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1. Introduction

The present article is devoted to the existence of statyos@utions of the follow-

ing nonlocal reaction-diffusion equation for< s < 1 and the nontrivial constant
beR

% B _D< - %) Ut b% + /_Z K(z —y)g(u(y, t))dy+ f(z),  (1.1)

which appears in the cell population dynamics. Note thatsibigability of the

equation analogous to (1.1) without the transport term wdsassed in [36]. Emer-
gence and propagation of patterns in nonlocal reactiofusidn equations arising
in the theory of speciation and containing the drift term evdiscussed in [26].
The space variable here corresponds to the cell genotypéy, t) denotes the cell



density as a function of their genotype and time. The rigte sif this equation de-
scribes the evolution of cell density via cell proliferatjonutations, transport and
cell influx/efflux. The anomalous diffusion term here cop@sds to the change of
genotype due to small random mutations, and the integral desscribes large mu-
tations. Functiory(u) stands for the rate of cell birth which dependswofdensity
dependent proliferation), and the kerré(x — y) gives the proportion of newly
born cells changing their genotype frajto x. Let us assume that it depends on
the distance between the genotypes. Finally, the last tertinel right side of this
problem designates the inﬂsux/efflux of cells for differeengtypes.

2
0x?
anomalous diffusion actively studied in the context of eliéint applications in:
plasma physics and turbulence [8], [23], surface diffugibfi, [21], semiconduc-
tors [22] and so on. Anomalous diffusion can be describedras@m process of
particle motion characterized by the probability densistribution of jump length.
The moments of this density distribution are finite in theecasthe normal diffu-
sion, but this is not the case for the anomalous diffusionymystotic behavior at
infinity of the probability density function determines thalue s of the power of
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the Laplacian [20]. The operatqr — pye is defined by means of the spectral

The operator| — in equation (1.1) describes a particular case of the

calculus. In the present work we will consider the case afs < 1/4.
Let us setD = 1 and establish the existence of solutions of the problem

- ( - d—2> u+ b;l_z [ K(r —y)g(u(y))dy + f(z) =0 (1.2

—00

: 1 . . .
with 0 < s < —, considering the case where the linear part of this opefatigrto

satisfy the Fredholm property. As a consequence, the ctionah methods of the
nonlinear analysis may not be applicable. We use the sdityatwnditions for non
Fredholm operators along with the method of the contragtiappings.

Consider the equation

—Au+V(z)u —au = f, (1.3)

whereu € E = H*(RY) andf € F = L?(R%), d € N, ais a constant and the scalar
potential function/ () is either zero identically or tends €oat infinity. Fora > 0,
the essential spectrum of the operatior E — F which corresponds to the left side
of problem (1.3) contains the origin. Consequently, sudrator fails to satisfy the
Fredholm property. Its image is not closed, tor- 1 the dimension of its kernel
and the codimension of its image are not finite. The preserk igalevoted to the
studies of certain properties of the operators of this kivhote that elliptic problems
with non Fredholm operators were studied actively in regeatrs. Approaches in
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weighted Sobolev and Holder spaces were developed in [}, [b], [6], [7].
In particular, wheru = 0 the operatorA is Fredholm in some properly chosen
weighted spaces (see [3], [4], [5], [6], [7]). However, tlase ofa # 0 is consider-
ably different and the method developed in these articlastigpplicable. The non
Fredholm Schrodinger type operators were treated witmtinods of the spectral
and the scattering theory in [14], [24], [31]. The Laplacegior with drift from
the point of view of non Fredholm operators was considere88] and linearized
Cahn-Hilliard problems in [25] and [34]. Fredholm stru@sy topological invari-
ants and applications were covered in [12]. Fredholm ang@egress properties
of quasilinear elliptic systems of second order were disedsn [15]. Nonlinear
non Fredholm elliptic equations were studied in [13], [38§a[35]. Important
applications to the theory of reaction-diffusion equasiovere developed in [10],
[11]. Non Fredholm operators arise also in the context ofwhee systems with
an infinite number of localized traveling waves (see [1]arfding lattice solitons
in the discrete NLS equation with saturation were studiedah Weak solutions
of the Dirichlet and Neumann problems with drift were coesetl in [18]. Work
[19] deals with the imbedding theorems and the spectrum eftain pseudodiffer-
ential operator. Front propagation equations with anonsathffusion were studied
actively in recent years (see e.g. [28], [29]).

We setK (z) = eK(z), wheres > 0 and suppose that the assumption below is
fulfilled.
. , 1
Assumption 1. Consider) < s < T The constank € R, b # 0. Let f(z) : R —
R be nontrivial, such thaf (z) € L'(R) N L*(R). Assume also tha€(z) : R — R
is nontrivial andC(z) € L'(R) N L*(R).

