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1. Introduction

The present article is devoted to the existence of stationary solutions of the follow-

ing nonlocal reaction-diffusion equation for0 < s <
1

4
and the nontrivial constant

b ∈ R

∂u

∂t
= −D

(
− ∂2

∂x2

)s

u+ b
∂u

∂x
+

∫ ∞

−∞

K(x− y)g(u(y, t))dy+ f(x), (1.1)

which appears in the cell population dynamics. Note that thesolvability of the
equation analogous to (1.1) without the transport term was addressed in [36]. Emer-
gence and propagation of patterns in nonlocal reaction- diffusion equations arising
in the theory of speciation and containing the drift term were discussed in [26].
The space variablex here corresponds to the cell genotype,u(x, t) denotes the cell
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density as a function of their genotype and time. The right side of this equation de-
scribes the evolution of cell density via cell proliferation, mutations, transport and
cell influx/efflux. The anomalous diffusion term here corresponds to the change of
genotype due to small random mutations, and the integral term describes large mu-
tations. Functiong(u) stands for the rate of cell birth which depends onu (density
dependent proliferation), and the kernelK(x − y) gives the proportion of newly
born cells changing their genotype fromy to x. Let us assume that it depends on
the distance between the genotypes. Finally, the last term in the right side of this
problem designates the influx/efflux of cells for different genotypes.

The operator

(
− ∂2

∂x2

)s

in equation (1.1) describes a particular case of the

anomalous diffusion actively studied in the context of different applications in:
plasma physics and turbulence [8], [23], surface diffusion[17], [21], semiconduc-
tors [22] and so on. Anomalous diffusion can be described as arandom process of
particle motion characterized by the probability density distribution of jump length.
The moments of this density distribution are finite in the case of the normal diffu-
sion, but this is not the case for the anomalous diffusion. Asymptotic behavior at
infinity of the probability density function determines thevalues of the power of

the Laplacian [20]. The operator

(
− ∂2

∂x2

)s

is defined by means of the spectral

calculus. In the present work we will consider the case of0 < s < 1/4.
Let us setD = 1 and establish the existence of solutions of the problem

−
(

− d2

dx2

)s

u+ b
du

dx
+

∫ ∞

−∞

K(x− y)g(u(y))dy+ f(x) = 0 (1.2)

with 0 < s <
1

4
, considering the case where the linear part of this operatorfails to

satisfy the Fredholm property. As a consequence, the conventional methods of the
nonlinear analysis may not be applicable. We use the solvability conditions for non
Fredholm operators along with the method of the contractionmappings.

Consider the equation

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) is either zero identically or tends to0 at infinity. Fora ≥ 0,
the essential spectrum of the operatorA : E → F which corresponds to the left side
of problem (1.3) contains the origin. Consequently, such operator fails to satisfy the
Fredholm property. Its image is not closed, ford > 1 the dimension of its kernel
and the codimension of its image are not finite. The present work is devoted to the
studies of certain properties of the operators of this kind.Note that elliptic problems
with non Fredholm operators were studied actively in recentyears. Approaches in
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weighted Sobolev and Hölder spaces were developed in [3], [4], [5], [6], [7].
In particular, whena = 0 the operatorA is Fredholm in some properly chosen
weighted spaces (see [3], [4], [5], [6], [7]). However, the case ofa 6= 0 is consider-
ably different and the method developed in these articles isnot applicable. The non
Fredholm Schrödinger type operators were treated with themethods of the spectral
and the scattering theory in [14], [24], [31]. The Laplace operator with drift from
the point of view of non Fredholm operators was considered in[33] and linearized
Cahn-Hilliard problems in [25] and [34]. Fredholm structures, topological invari-
ants and applications were covered in [12]. Fredholm and properness properties
of quasilinear elliptic systems of second order were discussed in [15]. Nonlinear
non Fredholm elliptic equations were studied in [13], [32] and [35]. Important
applications to the theory of reaction-diffusion equations were developed in [10],
[11]. Non Fredholm operators arise also in the context of thewave systems with
an infinite number of localized traveling waves (see [1]). Standing lattice solitons
in the discrete NLS equation with saturation were studied in[2]. Weak solutions
of the Dirichlet and Neumann problems with drift were considered in [18]. Work
[19] deals with the imbedding theorems and the spectrum of a certain pseudodiffer-
ential operator. Front propagation equations with anomalous diffusion were studied
actively in recent years (see e.g. [28], [29]).

We setK(x) = εK(x), whereε ≥ 0 and suppose that the assumption below is
fulfilled.

Assumption 1. Consider0 < s <
1

4
. The constantb ∈ R, b 6= 0. Letf(x) : R →

R be nontrivial, such thatf(x) ∈ L1(R)∩L2(R). Assume also thatK(x) : R → R

is nontrivial andK(x) ∈ L1(R) ∩ L2(R).

Note that as distinct from Assumption 1.1 of [36] we do not need to assume

here that

(
− d2

dx2

) 1

2
−s

f(x) ∈ L2(R), which is the advantage of introducing the

transport term into our equation. We also do not need to impose the regularity

condition

(
− d2

dx2

) 1

2
−s

K(x) ∈ L2(R) on the integral kernel of our problem. Let

us fix here the space dimensiond = 1, which is related to the solvability conditions
for the linear equation (4.1) established in Lemma 6 below. From the point of
view of applications, the space dimension is not restrictedto d = 1 since the space
variable corresponds to the cell genotype but not to the usual physical space. We
use the Sobolev spaces

H2s(R) :=

{
u(x) : R → R | u(x) ∈ L2(R),

(
− d2

dx2

)s

u ∈ L2(R)

}
, 0 < s ≤ 1
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equipped with the norm

