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1. Introduction

In the present article we study the the existence of statyosalutions of the fol-
lowing nonlocal integro-differential equation

G = -DEArut [ K- pgluly )y + f@), d=45, (@)

3 d L . :
with 371 < s < 1, which is relevant to the cell population dynamics. The spac

variablexz here corresponds to the cell genotypér, t) stands for the cell density
as a function of their genotype and time. The right side of groblem describes
the evolution of cell density by means of the cell prolifesai mutations and cell
influx. The anomalous diffusion term in this context is cepgending to the change
of genotype via small random mutations, and the integrat @escribes large mu-
tations. Functiory(u) designated the rate of cell birth dependingoifdensity
dependent proliferation), and the kerdé{z — y) denotes the proportion of newly
born cells changing their genotype fragmo x. We assume here that it depends on
the distance between the genotypes. Finally, the last terimei right side of (1.1)
stands for the influx or efflux of cells for different genotgpe
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The operatof—A)* in problem (1.1) describes a particular case of the anoma-
lous diffusion actively treated in the context of differeaytplications in plasma
physics and turbulence [7], [20], surface diffusion [14]8], semiconductors [19]
and so on. Anomalous diffusion can be described as a randoce$s of particle
motion characterized by the probability density distribatof jump length. The
moments of this density distribution are finite in the casaaimal diffusion, but
this is not the case for the anomalous diffusion. Asymptogibavior at infinity of
the probability density function determines the vasud the power of our negative
Laplace operator (see [17]). The operater\)® is defined by viertue of the spec-

: . . 3 d
tral calculus. In the present article we will consider thee:af§ 1 <s<1. A

similar equation in the case of the standard Laplace opeiratbe diffusion term
was studied recently in [32].
We setD = 1 and prove the existence of solutions of the problem

—(—A)°u+ » K(zx —vy)g(u(y))dy + f(z) =0, g — ii <s<l, (1.2)
whered = 4,5. Let us consider the case when the linear part of this operato
does not satisfy the Fredholm property. Consequently, tmyentional methods
of nonlinear analysis may not be applicable. We use soltglsibnditions for non
Fredholm operators along with the method of contractionpirays.

Consider the problem

—Au+V(x)u —au = f, (1.3)

whereu € £ = H*(RY) andf € F = L*(R%), d € N, a is a constant and the
scalar potential functiofi () is either zero identically or convergesat infinity.
Fora > 0, the essential spectrum of the operator & — F' corresponding to
the left side of equation (1.3) contains the origin. Congedly, such operator does
not satisfy the Fredholm property. Its image is not closed¢f> 1 the dimension
of its kernel and the codimension of its image are not finitée Ppresent article
deals with the studies of certain properties of the opesatbthis kind. Note that
elliptic equations with non Fredholm operators were stiidigtively in recent years.
Approaches in weighted Sobolev and Holder spaces werdapmekin [2], [3],
[4], [5], [6]. The non Fredholm Schrodinger type operatoese treated with the
methods of the spectral and the scattering theory in [217], [26]. The Laplacian
with drift from the point of view of non Fredholm operatorssw@nsidered in [29]
and linearized Cahn-Hilliard problems in [24] and [30]. Niaear non Fredholm
elliptic equations were treated in [28] and [31]. Importapplications to the theory
of reaction-diffusion problems were developed in [9], [1@perators without
Fredholm property arise also when studying wave systentsamitinfinite number
of localized traveling waves (see [1]). In particular, wher= 0 the operatorA
is Fredholm in some properly chosen weighted spaces (seg8]2]4], [5], [6]).
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However, the case af # 0 is significantly different and the method developed
in these works cannot be applied. Front propagation prablefth anomalous
diffusion were considered actively in recent years (see §€4], [23]). The form
boundedness criterion for the relativistic Schrodingeerator was proved in [16].
In work [15] the authors establish the imbedding theorentsstindy the spectrum
of certain pseudodifferential operators.

Let us setk'(z) = ¢K(x), wheres > 0 and suppose that the assumption below
holds.

Assumption 1. Considerg — le < s < 1,whered = 4,5. Let f(x) : RY — R be
nontrivial, such thatf(z) € L'(R?) and (—A):~*f(z) € L2(R?). Assume also
that K(z) : R? — R andK(z) € LY(R?). In addition,(—A)2—*K(z) € L3*(R%),
such that

Q= H(— "S/C > 0.