Note that as distinct from Assumption 1.1 of [36] we do notché® assume

L1

2 2

here that| — ) f(z) € L*(R), which is the advantage of introducing the
T

transport term into our equation. We also do not need to impgbs regularity

-

2 2

condition | — s K(z) € L*(R) on the integral kernel of our problem. Let
T

us fix here the space dimensi@r= 1, which is related to the solvability conditions
for the linear equation (4.1) established in Lemma 6 belowonfthe point of
view of applications, the space dimension is not restricbeti= 1 since the space
variable corresponds to the cell genotype but not to thelysussical space. We
use the Sobolev spaces

2

H*(R) := {u(az) 'R — R|u(z) € L*(R), (—%) u € LQ(R)}, 0<s<1



equipped with the norm

s 2

d2

[l 32 gy = Il 72y + (‘ @) u (1.4)
L2(R)
. . . 1
Evidently, in the particular case ef= 3 we have
d 2

u
||U||?{1(R) = ||U||%2(R) + ar (1.5)

Xz

L2(R)

The standard Sobolev inequality in one dimension (see eegtid® 8.5 of [16])
yields

1wl oo ry < (1.6)

1
EHUHH%R)-
When our nonnegative parameter 0, we obtain linear equation (4.1) with= 0

1 . . . .
and0 < s < —. By virtue of assertion 3) of Lemma 6 below along with Assuioipt
1 in this case equation (4.1) possesses a unique solution

1
UQ(SE) €H1<R), 0<s< Z,

so that no orthogonality conditions are required. Accagdmassertions 4) and 5)

of Lemma 6, wheru = 0, a certain orthogonality relation (4.5) is needed to be
. 1 1 . L1

able to solve problem (4.1) if'(R) for 1 <s< 3 and in H%(R) if 5 <8< 1.

Clearly, uy(z) does not vanish identically on the real line since our ingdfidx
term f(x) is nontrivial as assumed.

Note that in the analogous situation in the absence of thespat term dis-
cussed in [36] the corresponding Poisson type equationthathegative Laplacian
raised to a fractional power admits a unique solution

1
ug(z) € H*(R), 0<s< T

which belongs ta!(R) under the extra regularity assumption on the influx/efflux
term.
Let us look for the resulting solution of nonlinear probleti?) as

u(z) = up(z) + up(x). (1.7)

Apparently, we arrive at the perturbative equation

( & ) up—b% = g/_oo Kz —vy)g(uo(y) +uy(y))dy, 0<s< i (1.8)

da? dx »
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For the technical purposes we introduce a closed ball in th®I8v space
B, = {u(z) € H'R) | |lullm@e < p}, 0<p<L. (1.9)

Let us seek the solution of equation (1.8) as the fixed poitite@&uxiliary nonlinear
problem

LB B [ e ety 4 o)y, 0<s< ) (L10)
iz | ¢ =) Mamy)gtuly) +uly)dy, s<7 (L
in ball (1.9). For a given function(y) this is an equation with respectidx). The
left side of (1.10) contains the non Fredholm operator

Loy s: HY(R) = L*(R), 0<s< i,
defined in (4.2) which has no bounded inverse. The similaatin appeared in
earlier articles [32] and [35] but as distinct from the prasease, the problems
discussed there required orthogonality relations. Thelfpa@nt technique was used
in [30] to evaluate the perturbation to the standing solitaave of the Nonlinear
Schrodinger (NLS) equation when either the external gatbor the nonlinear term
in the NLS were perturbed but the Schrodinger operatorlwagbin the nonlinear
problem there possessed the Fredholm property (see Assumdpof [30], also
[9]). For the technical purposes we introduce the intervethe real line

1 1 1 1
I=]——u | v 111
\/§H oll 71 (m) NG \/QH ol z1 (m) 7 (1.11)

along with the closed ball in the space®f(!) functions, namely
Dy ={g(2) € Co(I) | ll9llcory < M}, M > 0. (1.12)
We will use the norm
19llcan = llgllea + 9 llem + 19" o, (1.13)

where||g||cy := maz.cr|g(2)]. Let us make the following assumption on the
nonlinear part of problem (1.2).

Assumption 2.Letg(z) : R — R, such thaty(0) = 0 and¢’(0) = 0. In addition to
thatg(z) € D), and it does not vanish identically on the interval

Let us explain why we impose the conditigh0) = 0. If ¢’(0) # 0 and
the Fourier image of our integral kernel does not vanish ai,zéen the essential
spectrum of the corresponding linearized operator doesordtin the origin. The



operator satisfies the Fredholm property, and the conveadtraethods of the non-
linear analysis are applicable here.glf0) = 0, then the operator fails to satisfy
the Fredholm property, and the goal of this article is told&h the existence of
solutions in such case where usual methods are not ap@icébiis we impose this
condition on the nonlinearity.

Let us introduce the operatdi,, such that. = 7,v, wherew is a solution of
problem (1.10). Our first main proposition is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then problem (1.10) defines dipe m
T, : B, — B,, which is a strict contraction for all

p

O0<e< X
— 2M([Juoll g ) +1)?