‖u‖2H2s(R) := ‖u‖2L2(R) +

∥∥∥∥∥

(
− d2

dx2

)s

u

∥∥∥∥∥

2

L2(R)

. (1.4)

Evidently, in the particular case ofs =
1

2
we have

‖u‖2H1(R) := ‖u‖2L2(R) +

∥∥∥∥∥
du

dx

∥∥∥∥∥

2

L2(R)

. (1.5)

The standard Sobolev inequality in one dimension (see e.g. Section 8.5 of [16])
yields

‖u‖L∞(R) ≤
1√
2
‖u‖H1(R). (1.6)

When our nonnegative parameterε = 0, we obtain linear equation (4.1) witha = 0

and0 < s <
1

4
. By virtue of assertion 3) of Lemma 6 below along with Assumption

1 in this case equation (4.1) possesses a unique solution

u0(x) ∈ H1(R), 0 < s <
1

4
,

so that no orthogonality conditions are required. According to assertions 4) and 5)
of Lemma 6, whena = 0, a certain orthogonality relation (4.5) is needed to be

able to solve problem (4.1) inH1(R) for
1

4
≤ s ≤ 1

2
and inH2s(R) if

1

2
< s < 1.

Clearly, u0(x) does not vanish identically on the real line since our influx/efflux
termf(x) is nontrivial as assumed.

Note that in the analogous situation in the absence of the transport term dis-
cussed in [36] the corresponding Poisson type equation withthe negative Laplacian
raised to a fractional power admits a unique solution

u0(x) ∈ H2s(R), 0 < s <
1

4
,

which belongs toH1(R) under the extra regularity assumption on the influx/efflux
term.

Let us look for the resulting solution of nonlinear problem (1.2) as

u(x) = u0(x) + up(x). (1.7)

Apparently, we arrive at the perturbative equation
(
− d2

dx2

)s

up− b
dup

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y)+up(y))dy, 0 < s <
1

4
. (1.8)
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For the technical purposes we introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.9)

Let us seek the solution of equation (1.8) as the fixed point ofthe auxiliary nonlinear
problem
(

− d2

dx2

)s

u− b
du

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v(y))dy, 0 < s <
1

4
(1.10)

in ball (1.9). For a given functionv(y) this is an equation with respect tou(x). The
left side of (1.10) contains the non Fredholm operator

L0, b, s : H
1(R) → L2(R), 0 < s <

1

4
,

defined in (4.2) which has no bounded inverse. The similar situation appeared in
earlier articles [32] and [35] but as distinct from the present case, the problems
discussed there required orthogonality relations. The fixed point technique was used
in [30] to evaluate the perturbation to the standing solitary wave of the Nonlinear
Schrödinger (NLS) equation when either the external potential or the nonlinear term
in the NLS were perturbed but the Schrödinger operator involved in the nonlinear
problem there possessed the Fredholm property (see Assumption 1 of [30], also
[9]). For the technical purposes we introduce the interval on the real line

I :=
[
− 1√

2
‖u0‖H1(R) −

1√
2
,

1√
2
‖u0‖H1(R) +

1√
2

]
(1.11)

along with the closed ball in the space ofC2(I) functions, namely

DM := {g(z) ∈ C2(I) | ‖g‖C2(I) ≤ M}, M > 0. (1.12)

We will use the norm

‖g‖C2(I) := ‖g‖C(I) + ‖g′‖C(I) + ‖g′′‖C(I), (1.13)

where‖g‖C(I) := maxz∈I |g(z)|. Let us make the following assumption on the
nonlinear part of problem (1.2).

Assumption 2.Let g(z) : R → R, such thatg(0) = 0 andg′(0) = 0. In addition to
thatg(z) ∈ DM and it does not vanish identically on the intervalI.

Let us explain why we impose the conditiong′(0) = 0. If g′(0) 6= 0 and
the Fourier image of our integral kernel does not vanish at zero, then the essential
spectrum of the corresponding linearized operator does notcontain the origin. The
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operator satisfies the Fredholm property, and the conventional methods of the non-
linear analysis are applicable here. Ifg′(0) = 0, then the operator fails to satisfy
the Fredholm property, and the goal of this article is to establish the existence of
solutions in such case where usual methods are not applicable. Thus we impose this
condition on the nonlinearity.

Let us introduce the operatorTg, such thatu = Tgv, whereu is a solution of
problem (1.10). Our first main proposition is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then problem (1.10) defines the map
Tg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

2M(‖u0‖H1(R) + 1)2
×

×
{
‖K‖2

L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

}− 1

2

. (1.14)

The unique fixed pointup(x) of this mapTg is the only solution of equation (1.8) in
Bρ.

Evidently, the cumulative solution of problem (1.2) given by (1.7) will be non-
trivial since the influx/efflux termf(x) is nontrivial andg(0) vanishes as assumed.
Let us make use of the following elementary lemma.

Lemma 4. For R ∈ (0,+∞) consider the function

ϕ(R) := αR1−4s +
β

R4s
, 0 < s <

1

4
, α, β > 0.

It achieves the minimal value atR∗ :=
4βs

α(1− 4s)
, which is given by

ϕ(R∗) =
(1− 4s)4s−1

(4s)4s
α4sβ1−4s.

Our second main proposition is about the continuity of the resulting solution
of equation (1.2) given by (1.7) with respect to the nonlinear function g. Let us
introduce the following positive, auxiliary expression

σ := M(‖u0‖H1(R) + 1)

{
‖K‖2

L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(4πs)4s
+

‖K‖2
L2(R)

b2

} 1

2

. (1.15)

Theorem 5.Let j = 1, 2, the assumptions of Theorem 3 including inequality (1.14)
are valid, such thatup,j(x) is the unique fixed point of the mapTgj : Bρ → Bρ,
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which is a strict contraction for all the values ofε satisfying (1.14) and the cumu-
lative solution of equation (1.2) withg(z) = gj(z) is given by

uj(x) := u0(x) + up,j(x). (1.16)

Then for allε, which satisfy estimate (1.14) the upper bound

‖u1(x)− u2(x)‖H1(R) ≤
ε

1− εσ
(‖u0‖H1(R) + 1)2×

×
[
‖K‖2

L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1

2

‖g1 − g2‖C2(I) (1.17)

holds.