@)l =gy

We choose the space dimensiehs- 4,5, which is relevant to the solvability
conditions for the linear Poisson type problem (4.34) fdated in Lemma 6 below.
From the point of view of applications, the space dimensiamsnot limited to
d = 4,5 because the space variable is correspondent to the celtypenbut not
to the usual physical space. Let us use the Sobolev inegdatithe fractional
Laplacian (see Lemma 2.2 of [12], also [13])

< el (A @y, S-S <5<, d=4.5 (L4)

el L

along with Assumption 1 above and the standard interpaiaigument, which
gives us

[ d—6+4s 6+4s (R9)

f(z) € L*(RY) (1.5)

. . . 1
as well. On the real line our equation was studied in [34] dofy) < s < 1 based
on the solvability conditions for the analog of (4.34) whks 1. In two dimensions

the similar results were obtained in [35] with< s < 3 In R? our problem was

. 1 3 - o . . .
treated in [33] for- < s < 7 As distinct from the situations in lower dimensions

d = 1,2 and similarly to the present casedt 4, 5, in three dimensions we were
able to use the Sobolev inequality for the fractional Lajlac For the technical
purposes, we use the Sobolev spaces

H*R?) = {u(z) : R" - R | u(z) € L*(RY), (-A)'ue L*(R)}, 0<s<1,
whered = 4, 5, equipped with the norm
s 112
||U||§12->‘(Rd) = ||u||%2(Rd) + H(—A) UHL2(Rd)' (1.6)
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By virtue of the standard Sobolev embedding in dimensibas4, 5, we have

||u||L°°(]Rd) < Ce||u||H3(Rd)> (1.7)

wherec, > 0 is the constant of the embedding. Here

312
lull s gy = lullZage) + ([ (=2)2ul] > ga)- (1.8)

When the nonnegative parametevanishes, we arrive at the linear Poisson type
problem (4.34). By means of Lemma 6 below along with Assuampii, equation
(4.34) admits a unique solution

3 d
uo(x) € H*(RY), 53 <s< 1,

such that no orthogonality relations are required. By @i Assumption 1, since
(=8)2uo(x) = (-A)27*f(z) € L*(RY),

we obtain for the unique solution of linear problem (4.34tthy(z) € H?3(R?).
Let us seek the resulting solution of nonlinear equatio®)(ds

u(z) = up(z) + up(x). (1.9)

Evidently, we derive the perturbative equation

(—AYuy(z) = ¢ / Kz — 1)g(uoly) + uply))dy, (1.10)

R4

3 d .
whereé 1 <s<1,d=4,5. Letus denote a closed ball in the Sobolev space
as
B, = {u(z) € H*R) | |lullgssy < p}, 0<p <1, (1.11)

We look for the solution of problem (1.10) as the fixed pointla# auxiliary non-
linear equation

(~aule) =< [ K@= p)gluals) +olo)ds, d=45,  (112)

.3 d . : . _ :
with - — — < s < 1 in ball (1.11). For a given function(y) this is an equation
with respect ta:(x). The left side of (1.12) involves the non Fredholm operator

(=A)* . H*(RY) — L*(RY).

Its essential spectrum fills the nonnegative semi-gXisco). Hence, this operator
has no bounded inverse. The similar situation appearediksyf28] and [31] but
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as distinct from the present case, the equations studieel tbguired orthogonality
conditions. The fixed point technique was used in [25] toneste the perturbation
to the standing solitary wave of the Nonlinear Schrodin@drS) equation when
either the external potential or the nonlinear term in theSNiere perturbed but
the Schrodinger operator involved in the nonlinear probilkeere had the Fredholm
property (see Assumption 1 of [25], also [8]). The existeateulses for local
and nonlocal reaction- diffusion equations was establish& the Leray-Schauder
method in [11] using the operators which possessed the Bladiroperty as well.
Let define the interval on the real line

= [ = celluoll msay — e celltoll mrsqray + ce] (1.13)
along with the closed ball in the space®f(/) functions, namely
Dy = {g(2) € Co(D) [ lgllesry < M}, M > 0. (1.14)

Here the norm
9llewiry = llgllcay + 119" lew + 119" e (1.15)

with || g||c(r) := maz.cr]g(z)|. We make the following technical assumption on the
nonlinear part of equation (1.2).