IC 21 U 1 + 1 8s—2 ]C 22 _%
y 1K, (R)(H oll 1) 4 ) " I ”LQ(R) . (1.14)
(1 —4s)(16ms)™ 4b
The unique fixed point,(x) of this mapI}, is the only solution of equation (1.8) in

B

P

Evidently, the cumulative solution of problem (1.2) given(i.7) will be non-
trivial since the influx/efflux termy (x) is nontrivial andg(0) vanishes as assumed.
Let us make use of the following elementary lemma.

Lemma 4. For R € (0, 4o00) consider the function

L 1—4s 6 l
o(R) :=aR +—R4S, 0<8<4, a, > 0.
. - 4 L
It achieves the minimal value ak* := L which is given by
a(l —4s)
*\ (1 B 48)4871 4s nl—4s
o(R") = )" a™ [,

Our second main proposition is about the continuity of theuléng solution
of equation (1.2) given by (1.7) with respect to the nonlmkeaction g. Let us
introduce the following positive, auxiliary expression

1
1N 1 gy (ol 2y + 1)%72 K32 :
LI®) ® +—— 2B (1.15)

o = M(|[uollmrw) + 1){ (1 — 4s)(4ms)™ b

Theorem 5.Let;j = 1,2, the assumptions of Theorem 3 including inequality (1.14)
are valid, such that, ;(x) is the unique fixed point of the mdp, : B, — B,,
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which is a strict contraction for all the values efsatisfying (1.14) and the cumu-
lative solution of equation (1.2) withy(z) = ¢;(2) is given by

uj(x) == up(x) + up (). (1.16)

Then for alle, which satisfy estimate (1.14) the upper bound

|ur(z) — ua(x )HHI(R =71 (HUOHH1 +1)
1
1N gy (Mol gy + D% 72 1K) 22y |
((1)—48)(167TS)45 4b( lg1 = gellezin (.17

holds.
Let us proceed to the proof of our first main statement.
2. The existence of the perturbed solution

Proof of Theorem 3.We choose an arbitrary(z) € B, and designate the term
involved in the integral expression in the right side of eaura(1.10) as

G(z) := g(up(z) + v(z)).

Throughout the article we will use the standard Fourierdfam

) = = | ot 2.1)
Apparently, we have the inequality
16l (e) < \/—H<Z>( M@ (2.2)
Let us apply (2.1) to both sides of equation (1.10). Thisdgel
U(p) = emw. (2.3)

|p[** —ibp
Then for the norm we arrive at
* |K(p)IG ) K@) PIG (@)

u|F2m) = 2 52/ |—d <252/ A dp. (2.4

” ”L2(R) ™ . |p‘48+b2p2 p > 27 . ‘p|45 P ( )
As distinct from articles [32] and [35] involving the stamdaLaplacian in the
diffusion term, here we do not try to control the norm
K(p)
p[*

L>(R)
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Instead, we estimate the right side of (2.4) using the analdgpund (2.2) applied
to functions/C andG with R € (0, +o0) as

- / K@PIGEE, o / K@PIGEE,
IpI<R ’ a

Ip|* >R Ip|*s

1 R
2 2 2 2
<e IUCHLl(R){;HG(JS)HLl(R)il T R4SHG(:U)HL2(R)}- (2.5)
Because(z) € B, we have
[uo + vl 2wy < [luoll @) + 1.

Sobolev inequality (1.6) gives us

1
|uo + v < —=(l[uoll o z) + 1)

V2

Let us use the formula

Hence
|G ()| < maz.erlg'(2)|luo + v] < Mlug + ],

where the interval is defined in (1.11). Then
1G ()| 2@y < Mlluo + vl 2@y < M([[uoll @) +1)-

Since
uo+v Yy
Gla) = [ au| [ oree].
0 0
we derive
1 " 2 M 2
G(@)] < Gmazeerlg”(2)luo +o” < T-|ug + ]
such that

M
2
Therefore, we arrive at the upper bound for the right sid&d)(given by

(Juollmim + DR 1 }

M
IG @@ < 5 lluo +vllzem < 5 (luollm e + 1) (2.6)

2 2
VI 1y M2 (ot 1 +1>{ 41— ds) R

with R € (0,4o00). By virtue of Lemma 4 we evaluate the minimal value of the
expression above. Therefore,

M2

2 2+88
ey < IR @ (leollre + D™ T Siemam

2.7)
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Using (2.3) we obtain

a2 2me® [ = oA
prlulp)ldp < — |K(p)I"|G(p)[~dp.
By means of the analog of inequality (2.2) applied to funttibalong with bound
(2.6) we derive

du |2 g2 ) e? M? R
|5 < G K ey < g (ol + D 1Kl ey 28)

Let us apply the definition of the norm (1.5) along with inelifiess (2.7) and (2.8)
to arrive at the estimate from above for|| ;1) given by

KN ) (lwoll e + D72 K@ | 2
(1 —4s)(167s)*s 4b?

for all values of the parametersatisfying inequality (1.14), so tha{z) € B, as
well. Let us suppose that for a certaifx) € B, there exist two solutions; »(z) €
B, of equation (1.10). Then their differenee(z) = ui(z) — ua(z) € HY(R)
solves

dx

Apparently, the operatat, , s : H'(R) — L*(R) in the left side of (2.10) defined
in (4.2) does not have any nontrivial zero modes, suchidhia)l = 0 on the real
line. Thus, equation (1.10) defines a mép: B, — B, for all € satisfying bound
(1.14).