Let us proceed to the proof of our first main statement.

2. The existence of the perturbed solution

Proof of Theorem 3.We choose an arbitraryv(x) ∈ Bρ and designate the term
involved in the integral expression in the right side of equation (1.10) as

G(x) := g(u0(x) + v(x)).

Throughout the article we will use the standard Fourier transform

φ̂(p) :=
1√
2π

∫ ∞

−∞

φ(x)e−ipxdx. (2.1)

Apparently, we have the inequality

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R). (2.2)

Let us apply (2.1) to both sides of equation (1.10). This yields

û(p) = ε
√
2π

K̂(p)Ĝ(p)

|p|2s − ibp
. (2.3)

Then for the norm we arrive at

‖u‖2L2(R) = 2πε2
∫ ∞

−∞

|K̂(p)|2|Ĝ(p)|2
|p|4s + b2p2

dp ≤ 2πε2
∫ ∞

−∞

|K̂(p)|2|Ĝ(p)|2
|p|4s dp. (2.4)

As distinct from articles [32] and [35] involving the standard Laplacian in the
diffusion term, here we do not try to control the norm

∥∥∥∥∥
K̂(p)

|p|2s

∥∥∥∥∥
L∞(R)

.
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Instead, we estimate the right side of (2.4) using the analogof bound (2.2) applied
to functionsK andG with R ∈ (0,+∞) as

2πε2
∫

|p|≤R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp+ 2πε2

∫

|p|>R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp ≤

≤ ε2‖K‖2L1(R)

{
1

π
‖G(x)‖2L1(R)

R1−4s

1− 4s
+

1

R4s
‖G(x)‖2L2(R)

}
. (2.5)

Becausev(x) ∈ Bρ, we have

‖u0 + v‖L2(R) ≤ ‖u0‖H1(R) + 1.

Sobolev inequality (1.6) gives us

|u0 + v| ≤ 1√
2
(‖u0‖H1(R) + 1).

Let us use the formula

G(x) =

∫ u0+v

0

g′(z)dz.

Hence
|G(x)| ≤ maxz∈I |g′(z)||u0 + v| ≤ M |u0 + v|,

where the intervalI is defined in (1.11). Then

‖G(x)‖L2(R) ≤ M‖u0 + v‖L2(R) ≤ M(‖u0‖H1(R) + 1).

Since

G(x) =

∫ u0+v

0

dy
[∫ y

0

g′′(z)dz
]
,

we derive

|G(x)| ≤ 1

2
maxz∈I |g′′(z)||u0 + v|2 ≤ M

2
|u0 + v|2,

such that

‖G(x)‖L1(R) ≤
M

2
‖u0 + v‖2L2(R) ≤

M

2
(‖u0‖H1(R) + 1)2. (2.6)

Therefore, we arrive at the upper bound for the right side of (2.5) given by

ε2‖K‖2L1(R)M
2(‖u0‖H1(R) + 1)2

{
(‖u0‖H1(R) + 1)2R1−4s

4π(1− 4s)
+

1

R4s

}
,

with R ∈ (0,+∞). By virtue of Lemma 4 we evaluate the minimal value of the
expression above. Therefore,

‖u‖2L2(R) ≤ ε2‖K‖2L1(R)(‖u0‖H1(R) + 1)2+8s M2

(1− 4s)(16πs)4s
. (2.7)
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Using (2.3) we obtain
∫ ∞

−∞

p2|û(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞

|K̂(p)|2|Ĝ(p)|2dp.

By means of the analog of inequality (2.2) applied to function G along with bound
(2.6) we derive
∥∥∥du
dx

∥∥∥
2

L2(R)
≤ ε2

b2
‖G‖2L1(R)‖K‖2L2(R) ≤

ε2M2

4b2
(‖u0‖H1(R) + 1)4‖K‖2L2(R). (2.8)

Let us apply the definition of the norm (1.5) along with inequalities (2.7) and (2.8)
to arrive at the estimate from above for‖u‖H1(R) given by

ε(‖u0‖H1(R) + 1)2M

[
‖K‖2L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(16πs)4s
+

‖K‖2L2(R)

4b2

] 1

2

≤ ρ

2
(2.9)

for all values of the parameterε satisfying inequality (1.14), so thatu(x) ∈ Bρ as
well. Let us suppose that for a certainv(x) ∈ Bρ there exist two solutionsu1,2(x) ∈
Bρ of equation (1.10). Then their differencew(x) := u1(x) − u2(x) ∈ H1(R)
solves (

− d2

dx2

)s

w − b
dw

dx
= 0, 0 < s <

1

4
. (2.10)

Apparently, the operatorL0, b, s : H
1(R) → L2(R) in the left side of (2.10) defined

in (4.2) does not have any nontrivial zero modes, such thatw(x) ≡ 0 on the real
line. Thus, equation (1.10) defines a mapTg : Bρ → Bρ for all ε satisfying bound
(1.14).