Assumption 2. Letg(z) : R — R, such thaty(0) = 0 and¢’(0) = 0. We also
assume thag(z) € D), and it is not equal to zero identically on the interval

Let us explain why we impose conditigf{0) = 0. Assume here that the Fourier
image of the kerne(z) is positive in the whol&?, which is common in many bi-
ological applications. If/(0) < 0, then the essential spectrum of the corresponding
operator is in the left-half plane. This operator is Fredina@nd conventional meth-
ods of nonlinear analysis are applicable herey' () > 0, then the operator does
not satisfy the Fredholm property, and the goal of this wertoiestablish the exis-
tence of solutions in such case where usual methods are platape. The method
developed in the present article can be usedyftfr) = 0 but not forg’(0) > 0.
This is the reason we impose such condition on the nonlityeari

We introduce the operatdf,, such thatu = T,v, wherew is a solution of
equation (1.12). Our first main result is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.12) definesnépe
T, : B, — B,, which is a strict contraction for al0 < ¢ < ex for somes* > 0.
The unique fixed point,(z) of this mapl}, is the only solution of problem (1.10) in
B,.

Apparently, the resulting solution of equation (1.2) giv®n(1.9) will be non-
trivial becuase the source terfiiz) is nontrivial andg(0) = 0 due to our assump-
tions. We make use of the following trivial statement.
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Lemma 4. For R € (0,400) andd = 4, 5 consider the function
1 3 d
——<s<l1l, a>0.

. d—4s e
o(R) == aR"™™ + B 57

1

4s ¢
It attains the minimal value ai?* := , Which is given by

a(d — 4s)
%
Q@ d
o(R)=[— —.
( ) <45> (d - 45) d -

Our second main statement deals with the continuity of thedfoint of the
map 7, which existence was established in Theorem 3 above witteotdp the

nonlinear functiory.
Theorem 5. Letj = 1, 2, the assumptions of Theorem 3 hold, such tha{z)

is the unique fixed point of the mdp, : B, — B, which is a strict contraction for
(1.16)

all 0 < e < ejandd :=min(ej, e3). Then foralld < ¢ < ¢ the bound
d=4,5

[up1 — upallmsmey < Cllgr — gallcarys

holds, where” > 0 is a constant.
Let us proceed to the proof of our first main proposition.

2. The existence of the perturbed solution

Proof of Theorem 3.Let us choose arbitrarily(z) € B, and denote the
involved in the integral expression in the right side of peob (1.12) as

G(x) = gluo(r) + v(x)).

We use the standard Fourier transform
- 1 .
o(p) == y / o(x)e Prdx, d=4,5.
(2m)z Jre
Evidently, we have the bound
1
”¢(55)HL1(Rd)-

d
2

H&mm@m@s(%v

We apply (2.17) to both sides of problem (1.12). This gives us
~ g//C\ p G p
) = e(2mt P,

term

(2.17)

(2.18)



Hence, for the norm we obtain

.o [ IK®)PIGO))?

2
U = (2m)"¢
ol = (20)'s* | =0

As distinct from works [28] and [31] with the standard Lapé&acin the diffusion
term, here we do not try to control the norm

K(p)
p[**

dp. (2.19)

Loo(R4)

Instead, let us estimate the right side of (2.19) by meansen&halog of inequality
(2.18) applied to function& andG with R > 0 as

(27T)d€2/<R Iﬁ(p)IQI@(p)Ide+(QW)dg/ If(p)IQI@(p)Ide<

|p|4s pI>R |p|4s N
< N o8 e G e |+ L iG] (2.20)
- Ll(Rd) (27T)d Ll(Rd) d _ 48 R4s L2(Rd) . .

Here and further dows“ stands for the unit sphere centered at the origin|&Hf
for its Lebesgues measure. Due to the fact tlia} € B, we derive

o + vl L2raey < [Juol| sy + 1.
Sobolev embedding (1.7) yields

g + ] < el sty + 1):
uo+v
EqualityG(z) = / ¢'(z)dz with the intervall defined in (1.13) gives us
0

|G(2)] < supzeilg'(2)l[uo + v| < Mug + v|.