Let us demonstrate that this map is a strict contraction. k¢mse arbitrarily
v12(z) € B,. By virtue of the argument above , := T,v, , € B, as well where
satisfies (1.14). According to (1.10) we have

2 S
1
<_%>w_bd_w:0, 0<s<. (2.10)

( a %) v b% =€ /Z K(z —y)g(uo(y) + vi(y))dy, (2.11)
2\ pdun [T ] .
~a ) by = ) K= w)gluely) +valy))dy (2.12)

. 1 )
with0 < s < 1 Let us define

Gi(z) = g(uo(z) +vi(z)), Ga(x) := g(ue(z) + v2(x))

and apply the standard Fourier transform (2.1) to both safleguations (2.11) and
(2.12). This yields

a(p) = Va e DAW) )y  arDGR) g 45
|p|*s —ibp |p|2s — ibp



Apparently,

* |K(p)PIGi(p) — Go(p)?
||U1 - u2||%2(R) = 52277 /OO |p|45 + b2p2 dp S
0o (N2 A 2
. Pl P

Clearly, the right side of (2.14) can be estimated from alimweia inequality (2.2)
as

N2 o 2 o 2| ah 2

o] [ ROPGO) -G, [ KO0 -GOF,)

pI<R [p[** >R |p[*

2 2 1 2 R 2 1
< KNz r) § —NG1(@) = Ga(@)l[ia) 7 + 1G1(2) = Ge(@)l2my s ¢
whereR € (0, +o0). We express
up+v1
Gi(x) — Gy(x) = / g'(2)dz.
ug+v2
Hence
G1(7) — Go(2)] < maz.cr|g'(2)[|vr — va| < Mvy — vy,

such that

1G1(x) = Ga(2)||r2r) < M|v1 — val2r) < Mo — vo|[1(R)-
Evidently,

up+v1

Gila) - Gale) = [

up+v2

dy[ /0 ’ g"(z)dz] .

This enables us to obtain the upper bound@efx) — G5 (z) in the absolute value
as

M
2

1
—maz,er|g” (2)||(v1 — v2) (2ug + v1 + v2)| < —|(v1 — v2)(2up + v1 + v2)].

2

The Schwarz inequality gives us the estimate from abovehlmorm||G;(z) —
GQ(SL’)HLl(R) as

M
- lor = vall 2@y l|2u0 +v1 + vzl 2y < Mljor = w2l @y (luo | @y +1)- (2.15)

Thus we arrive at the upper bound for the ndfm () — ug(x)H%g(R) given by

1
0<s< —.
]

2 2 2 2 1 2 R1_4S 1
I oy M2l = vl ey { — oLy + 1)*+— + = |-

10



Lemma 4 allows us to minimize the expression above dver (0,+o0). This
yields the estimate from above fou, () — u2(x)||%2(R) as

(lluolls @ +1)*

1K1y M [or — w2131 gy (1 — 4s)(4ms)ts

(2.16)

By virtue of (2.13) we derive

RPN - 2me? [ ~ ~
| ) - aePd < 55 [ REPGE) - Gy

Inequalities (2.2) and (2.15) imply that
2

2
e
< ﬁHICH%Q(R)HGl — GollTimy <

L3(R)

d
%(Ul — Uy)

2

< bQ

According to (2.16) and (2.17) along with definition (1.5¢thorm||u; — ua|| g1 (r)
can be bounded from above by the expression

S Iy M2 [lvr = vall3p gy (ol ey + 1)% (2.17)

M ([[uoll () + 1) %
I gy (ol ey + D)% (K17 :
X{ i %Rl)— 45)(4ms)* T bg = [o1r = V2l my- (2.18)

It can be easily verified that the constant in the right sid€20i8) is less than
one. This yields that the méfj, : B, — B, defined by equation (1.10) is a strict
contraction for all values of which satisfy inequality (1.14). Its unique fixed point
u,(x) is the only solution of problem (1.8) in the ba,. By virtue of (2.9) we have
that ||u, ()| g (r) — 0 @ase — 0. The cumulatives(z) € H'(R) given by (1.7) is
a solution of equatlon (1.2). [ |

We proceed to the establishing of the second main resultrodiicle.
3. The continuity of the cumulative solution

Proof of Theorem 5.Apparently, for all the values of which satisfy inequality
(1.14), we have
Up’l = Tglu]?,l? Up’g = Tg2up72. (31)