Let us demonstrate that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ. By virtue of the argument aboveu1,2 := Tgv1,2 ∈ Bρ as well whenε
satisfies (1.14). According to (1.10) we have

(
− d2

dx2

)s

u1 − b
du1

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v1(y))dy, (2.11)

(
− d2

dx2

)s

u2 − b
du2

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v2(y))dy (2.12)

with 0 < s <
1

4
. Let us define

G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x))

and apply the standard Fourier transform (2.1) to both sidesof equations (2.11) and
(2.12). This yields

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

|p|2s − ibp
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

|p|2s − ibp
. (2.13)
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Apparently,

‖u1 − u2‖2L2(R) = ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s + b2p2

dp ≤

≤ ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s dp. (2.14)

Clearly, the right side of (2.14) can be estimated from aboveby via inequality (2.2)
as

ε22π

[∫

|p|≤R

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s dp+

∫

|p|>R

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s dp

]
≤

≤ ε2‖K‖2L1(R)

{
1

π
‖G1(x)−G2(x)‖2L1(R)

R1−4s

1− 4s
+ ‖G1(x)−G2(x)‖2L2(R)

1

R4s

}
,

whereR ∈ (0,+∞). We express

G1(x)−G2(x) =

∫ u0+v1

u0+v2

g′(z)dz.

Hence
|G1(x)−G2(x)| ≤ maxz∈I |g′(z)||v1 − v2| ≤ M |v1 − v2|,

such that

‖G1(x)−G2(x)‖L2(R) ≤ M‖v1 − v2‖L2(R) ≤ M‖v1 − v2‖H1(R).

Evidently,

G1(x)−G2(x) =

∫ u0+v1

u0+v2

dy
[ ∫ y

0

g′′(z)dz
]
.

This enables us to obtain the upper bound forG1(x)−G2(x) in the absolute value
as

1

2
maxz∈I |g′′(z)||(v1 − v2)(2u0 + v1 + v2)| ≤

M

2
|(v1 − v2)(2u0 + v1 + v2)|.

The Schwarz inequality gives us the estimate from above for the norm‖G1(x) −
G2(x)‖L1(R) as

M

2
‖v1−v2‖L2(R)‖2u0+v1+v2‖L2(R) ≤ M‖v1−v2‖H1(R)(‖u0‖H1(R)+1). (2.15)

Thus we arrive at the upper bound for the norm‖u1(x)− u2(x)‖2L2(R) given by

ε2‖K‖2L1(R)M
2‖v1 − v2‖2H1(R)

{ 1
π
(‖u0‖H1(R) + 1)2

R1−4s

1− 4s
+

1

R4s

}
, 0 < s <

1

4
.
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Lemma 4 allows us to minimize the expression above overR ∈ (0,+∞). This
yields the estimate from above for‖u1(x)− u2(x)‖2L2(R) as

ε2‖K‖2L1(R)M
2‖v1 − v2‖2H1(R)

(‖u0‖H1(R) + 1)8s

(1− 4s)(4πs)4s
. (2.16)

By virtue of (2.13) we derive

∫ ∞

−∞

p2|û1(p)− û2(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2dp.

Inequalities (2.2) and (2.15) imply that

∥∥∥∥∥
d

dx
(u1 − u2)

∥∥∥∥∥

2

L2(R)

≤ ε2

b2
‖K‖2L2(R)‖G1 −G2‖2L1(R) ≤

≤ ε2

b2
‖K‖2L2(R)M

2‖v1 − v2‖2H1(R)(‖u0‖H1(R) + 1)2. (2.17)

According to (2.16) and (2.17) along with definition (1.5) the norm‖u1 − u2‖H1(R)

can be bounded from above by the expression

εM(‖u0‖H1(R) + 1)×

×
{
‖K‖2

L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(4πs)4s
+

‖K‖2
L2(R)

b2

} 1

2

‖v1 − v2‖H1(R). (2.18)

It can be easily verified that the constant in the right side of(2.18) is less than
one. This yields that the mapTg : Bρ → Bρ defined by equation (1.10) is a strict
contraction for all values ofε which satisfy inequality (1.14). Its unique fixed point
up(x) is the only solution of problem (1.8) in the ballBρ. By virtue of (2.9) we have
that‖up(x)‖H1(R) → 0 asε → 0. The cumulativeu(x) ∈ H1(R) given by (1.7) is
a solution of equation (1.2).

We proceed to the establishing of the second main result of our article.

3. The continuity of the cumulative solution

Proof of Theorem 5.Apparently, for all the values ofε which satisfy inequality
(1.14), we have

up,1 = Tg1up,1, up,2 = Tg2up,2. (3.1)

Hence
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2,
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such that

‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,1 − Tg1up,2‖H1(R) + ‖Tg1up,2 − Tg2up,2‖H1(R).

Inequality (2.18) gives us

‖Tg1up,1 − Tg1up,2‖H1(R) ≤ εσ‖up,1 − up,2‖H1(R).

Note thatεσ < 1 with σ defined in (1.15) because the mapTg1 : Bρ → Bρ under
the given conditions is a strict contraction. Hence, we obtain

(1− εσ)‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,2 − Tg2up,2‖H1(R). (3.2)

According to (3.1), for our fixed pointTg2up,2 = up,2. Let us introduceξ(x) :=

Tg1up,2. Thus, for0 < s <
1

4
, we have

(
− d2

dx2

)s

ξ(x)− b
dξ(x)

dx
= ε

∫ ∞

−∞

K(x− y)g1(u0(y) + up,2(y))dy, (3.3)

(
− d2

dx2

)s

up,2(x)− b
dup,2(x)

dx
= ε

∫ ∞

−∞

K(x− y)g2(u0(y) + up,2(y))dy, (3.4)

Let us designateG1,2(x) := g1(u0(x) + up,2(x)), G2,2(x) := g2(u0(x) + up,2(x))
and apply the standard Fourier transform (2.1) to both sidesof problems (3.3) and
(3.4) above. This yields