Hence,
IG @)l 2ty < Mluo + vllp2guay < M(Jluoll e + 1)-

uo+v y
Clearly,G(x) :/ dy[/ g”(z)dz]. This yields
0 0

1 M
|G@)] < Ssupserlg”(2)lluo +v* < —luo + of,

such that

M M
|G ()] 11 ey < 7”“0 + ]| 72 ey < 7(”U0|’H3(Rd) +1)% (2.21)
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Hence, we obtain the estimate from above for the right side.@0) as

XK oy M lusol s ey + 1)2{

(|[uoll g3 ®ay + 1)?| S R N 1
4(2m)4(d — 4s) R*s [’

with R € (0,400). Lemma 4 gives us the minimal value of the expression above.
Thus, [[ul|72 g <

%s
2 2 2 248 |Sd| d
S € ||K||L1(Rd)M (||u0||H3(Rd) + ]-) d (168 (27T)4S(d — 48) . (222)

Obviosly, by means of (1.12) we have

T
b
W
=
=
I
BUR
|
s
N|w

- /Rd K(z —y)G(y)dy.

By virtue of the analog of estimate (2.18) applied to funeti® along with (2.21)
we arrive at

3 M?
I(=A)2ull 22 mey < 2G| 71 ey @ < €2T(||Uo||H3(Rd> +1)'Q*  (2.23)

Thus, by means of the definition of the norm (1.8) along witkgualities (2.22)
and (2.23) we obtain the upper bound fat| ;s &« given by

8s_ T 3
L oy (ol magey + 1) 4 72d (4] ) I
(2m)%s(d — 4s) 16s 4 P

e(|luoll gsway + 1)°M

for all ¢ > 0 small enough. This means thatr) € B, as well. If for a certain
v(z) € B, there exist two solutions, »(z) € B, of problem (1.12), their difference
w(z) = ui(z) — ux(z) € L*(R?) satisfies

(—A)*w = 0.

: 3 d :
Since the operatof—A)?, 573 <s< 1 considered on the whol&? does not

possess nontrivial square integrable zero modés) vanishes ilR?. Hence, prob-
lem (1.12) defines amaf, : B, — B, for all ¢ > 0 sufficiently small.

Our goal is to prove that this map is a strict contraction. \Wease arbitrarily
v12(z) € B,. The argument above yields , := T,v;,» € B, as well. By virtue of
equation (1.12) we obtain

(—A)uy(x) =< / K(x — 1)9(uo(y) + vi())dy, (2.24)
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(=A)us(z) =¢ [ K(z —y)g(uo(y) + va(y))dy, (2.25)

R4
3 d .
where§ 1 <s<1,d=4,5. Letus define
Gi(z) = g(uo(z) + v1(2)), Ga(x) := g(uo(x) + v2(2))

and apply our standard Fourier transform (2.17) to bothssafeproblems (2.24)
and (2.25). This gives us

Evidently,

o [ IK®)IGi(p) — Ga(p)|?
R |p‘4s

Jur — u2||i2(]Rd) = &*(2m)

dp.

Apparently, it can be bounded from above by means of inetyu@il18), since

2 d K(p)2|G1(p) — Ga(p)?
e (2m) /pgR |p|*s

dp+

(2! /||>R K@)PICr(p) = Gap)?

p <
Ip|*
E& Ri—4s [|Gi(x) = G2(2)]|75 pa
< 52”ICH%1(Rd){WHG1(x)_G2<x)H%1(Rd)d_4S + s &5,

with R € (0, +00). Let us use the equality

up+v1

Gi(x) — Gy(x) = / X g (2)dz.
Thus,
|G1(z) — Ga(z)| < supzerlg'(2)[|vi(z) — va(2)| < Mvi(z) — va()].

Therefore,

||G1(l‘) - G2($)||L2(Rd) S MHUl - v2||L2(Rd) S MHUl — UZHH?’(Rd)-

dy[ /0 ’ g"(z)dz] .

Clearly,

up+v1

Ch(x) — Calx) = /

up+v2
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We derive the estimate from above 1Gf () — G (z) in the absolute value as

1 M

§sung|g”(z)||(v1 —02)(2uo + 1 + v2)| < 7|(Ul —02)(2uo + v1 + o).

