(R?+3). Then equation (1.15) admits a
unique solutionu(z, y) € H*(R3).

Proof. Analogously to the argument in the proof of Theorem 4 abawsould be
sufficient here to solve equation (1.15) whes- 0 in H?(R4*3), since this solution
will belong to H*4(R4*?). The uniqueness of the solutions of problem (1.15) for
a = 0 was established in the proof of Theorem 4 as well. Let

vi=—Ayu—Ayu+U(y)u. (4.2)

If it is known thatu(z, y), v(z,y) € L*(R43) thenAu(z, y) € L*(R43), since the
scalar potential/ (y) is bounded as assumed. Then we haje y) € H?*(R43),

Let us apply the generalized Fourier transform (1.17) tdIsades of equation
(1.15). This yields

~ ~

o(k.q) _ o(k,q) ok, q) (4.3)

ﬁ(kv(J) = (k}Q + q2)2 - (k?Q + qQ)QX{k2+q2§1} + WX{R2+Q2>1}-

Here and belowy 4 stands for the characteristic function of a deC R*+3. Clearly,
the second term in the right side of (4.3) can be bounded flwoweain the absolute

value by|é(k, q)| € L2(R%3) due to the one of our assumptions. We apply the
generalized Fourier transform (1.17) to both sides of (4r®2) use (4.3) to obtain

~ ~

X d) k7 q (b ka q
ok, q) = kg(i_'_q)gX{kQ—qugl} + ]{;2(7+(]>2X{k2+q2>1}- (4.4)

Evidently, the second term in the right side of (4.4) can tieneged from above in

the absolute value biy(k, ¢)| € L2(R%+3). The first term in the right side of (4.4)
can be trivially bounded from above in the absolute valueitye of (4.3) by

16(k, )
(k;Q + q2)2

Therefore, if we have(z,y) € L?(R4™3) thenv(x,y) € L?(R*"3) as well.

= la(k, q)l.

14



Let us first treat the case when the dimension 6. By means of Corollary 2.2
of [27] under the given assumptions we have

1 1

(277)% = 1(0) < oo, q€R? (4.5)

179 () || oo sy <
such that via (1.17) we obtain

16(k, g)| <

1 1
(270% 1—-1(U) [6(@, Y) || L1 (ra+s)-

This allows us to estimate the first term in the right side o8)4n the norm as

cg(k, q)

1 o, y)llpigarsy [543
WX{kQJquSl}

2m)% 1-1(U) d—5

< 00

L2(Rd+3)

due to our assumptions. By virtue of the argument above tmgptetes the proof
of the part b) of our theorem.

Then we turn our attention to the situation when the dimengdie- 4, 5. Let us
use the expansion

[ i),
Js

0

6k, q) = 6(0) + (4.6)

Here and below will denote the angle variables on the sphere. By means 6§ (4.
we write the first term in the right side of (4.3) as

9(0) JYEE 2060 g
WX{’“2+Q2§1} + (k2 + ¢2)? X{k2+q2<1}- (4.7)

Lemma 12 of [26] yields that under the given conditiqig, + Vq)gziﬁ(k,q) €
L>(R4+3), such that the second term in (4.7) can be bounded from alnotrei
absolute value by

|V + Vo)o(h, @)1z

(k2 + ¢2)3 Xertest)
Hence .
VE2+e 99(5.0)
fO 0s dSX{szr 2<1} <
2 212 A -
(]{7 +q ) LQ(Rd+3)
~ Sd+3
< [[(Vie+ Vg)o(k, q)|| oo (ra-e) ‘d — 3‘ =0
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It can be easily verified that the first term in (4.7) is squatedrable if and only

if ng(o) vanishes, which is equivalent to orthogonality conditidrij. By means of
the argument above this completes the proof of the part deotiteorem. [ |

The final proposition of the article is as follows.

Theorem 7. Let the potential functio/(y) satisfy Assumption 1¢ = 0, n € N
andg,(z,y) € L2(R¥3), d € N, d > 4, suchthat, (z,y) — ¢(z,y) in L2(RI*+3)
asn — oo.

a) Whend = 4,5, let in addition|x|¢,(z,v), |y|én(z,y) € L'(R*3), such that
|zl dn(@,y) — |22, y), [ylon(z,y) = [y|¢(z, y) in L' (R*?) asn — oo and the
orthogonality conditions

(&n(z,y),m0(Y)) r2Ra+s) = 0 (4.8)

hold for all n € N. Then equations (1.15) and (1.19) possess unique solutions
u(r,y) € HY(R¥3) andu,(x,y) € H*(R3) respectively, such that,(z,y) —
u(z,y)in H4(R¥3) asn — oo.

b) Whend > 6, let in additione,,(z,y) € L'(R%*?), such thaip, (z,y) — ¢(z,y)

in L'(R4"3) asn — oo. Then problems (1.15) and (1.19) admit unique solutions
u(r,y) € HY(R¥3) andu,(x,y) € H*(R3) respectively, such that,(z,y) —
u(z,y)in H4(R¥3) asn — oo.