ξ̂(p) = ε
√
2π

K̂(p)Ĝ1,2(p)

|p|2s − ibp
, ûp,2(p) = ε

√
2π

K̂(p)Ĝ2,2(p)

|p|2s − ibp
. (3.5)

Evidently,

‖ξ(x)− up,2(x)‖2L2(R) = ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|2
|p|4s + b2p2

dp ≤

≤ ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|2
|p|4s dp. (3.6)

Apparently, the right side of (3.6) can be bounded from aboveby means of inequal-
ity (2.2) as

ε22π

[∫

|p|≤R

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|2
|p|4s dp+

+

∫

|p|>R

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|2
|p|4s dp

]
≤
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≤ ε2‖K‖2L1(R)

{
1

π
‖G1,2 −G2,2‖2L1(R)

R1−4s

1− 4s
+ ‖G1,2 −G2,2‖2L2(R)

1

R4s

}
(3.7)

with R ∈ (0,+∞). We express

G1,2(x)−G2,2(x) =

∫ u0(x)+up,2(x)

0

[g′1(z)− g′2(z)]dz.

Thus

|G1,2(x)−G2,2(x)| ≤ maxz∈I |g′1(z)− g′2(z)||u0(x) + up,2(x)| ≤

≤ ‖g1 − g2‖C2(I)|u0(x) + up,2(x)|,
so that

‖G1,2 −G2,2‖L2(R) ≤ ‖g1 − g2‖C2(I)‖u0 + up,2‖L2(R) ≤
≤ ‖g1 − g2‖C2(I)(‖u0‖H1(R) + 1).

Let us use another representation formula, namely

G1,2(x)−G2,2(x) =

∫ u0(x)+up,2(x)

0

dy
[∫ y

0

(g′′1(z)− g′′2(z))dz
]
.

Hence

|G1,2(x)−G2,2(x)| ≤
1

2
maxz∈I |g′′1(z)− g′′2(z)||u0(x) + up,2(x)|2 ≤

≤ 1

2
‖g1 − g2‖C2(I)|u0(x) + up,2(x)|2.

This yields

‖G1,2 −G2,2‖L1(R) ≤
1

2
‖g1 − g2‖C2(I)‖u0 + up,2‖2L2(R) ≤

≤ 1

2
‖g1 − g2‖C2(I)(‖u0‖H1(R) + 1)2. (3.8)

Then we obtain the upper bound for the norm‖ξ(x)− up,2(x)‖2L2(R) given by

ε2‖K‖2L1(R)(‖u0‖H1(R) + 1)2‖g1 − g2‖2C2(I)

[ 1

4π
(‖u0‖H1(R) + 1)2

R1−4s

1− 4s
+

1

R4s

]
.

This expression can be trivially minimized overR ∈ (0,+∞) by virtue of Lemma
4 above. We derive the inequality

‖ξ(x)− up,2(x)‖2L2(R) ≤ ε2‖K‖2L1(R)(‖u0‖H1(R) + 1)2+8s
‖g1 − g2‖2C2(I)

(1− 4s)(16πs)4s
.
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By means of (3.5) we arrive at
∫ ∞

−∞

p2|ξ̂(p)− ûp,2(p)|2dp ≤ 2πε2

b2

∫ ∞

−∞

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|2dp.

Using inequalities (2.2) and (3.8), the norm

∥∥∥∥∥
d

dx
(ξ(x)− up,2(x))

∥∥∥∥∥

2

L2(R)

can be esti-

mated from above by

ε2

b2
‖K‖2L2(R)‖G1,2 −G2,2‖2L1(R) ≤

ε2

4b2
‖K‖2L2(R)(‖u0‖H1(R) + 1)4‖g1 − g2‖2C2(I)

.

Thus,‖ξ(x)− up,2(x)‖H1(R) ≤

≤ ε‖g1 − g2‖C2(I)(‖u0‖H1(R) + 1)2

[
‖K‖2

L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(16πs)4s
+

‖K‖2
L2(R)

4b2

] 1

2

.

By virtue of inequality (3.2), the norm‖up,1 − up,2‖H1(R) can be bounded from
above by

ε

1− εσ
(‖u0‖H1(R) + 1)2×

×
[
‖K‖2L1(R)(‖u0‖H1(R) + 1)8s−2

(1− 4s)(16πs)4s
+

‖K‖2L2(R)

4b2

] 1

2

‖g1 − g2‖C2(I). (3.9)

By means of formula (1.16) along with estimate (3.9) inequality (1.17) is valid.

4. Auxiliary results

The solvability conditions for the linear equation with thenegative Laplacian
raised to a fractional power, the transport term and a squareintegrable right side

(
− d2

dx2

)s

u− b
du

dx
− au = f(x), x ∈ R, 0 < s < 1, (4.1)

wherea ≥ 0 and b ∈ R, b 6= 0 are constants were derived in the proof of the
first theorem of [38]. We will repeat the argument here for theconvenience of the
readers. Obviously, the operator involved in the left side of (4.1)

La, b, s :=

(
− d2

dx2

)s

− b
d

dx
− a : H1(R) → L2(R), 0 < s ≤ 1

2
, (4.2)

La, b, s :=

(
− d2

dx2

)s

− b
d

dx
− a : H2s(R) → L2(R),

1

2
< s < 1, (4.3)
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is nonselfadjoint. By means of the standard Fourier transform (2.1) it can be easily
obtained that the essential spectrum of the operatorLa, b, s above is given by

λa, b, s(p) := |p|2s − a− ibp, p ∈ R.