Hence
Up1 — Upos = Tgupy — Ty upo + Ty upo — Ty up o,

11



such that
up1 — upallmrwy < [Ty upa — Totup ol mrw) + | Tgytp2 — Toptip ol mr(m)
Inequality (2.18) gives us

[T up1 — up2||H1 < éeo||up, _up2||H1(R)

Note thateo < 1 with ¢ defined in (1.15) because the m&p : B, — B, under
the given conditions is a strict contraction. Hence, we iobta

(1 —eo)|lupy — upallmrwy < [|Tgup2 — Tyupal o) (3.2)

According to (3.1), for our fixed poirf,u,» = wu,.. Letus introduce(z) :=

1
Ty up 0. Thus, ford < s < 1 ve have

( a dd—:j?) §(w) — bdz(f) _ . /_Z Kz —y)g1(uo(y) + upa(y))dy,  (3.3)

(—j—) o) =022 e [ oo~ y)gn(uts) + upal)) . @)

Let us designatér; 5(x) := g1(uo(z) + upa(x)), Gaa(x) := ga(uo(z) + upa(x))
and apply the standard Fourier transform (2.1) to both sad@soblems (3.3) and
(3.4) above. Thisyields

|P|28 - pr |p|28 _
Evidently,
* |K(p))P1G1a(p) — Gan(p)?
1€(x) = upa(@)lr2m) = £°27 /_oo |P|14i T 022 220 dp <
0o 17 NA A 9
< 2o K@)I|Gr2(p) = Go2(0) 26
oo ‘p|4s p

Apparently, the right side of (3.6) can be bounded from alilvemeans of inequal-

ity (2.2) as
= 291 A A 2
220 / IK(p)| |G1,2(P4) Gaa(p)| ot
Ip|<R p|*

= 21 A A 2
+/ IK(p)|*|G12(p) — Gaa(p)] | <
[p[>R

|p|4s

12



R1—4s

1 1
< €2||IC||%1(R){;HG1,2 - G272||%1(R)1_748 + G2 — G2,2||%2(R)@} (3.7)

with R € (0, +00). We express

ug () +up,2(x) , )
Grale) — Gaalo) = [ 16,(2) — gh(2)]d=.
0
Thus
|G12(x) — Gaa()] < maz.er]gy(2) — g5(2)||uo(z) + upa(z)| <

< g1 — g2llealuo(r) + upa(z)l,
so that
1G12 — Gazllr2@®) < |91 — 92lcollto + Up 2| L2m) <

< lg1 = gallcocry([[uol| ar ) + 1)-
Let us use another representation formula, namely

uo (z)+up,2(z) Y , ,
Grale) — Gaalo) = [ ay| [ (61) - gh(aNa].
0 0
Hence

]' " "
[Gra(2) = Gap(2)] < gmazeer|gi(2) = g5(2)[Juo () + s (2)]” <

< 5llor = gllennuo(@) + up ().

DO | —

This yields

1
1Gr2 = Gallmm < Sllgr = g2llean lluo + UpallFamy <

1
< g1 = g2lleony (uoll ) + 1) (3.8)

Then we obtain the upper bound for the ndftéiz) — up,Q(:c)H%Q(R) given by

1

KN L@y (lwoll @ + 1)llgr = 21l [E(HUOHHI(R) +1)°

1—45+R45

R174s 1 ]
This expression can be trivially minimized ovBre (0, +oo) by virtue of Lemma

4 above. We derive the inequality

248s ”gl - 92”%'2(1)
(1 —4s)(16ms)%s

6 (z) = upa(@)I72m) < e IKNT @y (ol gy + 1)

13



By means of (3.5) we arrive at

o] - R 271'82 0 - -
| 7w - GawPp < 5 [ ROIGa0) - Goalo) P

00
2

can be esti-
L2(R)

P (E(2) — )

Xz

Using inequalities (2.2) and (3.8), the no+

mated from above by

2
e
ﬁH’CHi%R)HGm — Goolliw)

Thus,[|§(z) = up2(2) [ m @) <

< 4b2||IC||L2(R (lluollzr: ey + 1)*lgr — g2llEn )

l
1N gy (ol ey + D)% 1K 2

< llon — 12 ) (®)

<ellg 92HCQ(I)(HUOHH1(R) +1) [ (1 — 4s)(167s)%s A}2

By virtue of inequality (3.2), the nornfju,; — w2l m1 = can be bounded from
above by

g
U(||Uo||H1(R) +1)*x

1—¢
HIC”LI(R)(”UOHHI +1)%2 Ik HL2 2
[ (1 —4s)(167s)4s * Ah2 191 = g2llcun- (3.9)

By means of formula (1.16) along with estimate (3.9) inefu#l.17) is valid. ®

4. Auxiliary results

The solvability conditions for the linear equation with thegative Laplacian
raised to a fractional power, the transport term and a sqotegrable right side