Proof. Our argument will consist out of several steps.

) Supposeu(x,y) andu,(z,y), n € N are the uniqueH*(R4+3) solutions of
equations (1.15) and (1.19) with = 0 respectively andi,(z,y) — u(z,y) in
H?(R¥*3) asn — oo. Thenu,(z,y) — u(z,y) in H4(R**3) asn — oo as well,
which can be shown similarly to the argument in the proof oédiem 5 above.

II) Let us introduce
Uy, = —Agu, — Ayu, + U(y)u,, neN. (4.9
By means of (4.9) and (4.2), we easily obtain
[Auy — Aul|egarsy < |[vn — vl 2@arsy + [[U(Y) (wn — u)||2a+s).  (4.10)

Supposev(z,y), va(z,y) € L*(R¥3),n € N, such thatv,(z,y) — v(z,y) in
L*(R43) asn — oco. Moreover, letu(x, y), u,(x,y) € HY(R3), n € N, such that
un(z,y) — u(z,y) in L2(R43) asn — oo. Sincel(y) € L>(R?) as assumed, the
second term in the right side of (4.10) tends to zera as oo. Thus,Au,, — Au
in L2(R43) asn — oo, which implies thatu, (v, y) — u(z,y) in H*(R%*3) as
n — oo as well.
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[I) We apply the generalized Fourier transform (1.17) tdhosides of problem
(1.19) witha = 0. This gives us

n(kv(D - (k?Q +q2)2'

Let us apply the generalized Fourier transform (1.17) tdIsedes of (4.9) and use
(4.11). This yields

(4.11)

. Onlk, ) _ Gulk.q) ou(k,0)
On(k,q) = K+ g = B+ g X{k2+4q2<1} T m)({k2+q2>1}- (4.12)

Evidently, the second term in the right side of (4.12) candentied from above in

the absolute value bl, (k, q)| € L2(R%+3) via the one of our assumptions. The
first term in the right side of (4.12) can be trivially estimdtfrom above in the
absolute value using (4.11) by

[6n(k, q)]

(k:Q + q2)2
Hence,u,(z,y) € H*(R3) will imply that v, (z,y) € L*(R?"3). By the similar
reasoning via (4.3) and (4.4) we easily deduce thaty) € H*(R*"3) yields
v(z,y) € L*(RIT3).

IV) Formulas (4.4) and (4.12) give usg(k, q) — 0(k, q) =

= |t (k, q)-

~ ~

kQ +q2
Clearly, the second term in the right side of (4.13) can benbed above in the
absolute value by, (k, ) — ¢(k, ¢)|. Thus

X{k‘2+q2>1}' (413)

én(kaq) B ;S(k:acﬂ
k:2 +q2

< Hd)n(xa y) - d)(xu y)”L2(Rd+3) — 0
L2(Rd+3)

X{k2+¢2>1}

asn — oo due to the one of our assumptions. The first term in the righe sf
(4.13) can be easily estimated from above in the absoluteevasing (4.11) and
(4.3) by 3 )

(kQ +(]2)2

Therefore,

d:)n(kv(n — (2(]%',(])
k? + ¢

< un(z,y) — ul@,y)|| 12ma+s).
L2(Rd+3)

X{k2+¢2<1}
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Hence, ifu(x,y), u,(z,y) € HY(R¥3),n € N, such thatu, (z,y) — u(z,y) in
L*(R43) asn — oo, then we arrive at,,(z,y) — v(z,y) in L*(R43) asn — oo
as well.