Clearly, in the case whena > 0, the operatorLa, b, s is Fredholm because its essen-
tial spectrum does not contain the origin. But whena vanishes, our operatorL0, b, s

fails to satisfy the Fredholm property since the origin belongs to its essential spec-
trum. Apparently, in the absense of the drift term, which wasdiscussed for instance
in Theorems 1.1 and 1.2 of [37], we deal with the selfadjoint operator

(
− d2

dx2

)s

− a : H2s(R) → L2(R), a > 0,

which is non Fredholm. We denote the inner product of two functions as

(f(x), g(x))L2(R) :=

∫ ∞

−∞

f(x)ḡ(x)dx, (4.4)

with a slight abuse of notations when the functions involvedin (4.4) are not square
integrable. Indeed, iff(x) ∈ L1(R) and g(x) is bounded, like for instance the
functions involved in the inner product in the left side of orthogonality relation (4.5),
then the integral in the right side of (4.4) is well defined. Wehave the following
auxiliary proposition.

Lemma 6. Letf(x) : R → R andf(x) ∈ L2(R), the constantb ∈ R, b 6= 0.

1) If a > 0 and 0 < s ≤ 1

2
, then problem (4.1) admits a unique solutionu(x) ∈

H1(R).

2) If a > 0 and
1

2
< s < 1, then equation (4.1) has a unique solutionu(x) ∈

H2s(R).

3) If a = 0, 0 < s <
1

4
, and, in addition,f(x) ∈ L1(R), then problem (4.1) pos-

sesses a unique solutionu(x) ∈ H1(R).

4) If a = 0,
1

4
≤ s ≤ 1

2
, and, in addition,xf(x) ∈ L1(R), then equation (4.1)

admits a unique solutionu(x) ∈ H1(R) if and only if

(f(x), 1)L2(R) = 0. (4.5)

5) If a = 0,
1

2
< s < 1, and, in addition,xf(x) ∈ L1(R), then problem (4.1) has a

unique solutionu(x) ∈ H2s(R) if and only if orthogonality relation (4.5) holds.
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Proof. Let us first demonstrate that it would be sufficient to solve our equation in
L2(R). Apparently, ifu(x) is a square integrable solution of problem (4.1), we have

(
− d2

dx2

)s

u− b
du

dx
∈ L2(R).

Then by virtue of the standard Fourier transform (2.1), we obtain

(|p|2s − ibp)û(p) ∈ L2(R),

such that ∫ ∞

−∞

(|p|4s + b2p2)|û(p)|2dp < ∞. (4.6)

Let 0 < s ≤ 1

2
. Clearly, (4.6) yields

∫ ∞

−∞

p2|û(p)|2dp < ∞.

Thus
du

dx
is square integrable on the whole real line andu(x) ∈ H1(R).

Let
1

2
< s < 1. Evidently, (4.6) gives us

∫ ∞

−∞

|p|4s|û(p)|2dp < ∞.

Hence

(
− d2

dx2

)s

u ∈ L2(R), such thatu(x) ∈ H2s(R).

Let us address the uniqueness of a solution to problem (4.1) for 0 < s ≤ 1

2
.

When
1

2
< s < 1 the argument is similar. Suppose thatu1,2(x) ∈ H1(R) both

solve (4.1). Then their differencew(x) := u1(x) − u2(x) ∈ H1(R) satifies the
homogeneous equation

(
− d2

dx2

)s

w − b
dw

dx
− aw = 0.

Because the operatorLa, b, s defined in (4.2) does not have nontrivial zero modes in
H1(R), we obtain thatw(x) = 0 identically on the real line.

By applying the standard Fourier transform (2.1) to both sides of problem (4.1),
we arrive at

û(p) =
f̂(p)

|p|2s − a− ibp
, p ∈ R, 0 < s < 1. (4.7)
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Hence,

‖u‖2L2(R) =

∫ ∞

−∞

|f̂(p)|2
(|p|2s − a)2 + b2p2

dp. (4.8)

First we consider assertions 1) and 2) of our lemma. Apparently, (4.8) yields that

‖u‖2L2(R) ≤
1

C
‖f‖2L2(R) < ∞

as assumed. Here and further downC stands for a finite positive constant. By
means of the argument above, whena > 0, equation (4.1) admits a unique solution

u(x) ∈ H1(R) for 0 < s ≤ 1

2
andu(x) ∈ H2s(R) if

1

2
< s < 1.

Then we turn our attention to the situation whena = 0. Formula (4.7) gives us

û(p) =
f̂(p)

|p|2s − ibp
χ{|p|≤1} +

f̂(p)

|p|2s − ibp
χ{|p|>1}. (4.9)

Here and below,χA denotes the characteristic function of a setA ⊆ R. Evidently,
the second term in the right side of (4.9) can be bounded from above in the absolute
value by

|f̂(p)|√
1 + b2

∈ L2(R)

sincef(x) is square integrable via the one of our assumptions.

Let 0 < s <
1

4
. Then, by virtue of (2.2) we arrive at

∣∣∣∣∣
f̂(p)

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣∣ ≤
|f̂(p)|
|p|2s χ{|p|≤1} ≤

‖f(x)‖L1(R)√
2π|p|2s

χ{|p|≤1}.

Therefore, ∥∥∥∥∥
f̂(p)

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥∥

2

L2(R)

≤
‖f(x)‖2

L1(R)

π(1− 4s)
< ∞

becausef(x) ∈ L1(R) as assumed. By means of the argument above, problem (4.1)
possesses a unique solutionu(x) ∈ H1(R) in assertion 3) of our lemma.

To establish assertions 4) and 5), we use that

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

Then the first term in the right side of (4.9) can be expressed as

f̂(0)

|p|2s − ibp
χ{|p|≤1} +

∫ p

0
df̂(s)
ds

ds

|p|2s − ibp
χ{|p|≤1}. (4.10)
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Definition (2.1) of the standard Fourier transform gives us
∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R).