By means of the Schwarz inequality we arrive at the upper ddanthe norm
|G1(x) — Ga() |11 (=a) given by

M

?Hm — V2| p2may || 200 + V1 + V2| 2(ray <

< Mljvr — va| s ey ([|wo | 23 may + 1)- (2.26)

Hence, we obtain the estimate from above for the npagtx) — u2(:1:)|]%2(Rd) as

2 2 2 2 ‘Sd‘ 2Rd_48 1
Ny M2l = s { s (ollncesy + 1* 7+ e -

Lemma 4 enables us to minimize the expression above®ver0, +oco) to derive
the upper bound fofu, (z) — ua(x) H%Q(Rd) given by

(5?1 (o]l s ey + D& d

€2H’C”%I(Rd)M2”U1 - U2”§{3(Rd) (27?)45(45)%5 R (2.27)
By means of formulas (2.24) and (2.25) we have
(~8)} = w)e) ==(=8)1 [ (o= 9)[G1(y) = Galw)ldy
R
Using inequalities (2.18) and (2.26) we derive
(=) (1 = wo) |2y < EQ7NG = Gallfgay <
L2(R4) = 1 2llp1(re) =
S €2Q2M2”U1 — UQH?{:a(Rd)(HUQ”HS(Rd) -+ 1)2. (228)

Due to (2.27) and (2.28) the norfm,; — us|| ysre) can be bounded from above by
the expressioaM (||ugl| g3 gay + 1) X

8s _
" ||IC||%1(Rd)|Sd uoll gaay + )02 g
(27)45(4s) d—

4s
< (

2
4S+Q2} ||U1_U2||H3(]Rd). (229)

Thus, the maff, : B, — B, defined by problem (1.12) is a strict contraction for all
values of= > 0 sufficiently small. Its unique fixed point,(x) is the only solution
of equation (1.10) in the balB,. The resulting.(z) € H*(R?) given by (1.9) is a
solution of problem (1.2). [ |
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Let us proceed to proving the second main statement of ous.wor
3. The continuity of the fixed point of the mapT,
Proof of Theorem SClearly, for all0 < € < § we have
Up1 = Ty up1, Upo = TgUpo.

Thus
Up1 — Upo = Tgup1 — Ty upos+ Ty upo — Ty upo.

Hence,
Jup1 — up,2||H3(Rd) < Ty upy — Tgl“pQHH?’(Rd) + [| Tgy tp2 — Tg2up,2||H3(Rd)-
By virtue of estimate (2.29), we derive
1Ty up1 — Totp ol mamey < €ollups — upall gamey,

whereeo < 1 since the maf),, : B, — B, under the given assumptions is a strict
contraction and the positive constant

SIS

4s 8s
H]C”il(Rd)|Sd @ (||uoll s ya + 1) 4 > d L
(271-)43(45:)%5 d—4s

o = M(||luo|| gsmay + 1){

Thus, we arrive at
(1 —eo)llups — wpallmsray < | Tgitp2 — Tooup 2l w3y (3.30)

Note that for our fixed point,u, » = u,» and denot&(z) := T}, u, ». Apparently

(~Aye@) == [ K@= nn(ul) + mea))d, @3
(A tpala) == [ Kla = palunly) + pap)dy. (332

d
whereg —3<s< 1. DenoteGis(x) = g1(up(z) + upa(x)) and Goo(x) =

g2(up(x) + up2(x)). Let us apply the standard Fourier transform (2.17) to both
sides of problems (3.31) and (3.32). This gives us

, lpa(p) = &(2m)
Clearly,

2‘(/;\1,2(19) - @2,2(19)‘2

dp.
[p|*

1€(x) — up ()72 ey = €7 (27)" /Rd [K(p)|
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Evidently, it can be estimated from above using (2.18), shah

&*(2r)’ /||<R K®)PIG12(p) ~ Gaa(p)]

2
o[ dp+

i 21 A 2
_'_82(27T>d/ IK(p)| |G1,2(P4)s Gaa(p)| dp <
>R p|
2
|59 Ri~4s  ||Gia — Gaall]2(ga
S €2||K||%1(Rd){w||Gl72 - GQ,QH%l(Rd)d _4s + R43 (R4) ’

whereR € (0, +o0). Let us use the equality

uo () +up,2(x) , )
Gral) — Gaa(x) = / 19(2) — gh()]d=.
0
Hence
|Gr2(z) — Gaa(@)] < sup.erlgy(2) — g5(2)||uo(z) + up ()] <

<lg1 — galleapuo(z) + up ()|
Thus
G2 — Gaallrzre) < 91 — g2lleamllto + up2ll 2wy <

< [lgr = gollcan (luoll a3 may + 1).
Another useful identity would be

uo (2)+up,2(z) v o ,
Grale) — Gaalo) = [ ay| [ (61:) - gh(aNa].
0 0
Clearly,

1 i i
|G12(7) — Gopa(x)| < §Supzel|g1 (2) = g5 (2)||uo(x) + upa(z)* <

1
< §||91 — gallesn|uo (@) + upo(z) .
Therefore,
1 2
1G12 = Gagllpieay < Sll91 = gallean lluo + tp2lliegea) <
1 2
< §||91 — 92|l co(ry (vol| g3 ey +1)° (3.33)
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This yields the estimate from above for the nofétz) — u, 2(z) as