2\ d
<_ )u—bd—u—GUIf(:c), reR, 0<s<l, (4.1)
X

wherea > 0 andb € R, b # 0 are constants were derived in the proof of the
first theorem of [38]. We will repeat the argument here for¢bavenience of the
readers. Obviously, the operator involved in the left sitigldl)

(4.2)

(NN

2\ 4
L = —b— —a: HYR L*(R <

d> d 1
L =l —=—] —b—— H*(R L*(R = 1 4.
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is nonselfadjoint. By means of the standard Fourier transf@.1) it can be easily
obtained that the essential spectrum of the opetiatoy s above is given by

Aa, b,s(p) = |p|2s_a’_ibpv pGR

Clearly, in the case when > 0, the operatoL,, ;, s is Fredholm because its essen-
tial spectrum does not contain the origin. But whevanishes, our operatdr, ;,
fails to satisfy the Fredholm property since the origin bg®to its essential spec-
trum. Apparently, in the absense of the drift term, which diasussed for instance
in Theorems 1.1 and 1.2 of [37], we deal with the selfadjoperator

2\
<—@> —a . H28<R)—>L2(R), a>0,

which is non Fredholm. We denote the inner product of two fioms as

(f(2), 9(2)) ey = / " f@)g)de, (4.4)

with a slight abuse of notations when the functions involve(.4) are not square
integrable. Indeed, iff(z) € L'(R) andg(z) is bounded, like for instance the
functions involved in the inner product in the left side ahmgonality relation (4.5),
then the integral in the right side of (4.4) is well defined. Wave the following
auxiliary proposition.

Lemma 6.Let f(z) : R — R and f(z) € L*(R), the constanb € R, b # 0.

1
Difa>0and0 < s < 5 then problem (4.1) admits a unique solutiofr) €
HY{(R).

1 . , .
2) If a > 0 and 3 < s < 1, then equation (4.1) has a unique solutiefi) €
H?(R).

1
) Ifa=00<s< 7 and, in addition,f(z) € L!'(R), then problem (4.1) pos-
sesses a unique solutiariz) € H'(R).

4) If a =0, i <s < % and, in addition,zf(z) € L'(R), then equation (4.1)
admits a unique solution(z) € H'(R) if and only if

(f(2),1)2m) = 0. (4.5)

5 Ifa =0, % < s < 1, and, in addition;z f(z) € L'(R), then problem (4.1) has a
unique solutionu(x) € H?**(R) if and only if orthogonality relation (4.5) holds.
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Proof. Let us first demonstrate that it would be sufficient to solve eguation in
L?*(R). Apparently, ifu(x) is a square integrable solution of problem (4.1), we have

2\ du

Then by virtue of the standard Fourier transform (2.1), waiob

(Ip|** — ibp)u(p) € L*(R),
such that -
/ (Ipl* + Bp)[a(p)Pdp < . (4.6)

[e.e]

1 .
Let0 < s < 7 Clearly, (4.6) yields

/ Pla(p)Pdp < oo.

(e e]

Thusg—u is square integrable on the whole real line aifd) € H'(R).
X
1 . .
Let 3 < s < 1. Evidently, (4.6) gives us

/ Ip*[a(p) Pdp < oo,

2\
Hence( — F) u € L*(R), such that(z) € H*(R).
X
. . 1
Let us address the uniqueness of a solution to problem (4rl) & s < 3

1 L
When 5 <8< 1 the argument is similar. Suppose that,(z) € H'(R) both

solve (4.1). Then their difference(z) = u;(x) — us(z) € H'(R) satifies the
homogeneous equation

2\ dw

Because the operatdy, ;, ; defined in (4.2) does not have nontrivial zero modes in
H'(R), we obtain thatv(z) = 0 identically on the real line.
By applying the standard Fourier transform (2.1) to botlesidf problem (4.1),
we arrive at
f(p)

u(p)
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Hence,

» [ )P
bl = | e ap v “9

First we consider assertions 1) and 2) of our lemma. Appbrgnt8) yields that

|2y < 5||f||%2(R) <0

as assumed. Here and further do@nstands for a finite positive constant. By
means of the argument above, whenr 0, equation (4.1) admits a unique solution
1 L1
u(xr) € HY(R) for0 < s < 5 andu(z) € H*(R) if 5 <s< 1.
Then we turn our attention to the situation whes: 0. Formula (4.7) gives us

-~ ~

p p
|2 — ibp IS s i

u(p) = pp =1} (4.9)

Here and belowy 4 denotes the characteristic function of a deC R. Evidently,
the second term in the right side of (4.9) can be bounded flwowein the absolute
value by
[/ (p)] 5
e L“(R
V1402 ®)

sincef(x) is square integrable via the one of our assumptions.