V) Let us first discuss the situation whén> 6. By means of the part b) of Theo-
rem 6 above, under the given conditions equations (1.15hid®) admit unique

solutionsu(z, y), u,(z,y) € H*(R¥3), n € N respectively. By virtue of (4.11) and
(4.3), we obtaini, (k, ¢) — a(k, q) =

~ ~

_ dulk,q) — ¢k, q) dn(k,q) — ok, q)
- (k2 + q2)2 X{k2+q2<1} T (kQ T q2)2 X{k24+¢2>1}-

(4.14)

Clearly, the second term in the right side of (4.14) can bended above in the
absolute value by, (k, ¢) — &(k, q)|, such that

én(lﬁ Q) - é(lﬁ Q)
(k2 + ¢2)2 X{k2+q2>1}

< ||¢)n(l‘, y) - ¢(x7 y)||L2(Rd+3) -0
L2(Rd+3)

asn — oo via the one of the given conditions. By means of (1.17) aloiig (4.5)
we easily derive

b X 1 1
|¢n(k7 q) - ¢(k7 q)| < 9 a3 1 I(U) ||¢n(xv y) - ¢(x7 y)||L1(Rd+3)-

Thus

<

X{k?+¢2<1}
2 2)\2
(k _'_ q ) L2(Rd+3)

_ 1 1 | Sa+3|
TS 1-1U)V d-5

[pn(z,y) — ¢(5’57y)HL1(Rd+3) —0, n—oo

due to our assumptions. Therefore, by virtue of (4.14) wevemat u,(z,y) —
u(z,y)in L2(R™3) asn — oo. Steps Ill) and IV) above give ugz, y), v,(z,y) €
L*(R¥3), n € Nandv,(z,y) — v(z,y) in L*(R*3) asn — co. Then by means
of step 1l) we haveu,(z,y) — u(x,y) in H*(R*™?) asn — oo. Finally, step I)
above yieldsu, (z,y) — u(z,y) in H*(R*3) asn — oo, which completes the
proof of the part b) of our theorem.

VI) Let us proceed to establishing the result of the theorerthé situation when
d = 4,5. We use orthogonality relations (4.8) along with ineqyalt.5) to obtain
(D, y), m0(y)) r2rass) | = [(D(2, y) — ¢ul@,y), M0(Y)) 2ra+s)| <

- 1 1
= amil-10)

|fn(z,y) — &(z, Y) |1 Rars) = 0, n — oo,
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Note that under the stated assumptiengz,y) € L'(R?"?) and ¢, (z,y) —
o(x,y) in LY(R3) asn — oo (see the proof of Theorem 3 of [29]). Therefore,
the limiting orthogonality condition

((7,y),m0(y)) L2(ma+sy = 0 (4.15)

holds. By means of the result of the part a) of Theorem 6 abeyeations (1.15)
and (1.19) possess unique solutiaits, y), u,(z,y) € H*(R™?), n € N. Orthog-
onality relations (4.8) and (4.15) along with definition(Z) give us

$(0) =0, ¢,(0)=0, neN. (4.16)

(4.16) enables us to express

: N : N,
S = [T P T G = [T 2 s )

wheren € N. The second term in the right side of (4.14) tends to zer?iiR*"3)
asn — oo as discussed in step V) above. By virtue of (4.17) we writditiseterm
in the right side of (4.14) as

0 ds ds
(k2 + ¢2)? X{k2+¢2<1} -

f\/k2+q2 |:8(;n(570') B 8$(S’J)]d8
(4.18)

Clearly, (4.18) can be bounded above in the absolute value by

~

(Vi + V) (@, q) — d(k, )] sy
(k2 + g%)2

Note that under the given conditions we have

X{k2+¢2<1}-

~

(Vi + V) (Gn (b, @) — bk, )| prassy — 0, 1 — o0,

which is the result of the part b) of Lemma 5 of [29]. Hence

f\/kQJqu [8(2"(870') - qués,a)]ds

0 Os
(k2 + )2 X{k2+¢2<1}

<
L2(Rd+3)

- - | Sd+3]
S Vi + Vo) (@alk, @) = 0k, @)l @irs) | T

Therefore,u,(z,y) — u(xz,y) in L2(R™3) asn — oco. By means of steps lll),
IV), Il) and I) above we obtaim,, (x,y) — u(x,y) in H*(RY*3) asn — oo, which
completes the proof of the part a) of the theorem. [ |

—0, n— oo.
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Remark 4. Solvability in the sense of sequences for problem (1.1%) wit 0 in
lower dimensiond < 4 will be addressed in our consecutive work.

Remark 5. Note that no orthogonality conditions are needed to solweaégn
(1.15) witha = 0 in H*(R*3) in higher dimensiong > 6. As distinct from the
present case, when dealing with the sum of the free Laplamdrour three dimen-
sional Schédinger operator to the first power far = 0, the solvability relations
are not needed for all > 2 (see Theorem 6 of [26] and Theorem 3 of [29]).

Remark 6. Our approach can be extended to the higher, even order iellggjua-
tions. For example, in the case of the sixth order operdter\, + V' (z) — A, +
U(y)}* we can check for the analog of Assumption 1 of Theorem 3.
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