22

|Sd|(HUOHH3(Rd) + 1)2 Rd—4s . 1
4(27T)d d— 4s R4s :

XK Er gy (1uoll s ety + 1) g1 — g2l 1)

Such expression can be easily minimized aet (0, +o0) by virtue of Lemma 4.
We derive the estimatét () — u,5(7)[|72gay <

E&lki d
(165) ¢ (2m)4s d — 4s’

8s
< 52||’C||%1(Rd)(||u0||H3(Rd) +1)**t

g1 — 92||202(1)

Formulas (3.31) and (3.32) give us

(~a)ie) = -2 [ Kla = p)Graldy,

(=8 upala) = (=81 [ Ko = 4)Gaaludy

Using (2.18) and (3.33), the norfii—A)2 [€(x) — upo(x >]”L2(Rd can be bounded
from above by

2Q2

e2|Gra — Gl pey@” < (luoll ey + 1) lgr — gallz, (ry

(z) — Up,2($)||H3(Rd) < 5||91 — g2y (1) %

8s 4s L
1121 gy (HUOHH3(Rd) + 1) 2S¢ . Q2] :

X(HU/OHH?’(RCI) + ]‘) [ (168) (27T)4S d — 48 Z

By means of inequality (3.30), the norf,, ; — wu, || ysrae) can be estimated from
above by

g
= w(HuOHHS(Rd) +1)%x
8s 4s
H’CHil(Rd)(HuOHHw +1)a2S e g Q2
g (16s) 7 (2)% i35 4 | 9~ gl
which completes the proof of the theorem. [ |

4. Auxiliary results

Below we state and prove the solvability conditions for tine&r Poisson type
equation with a square integrable right side

(=A)Y’u=f(z), z€R? d=4,5 0<s<l. (4.34)
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This statement was established in the one of our previouksimt we provide the
argument here for the convenience of the readers. We désitrainner product
as

() @)oo = [ Fa)gla)de, d=4.5, (4.35)

with a slight abuse of notations when the functions involve@.35) are not square
integrable. Indeed, if (z) € L'(R?) andg(z) € L>(R?), then the integral in the
right side of (4.35) is well defined. The technical statenterbw is easily proved
by applying the standard Fourier transform (2.17) to badlesiof equation (4.34).

Lemma 6. Let0 < s < 1, f(z) : R - R, d = 4,5and f(z) € L*(RY) N
L*(R%). Then equation (4.34) admits a unique solutign) € H?(RY).

Proof. First of all, let us note that under the given conditions agyase inte-
grable solution of equation (4.34) will belong £ (R¢) as well. Indeed, ifi(z) €
L?(R?) satisfies (4.34) with a square integrable right side, we Hav&)*u €
L?(R%), such that by means of the definition of the norm (1.6), weiobtér) €
st(Rd).

To establish the uniqueness of solutions for our problenswppose that equa-
tion (4.34) possesses two solutiong,(z) € H?**(RY). Then their difference
w(z) = uy(x) — us(z) € H*(RY) satisfies the homogeneous equation

(—A)’w = 0.

Since the operator—A)® : H?(R?) — L?(R?) does not have any nontrivial zero
modesaw () will vanish inR%.

Let us apply Fourier transform (2.17) to both sides of probi@.34). This
yields

R f)  Flp Fp
u(p) = ‘p(|2z ‘p(|2z><{peu@ isn) (‘gzx{pem | Ipl> 1> (4.36)

wherey 4 denotes the characteristic function of a deC R¢. Clearly, the second
term in the right side of (4.36) can be estimated in the albeafalue from above by
|f(p)] € L?(R?) due to the one of our assumptions. By means of inequalityB)2.1
we estimate the norm

/() HfuLl S
H| |25X{peRd | Ip|<1} < — |5d|| ‘d 1—4 d\p|
g L2(R7)
_ ||f||L1(Rd |Sd|
(2m)d  d—4s
by virtue of our assumptions. =
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Note that by proving the lemma above we establish the sdityabf equation
(4.34) in H?(R%), d = 4,5 for all values of the power of the negative Laplace
operator) < s < 1, such that no orthogonality conditions are required forrtglet

sidef(x).
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