LetO < s < e Then, by virtue of (2.2) we arrive at

f(p) < /@) | f(x )HLl(R
‘p|25 _ X{\p\ 1} ‘p|25 X{lpl<1} < \/—| |23 X{Ip|<1}-
Therefore,
~ 2 9
p ||f(x)||L1(R)
o — ibp X{lpl<1 < ———= <
‘p|2 _ {lp|<1} . 7T(1 - 48)

because (z) € L'(R) as assumed. By means of the argument above, problem (4.1)
possesses a unique solutiofx) € H'(R) in assertion 3) of our lemma.
To establish assertions 4) and 5), we use that

Fio) = Foy+ [ as

Then the first term in the right side of (4.9) can be expressed a

F(0 P 470 g

ds
[p|?s — ibpP=Y \plzs—

SEIE (4.10)
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Definition (2.1) of the standard Fourier transform gives us

df(p)
dp

< =/ @l

This allows us to obtain the upper bound in the absolute vatuthe second term
in (4.10) as

L lzf(@)ll® 2
e L*(R
/o 0] X{lp|<1} (R)
via the assumptions of the lemma. We analyze the first terdh. i given by
f(0)
. 4.11
o2 — ip X<t (4.11)

. 1 1 . . .
Obviously, wheni <s< 2 expression (4.11) can be easily estimated from below
in the absolute value by

-~

o
|p‘23\/1—|——b2 Ip|<1}>

-~

which does not belong t6%(R) unlessf(0) = 0. This implies orthogonality condi-
tion (4.5). In case 4), the square integrability of the solut.(z) to problem (4.1)
is equivalent tai(z) € H'(R).

Apparently, for— < s < 1 expression (4.11) can be trivially bounded below in
the absolute value by

-~

1/ (0)]
|p‘\/1+—b2xﬂp\§1}’
which is not square integrable on the whole real line unlegggonality relation
(4.5) holds. In case 5), the square integrability of the tsofui. () to equation (4.1)
is equivalent tai(z) € H*(R). u

. . . 1
Note that in the situation whein = 0 and0 < s < - of the lemma above the
orthogonality conditions are not needed as distinct frosed®ons 4) and 5).

Related to equation (4.1) on the real line, we consider theesece of approxi-
mate equations withh € N given by

2 S
(—d—> um—bdu—m—aum:fm(x), reR, 0<s<l, (4.12)

wherea > 0 andb € R, b # 0 are constants and the right side of (4.12) converges to
the right side of (4.1) ii.?(R) asm — oo. We will prove that, fol) < s < 3 under
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the certain technical assumptions, each of problems (4dr2jts a unique solution
un(r) € HY(R), limiting equation (4.1) has a unique solutiefw) € H'(R), and

U (z) — u(x) in HY(R) asm — oo, which is the so-calleéxistence of solutions
in the sense of sequengsee [24], [37], [38] and the references therein). When

— < s < 1, the similar ideas will be exploited if7**(R). Our final proposition is
as follows.

Lemma 7. Let the constant € R, b # 0, m € N, f,,(z) : R — Rand f,,(z) €
L*(R). Furthermore,f,,(x) — f(x)in L*(R) asm — oo.

1
DIfa>0and0 < s < 5 then problems (4.1) and (4.12) admit unique solutions
u(xr) € HY(R) and u,,(xr) € H'(R) respectively, such that,,(x) — u(z) in
H'(R) asm — oo.
2)Ifa >0 and% < s < 1, then equations (4.1) and (4.12) have unique solutions
u(xr) € H**(R) andu,,(z) € H*(R) respectively, such that,,(z) — u(x) in
H?*(R) asm — oo.
3)Ifa=0and0 < s < i and in additionf,,(z) € L'(R) and f,,(z) — f(z)
in L'(R) asm — oo, then problems (4.1) and (4.12) possess unique solutions
u(z) € HY(R) andu,,(z) € H'(R) respectively, such that,,(z) — u(z) in
H'(R) asm — oo.
4)Ifa=0 andi <s< % letin additionz f,,,(z) € L'(R) andz f,,(z) — xf(x)
in L'(R) asm — oco. Moreover,

(fm(®),1) 2@ =0, meN (4.13)

holds. Then equations (4.1) and (4.12) admit unique saistigz) € H'(R) and
un,(z) € H'(R) respectively, such that,,(z) — u(z) in H*(R) asm — oo.
51fa=0 and% < s < 1, letin additionz f,,,(z) € L'(R) andz f,,(z) — zf(x)

in L'(R) asm — oo. Furthermore, orthogonality relations (4.13) hold. Then
problems (4.1) and (4.12) have unique solutieris) € H*(R) and u,,(z) €
H?$(R) respectively, such that, (x) — u(z) in H*(R) asm — oo.