This allows us to obtain the upper bound in the absolute valueon the second term
in (4.10) as

1√
2π

‖xf(x)‖L1(R)

|b| χ{|p|≤1} ∈ L2(R)

via the assumptions of the lemma. We analyze the first term in (4.10) given by

f̂(0)

|p|2s − ibp
χ{|p|≤1}. (4.11)

Obviously, when
1

4
≤ s ≤ 1

2
, expression (4.11) can be easily estimated from below

in the absolute value by
|f̂(0)|

|p|2s
√
1 + b2

χ{|p|≤1},

which does not belong toL2(R) unlessf̂(0) = 0. This implies orthogonality condi-
tion (4.5). In case 4), the square integrability of the solution u(x) to problem (4.1)
is equivalent tou(x) ∈ H1(R).

Apparently, for
1

2
< s < 1 expression (4.11) can be trivially bounded below in

the absolute value by
|f̂(0)|

|p|
√
1 + b2

χ{|p|≤1},

which is not square integrable on the whole real line unless orthogonality relation
(4.5) holds. In case 5), the square integrability of the solutionu(x) to equation (4.1)
is equivalent tou(x) ∈ H2s(R).

Note that in the situation whena = 0 and0 < s <
1

4
of the lemma above the

orthogonality conditions are not needed as distinct from assertions 4) and 5).

Related to equation (4.1) on the real line, we consider the sequence of approxi-
mate equations withm ∈ N given by

(
− d2

dx2

)s

um − b
dum

dx
− aum = fm(x), x ∈ R, 0 < s < 1, (4.12)

wherea ≥ 0 andb ∈ R, b 6= 0 are constants and the right side of (4.12) converges to

the right side of (4.1) inL2(R) asm → ∞. We will prove that, for0 < s ≤ 1

2
, under
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the certain technical assumptions, each of problems (4.12)admits a unique solution
um(x) ∈ H1(R), limiting equation (4.1) has a unique solutionu(x) ∈ H1(R), and
um(x) → u(x) in H1(R) asm → ∞, which is the so-calledexistence of solutions
in the sense of sequences(see [24], [37], [38] and the references therein). When
1

2
< s < 1, the similar ideas will be exploited inH2s(R). Our final proposition is

as follows.

Lemma 7. Let the constantb ∈ R, b 6= 0, m ∈ N, fm(x) : R → R andfm(x) ∈
L2(R). Furthermore,fm(x) → f(x) in L2(R) asm → ∞.

1) If a > 0 and0 < s ≤ 1

2
, then problems (4.1) and (4.12) admit unique solutions

u(x) ∈ H1(R) and um(x) ∈ H1(R) respectively, such thatum(x) → u(x) in
H1(R) asm → ∞.

2) If a > 0 and
1

2
< s < 1, then equations (4.1) and (4.12) have unique solutions

u(x) ∈ H2s(R) and um(x) ∈ H2s(R) respectively, such thatum(x) → u(x) in
H2s(R) asm → ∞.

3) If a = 0 and 0 < s <
1

4
, and in additionfm(x) ∈ L1(R) and fm(x) → f(x)

in L1(R) as m → ∞, then problems (4.1) and (4.12) possess unique solutions
u(x) ∈ H1(R) and um(x) ∈ H1(R) respectively, such thatum(x) → u(x) in
H1(R) asm → ∞.

4) If a = 0 and
1

4
≤ s ≤ 1

2
, let in additionxfm(x) ∈ L1(R) andxfm(x) → xf(x)

in L1(R) asm → ∞. Moreover,

(fm(x), 1)L2(R) = 0, m ∈ N (4.13)

holds. Then equations (4.1) and (4.12) admit unique solutionsu(x) ∈ H1(R) and
um(x) ∈ H1(R) respectively, such thatum(x) → u(x) in H1(R) asm → ∞.

5) If a = 0 and
1

2
< s < 1, let in additionxfm(x) ∈ L1(R) andxfm(x) → xf(x)

in L1(R) as m → ∞. Furthermore, orthogonality relations (4.13) hold. Then
problems (4.1) and (4.12) have unique solutionsu(x) ∈ H2s(R) and um(x) ∈
H2s(R) respectively, such thatum(x) → u(x) in H2s(R) asm → ∞.

Proof. Let us assume that problems (4.1) and (4.12) admit unique solutionsu(x) ∈
H1(R) andum(x) ∈ H1(R), m ∈ N respectively for0 < s ≤ 1

2
, and analogously

u(x) ∈ H2s(R) andum(x) ∈ H2s(R), m ∈ N if
1

2
< s < 1, such thatum(x) →

u(x) in L2(R) asm → ∞. Thenum(x) also tends tou(x) in H1(R) asm → ∞ if
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0 < s ≤ 1

2
, and analogouslyum(x) → u(x) in H2s(R) asm → ∞ for

1

2
< s < 1.

Indeed, equations (4.1) and (4.12) give us
∥∥∥∥∥

(
− d2

dx2

)s

(um − u)− b
d(um − u)

dx

∥∥∥∥∥
L2(R)

≤

≤ ‖fm − f‖L2(R) + a‖um − u‖L2(R). (4.14)

Clearly, the right side of inequality (4.14) converges to zero asm → ∞ due to our
assumptions above. By virtue of the standard Fourier transform (2.1), we easily
derive ∫ ∞

−∞

(|p|4s + b2p2)|ûm(p)− û(p)|2dp → 0, m → ∞. (4.15)

Let 0 < s ≤ 1

2
. By means of (4.15),

∫ ∞

−∞

p2|ûm(p)− û(p)|2dp → 0, m → ∞,

such that
dum

dx
→ du

dx
in L2(R), m → ∞.

Hence, when0 < s ≤ 1

2
, norm definition (1.5) implies thatum(x) → u(x) in

H1(R) asm → ∞.