Proof. Let us assume that problems (4.1) and (4.12) admit uniqueignsu(x) €
. 1
HY(R) andu,,(x) € HY(R), m € N respectively fol) < s < 3 and analogously

u(r) € H*(R) andu,,(z) € H*(R), m € N if % < s < 1, such thatu,,(z) —
u(x) in L*(R) asm — oo. Thenu,,(z) also tends ta(z) in H*(R) asm — oo if
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1 . 1
0 < s < —, and analogously,,(z) — u(z) in H**(R) asm — oo for 5 <s< L.
Indeed, equations (4.1) and (4.12) give us

2\ d(ty, — )
H(‘@ﬁ)“%—“**F—af—
L2(R)

< fm = Fllz@ + allum — ull 2@ (4.14)

Clearly, the right side of inequality (4.14) converges toozasm — oo due to our
assumptions above. By virtue of the standard Fourier toams{2.1), we easily
derive

<

/uwwwwmmwmm%wm,mﬁm. (4.15)

(e e]

1
Let0 < s < 5 By means of (4.15),

/p%mwﬂ@W%N,m%w

[e.e]

such that y y
u u
—m - I2(R )
o oo in (R), m — o0
1 - . : .
Hence, wher) < s < 5+ horm definition (1.5) implies that,,(x) — u(z) in
H'(R) asm — cc.

1 .
Suppose tha12c < s < 1. By virtue of (4.15),

/Iﬁmmwﬂ®WwW,m%w

o0

@\ &\
—oa | Um | o5 in  L*(R), m — oco.

Thus, if% < s < 1, norm definition (1.4) yields that,,(z) — u(z) in H**(R) as
m — OQ.

Let us apply the standard Fourier transform (2.1) to botlessidf equation
(4.12). This yields

so that

2.(p) = fm(p)

pl** —a —ibp

Let us discuss assertions 1) and 2). By means of parts 1) and @mma 6
above, fora > 0, problems (4.1) and (4.12) admit unique solutiatis) € H'(R)
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, , 1
andu,,(z) € HY(R), m € N respectively if0 < s < 5 and analogously,(z) €

. 1 .
H?*(R) andu,,(x) € H*(R), m € N provided thatE < s < 1. By virtue of (4.16)
along with (4.7), we arrive at

s ) = FO)P
[t — UHL?(]R) = /oo (Ip|?* — a)? + b2p2d )

Therefore .
lm = ull2@) < Fllfmn = fllzzw = 0, m = o0
as assumed. Hence, for> 0, we haveu,,(z) — u(x) in H'(R) asm — oo if

1 .

0<s< 3 andu,,(z) — u(z) in H*(R) asm — oo whené < s < 1 due to the
above argument.

Let us complete the proof by studying the case ef 0. According to the part
a) of Lemma 3.3 of [27], under the given conditions

(f(2), 1) 2 =0 (4.17)

in assertions 4) and 5) of our lemma. By means of the resuladé 3), 4), 5)
of Lemma 6 above, problems (4.1) and (4.12) with- 0 possess unique solutions

u(r) € HY(R) andu,,(z) € HY(R), m € N respectively for0 < s < % and

1
analogouslyu(r) € H*(R) andu,,(z) € H*(R), m € N When§ <s <.
Formulas (4.16) and (4.7) give us

U (p) —ulp) = —fT;f;Z : Zj;f) X{lp|<1} T —fT;ﬁz :Z)(;))X{p>l}- (4.18)

Evidently, the second term in the right side of (4.18) can steveted from above
in the L*(R) norm by

m — 00

1
\/ﬁnfm — flle2mwy — 0,

. . 1 .
via the one of our assumptions. Suppose s < 1 Let us use an analog of in-
equality (2.2) to derive

Ju(p) = J(p) fm(p) = J ()] 1 — Fllamy
< < m e .
p|2 — ibp X{lpl<1} | = FE X{lpl<1} = 2 pPs X{lpl<1}
Hence
frn(p) = flp | fon = fllrw
‘ f (22' é( >X{\p\§1} < 0=l 50, m oo
|p[? — ibp L®) (1 —4s)
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due to the one of the assumptions of the lemma. By virtue oatgament above,
we obtain thatu,,(z) — w(x) in H'(R) asm — oo in the situation whem = 0

and0 < s < —.

Let us use orthogonality conditions (4.17) and (4.13) talggth assertions 4)
and 5). By virtue of definition (2.1) of the standard Fourransform, we obtain

F(0)=0, Fn(0)=0, meN.

This yields

f(p) = /Op dj;f)ds, Fuulp) = /Op dfgis)ds, m € N. (4.19)

Therefore, the first term in the right side of (4.18) in aseed 4) and 5) of our
lemmais given by

fO |:dfms i)]dS
p|2s — ibp X{lp|<1}-
It easily follows from definition (2.1) of the standard Faerrtransform that
dfm(p) df( )
i \/—||xfm(x) of (@) )
Therefore,
df(s)
B2 42]as | atat)  ef @l
p|2s — ibp {lpl<1}| = \/%|b| {lp[<1}s
such that
dfm(s) dA(s)
B[ sl e - sl
2s __ P> —
= . vl

asm — oo as assumed. Thus,,(z) — u(z) in L?>(R) asm — oco. Arguing as
above in the case when= 0, we observe that,,(x) — u(z) in H}(R) asm — oo

1 1 , .
for 1 <s< 3 andu,,(x) — u(z) in H*(R) asm — oo if 5 <s< 1. |
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