Suppose that
1

2
< s < 1. By virtue of (4.15),

∫ ∞

−∞

|p|4s|ûm(p)− û(p)|2dp → 0, m → ∞,

so that (
− d2

dx2

)s

um →
(

− d2

dx2

)s

u in L2(R), m → ∞.

Thus, if
1

2
< s < 1, norm definition (1.4) yields thatum(x) → u(x) in H2s(R) as

m → ∞.
Let us apply the standard Fourier transform (2.1) to both sides of equation

(4.12). This yields

ûm(p) =
f̂m(p)

|p|2s − a− ibp
, m ∈ N, p ∈ R, 0 < s < 1. (4.16)

Let us discuss assertions 1) and 2). By means of parts 1) and 2)of Lemma 6
above, fora > 0, problems (4.1) and (4.12) admit unique solutionsu(x) ∈ H1(R)
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andum(x) ∈ H1(R), m ∈ N respectively if0 < s ≤ 1

2
and analogouslyu(x) ∈

H2s(R) andum(x) ∈ H2s(R), m ∈ N provided that
1

2
< s < 1. By virtue of (4.16)

along with (4.7), we arrive at

‖um − u‖2L2(R) =

∫ ∞

−∞

|f̂m(p)− f̂(p)|2
(|p|2s − a)2 + b2p2

dp.

Therefore

‖um − u‖L2(R) ≤
1

C
‖fm − f‖L2(R) → 0, m → ∞

as assumed. Hence, fora > 0, we haveum(x) → u(x) in H1(R) asm → ∞ if

0 < s ≤ 1

2
andum(x) → u(x) in H2s(R) asm → ∞ when

1

2
< s < 1 due to the

above argument.
Let us complete the proof by studying the case ofa = 0. According to the part

a) of Lemma 3.3 of [27], under the given conditions

(f(x), 1)L2(R) = 0 (4.17)

in assertions 4) and 5) of our lemma. By means of the results ofparts 3), 4), 5)
of Lemma 6 above, problems (4.1) and (4.12) witha = 0 possess unique solutions

u(x) ∈ H1(R) and um(x) ∈ H1(R), m ∈ N respectively for0 < s ≤ 1

2
and

analogouslyu(x) ∈ H2s(R) and um(x) ∈ H2s(R), m ∈ N when
1

2
< s < 1.

Formulas (4.16) and (4.7) give us

ûm(p)− û(p) =
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|≤1} +

f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|>1}. (4.18)

Evidently, the second term in the right side of (4.18) can be estimated from above
in theL2(R) norm by

1√
1 + b2

‖fm − f‖L2(R) → 0, m → ∞

via the one of our assumptions. Suppose0 < s <
1

4
. Let us use an analog of in-

equality (2.2) to derive
∣∣∣∣∣
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣∣ ≤
|f̂m(p)− f̂(p)|

|p|2s χ{|p|≤1} ≤
‖fm − f‖L1(R)√

2π|p|2s
χ{|p|≤1}.

Hence
∥∥∥∥∥
f̂m(p)− f̂(p)

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ ‖fm − f‖L1(R)√
π(1− 4s)

→ 0, m → ∞

21



due to the one of the assumptions of the lemma. By virtue of theargument above,
we obtain thatum(x) → u(x) in H1(R) asm → ∞ in the situation whena = 0

and0 < s <
1

4
.

Let us use orthogonality conditions (4.17) and (4.13) to establish assertions 4)
and 5). By virtue of definition (2.1) of the standard Fourier transform, we obtain

f̂(0) = 0, f̂m(0) = 0, m ∈ N.

This yields

f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂m(p) =

∫ p

0

df̂m(s)

ds
ds, m ∈ N. (4.19)

Therefore, the first term in the right side of (4.18) in assertions 4) and 5) of our
lemma is given by ∫ p

0

[
df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}.

It easily follows from definition (2.1) of the standard Fourier transform that
∣∣∣∣∣
df̂m(p)

dp
− df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xfm(x)− xf(x)‖L1(R).

Therefore,

∣∣∣∣∣

∫ p

0

[
df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}

∣∣∣∣∣ ≤
‖xfm(x)− xf(x)‖L1(R)√

2π|b|
χ{|p|≤1},

such that

∥∥∥∥∥

∫ p

0

[
df̂m(s)

ds
− df̂(s)

ds

]
ds

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ ‖xfm(x)− xf(x)‖L1(R)√
π|b| → 0

asm → ∞ as assumed. Thus,um(x) → u(x) in L2(R) asm → ∞. Arguing as
above in the case whena = 0, we observe thatum(x) → u(x) in H1(R) asm → ∞
for

1

4
≤ s ≤ 1

2
andum(x) → u(x) in H2s(R) asm → ∞ if

1

2
< s < 1.

22



References

[1] G.L. Alfimov, E.V. Medvedeva, D.E. Pelinovsky,Wave Systems with an
Infinite Number of Localized Traveling Waves, Phys. Rev. Lett.,112 (2014),
054103, 5pp.

[2] G.L. Alfimov, A.S. Korobeinikov, C.J. Lustri, D.E. Pelinovsky,Standing
lattice solitons in the discrete NLS equation with saturation, Nonlinearity,32
(2019), no. 9, 3445–3484.

[3] C. Amrouche, V. Girault, J. Giroire,Dirichlet and Neumann exterior
problems for then-dimensional Laplace operator: an approach in weighted
Sobolev spaces, J. Math. Pures Appl.,76 (1997), no. 1, 55–81.

[4] C. Amrouche, F. Bonzom, Mixed exterior Laplace’s problem, J. Math. Anal.
Appl., 338(2008), 124–140.

[5] P. Bolley, T.L. Pham,Propriét́e d’indice en th́eorie Holderienne pour des
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