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Abstract
We investigate some subtle points of the Majorana(-like) theories.

1 Introduction.

Majorana deduced his theory of neutral particles, in fact, on the basis of
the Dirac equation [1]. However, the quantum field theory has not yet been
completed in 1937. The Dirac equation [2, 3, 4] is well known

[iγµ∂µ −m]Ψ(x) = 0 (1)

to describe the charged particles of the spin 1/2. The γµ are the Clifford
algebra matrices

γµγν + γνγµ = 2gµν . (2)

Usually, everybody uses the following definition of the field operator [5]:

Ψ(x) =
1

(2π)3

∑
h

∫ d3p

2Ep

√
m[uh(p)ah(p)e−ip·x + vh(p)b†h(p)]e+ip·x] , (3)

as given ab initio. After actions of the Dirac operator at exp(∓ipµx
µ) the 4-

spinors ( u− and v− ) satisfy the momentum-space equations: (p̂−m)uh(p) =
0 and (p̂+m)vh(p) = 0, respectively; the h is the polarization index. It is easy
to prove from the characteristic equations Det(p̂∓m) = (p2

0−p2−m2)2 = 0
that the solutions should satisfy the energy-momentum relation p0 = ±Ep =
±
√

p2 + m2 with both signs of p0.
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2 The Construction of the Field Operators.

The general scheme of construction of the field operator has been presented
in [6]. In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
dpe−ip·xΨ̃(p) . (4)

From the Klein-Gordon equation we know:

(p2 −m2)Ψ̃(p) = 0 . (5)

Thus,
Ψ̃(p) = δ(p2 −m2)Ψ(p) . (6)

Next,

Ψ(x) =
1

(2π)3

∫
dp e−ip·xδ(p2 −m2)(θ(p0) + θ(−p0))Ψ(p) =

=
1

(2π)3

∫
dp

[
e−ip·xδ(p2 −m2)Ψ+(p) + e+ip·xδ(p2 −m2)Ψ−(p)

]
,

(7)

where
Ψ+(p) = θ(p0)Ψ(p) , and Ψ−(p) = θ(p0)Ψ(−p) , (8)

Ψ+(x) =
1

(2π)3

∫ d3p

2Ep

e−ip·xΨ+(p) , (9)

Ψ−(x) =
1

(2π)3

∫ d3p

2Ep

e+ip·xΨ−(p) . (10)

We continue:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3

∑
h=±1/2

∫
d4p δ(p2

0 − E2
p)e

−ip·x√m[uh(p0,p)ah(p0,p)] = (11)

=

√
m

(2π)3

∫ d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e
−ip·x ∑

h=±1/2

uh(p)ah(p)
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=

√
m

(2π)3

∑
h=±1/2

∫ d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)]
[
θ(p0)uh(p)ah(p)e−ip·x+

+ θ(p0)uh(−p)ah(−p)e+ip·x
]

=

√
m

(2π)3

∑
h=±1/2

∫ d3p

2Ep

θ(p0)[
uh(p)ah(p)|p0=Epe

−i(Ept−p·x) + uh(−p)ah(−p)|p0=Epe
+i(Ept−p·x)

]
During the calculations above we had to represent 1 = θ(p0) + θ(−p0) in
order to get positive- and negative-frequency parts. Moreover, during these
calculations we did not yet assumed, which equation did this field operator
(namely, the u− spinor) satisfy, with negative- or positive- mass (except for
the Klein-Gordon equation).

In general we should transform uh(−p) to the v(p). The procedure is the
following one [7, 8]. In the Dirac case we should assume the following relation
in the field operator:∑

h

vh(p)b†h(p) =
∑
h

uh(−p)ah(−p) . (12)

We know that [4]1

ūµ(p)uλ(p) = +δµλ , (13)

ūµ(p)uλ(−p) = 0 , (14)

v̄µ(p)vλ(p) = −δµλ , (15)

v̄µ(p)uλ(p) = 0 , (16)

but we need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we find

−b†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (17)

where Λµλ = −i(σ · n)µλ, n = p/|p|, and

b†µ(p) = +i
∑
λ

(σ · n)µλaλ(−p) . (18)

Multiplying (12) by ūµ(−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb
†
λ(p) . (19)

1µ and λ are the polarization indices. We use the notation of Ref. [4].
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The equations are self-consistent.
Next, we can introduce the helicity operator, which commutes with the

Dirac Hamiltonian, thus developing the theory in the helicity basis. The
2-eigenspinors of the helicity operator

1

2
σ · p̂ =

1

2

(
cos θ sin θe−iφ

sin θe+iφ − cos θ

)
(20)

can be defined as follows [9, 10]:

φ 1
2
↑ =

(
cos θ

2
e−iφ/2

sin θ
2
e+iφ/2

)
, φ 1

2
↓ =

(
sin θ

2
e−iφ/2

− cos θ
2
e+iφ/2

)
, (21)

for ±1/2 eigenvalues, respectively.
We can start from the Klein-Gordon equation, generalized for describing

the spin-1/2 particles (i. e., two degrees of freedom), Ref. [3]; c = h̄ = 1:

(E + σ · p)(E − σ · p)φ = m2φ . (22)

It can be re-written in the form of the system of two first-order equations for
2-spinors. Simultaneously, we observe that they may be chosen as eigenstates
of the helicity operator which presents in (22). Namely,

(E − (σ · p))φ↑ = (E − p)φ↑ = mχ↑ , (23)

(E + (σ · p))χ↑ = (E + p)χ↑ = mφ↑ , (24)

(E − (σ · p))φ↓ = (E + p)φ↓ = mχ↓ , (25)

(E + (σ · p))χ↓ = (E − p)χ↓ = mφ↓ . (26)

If the φ spinors are defined by the equation (21) then we can construct the
corresponding u− and v− 4-spinors.

u↑ = N+
↑

(
φ↑

E−p
m

φ↑

)
=

1√
2

 √
E+p
m

φ↑√
m

E+p
φ↑

 , (27)

u↓ = N+
↓

(
φ↓

E+p
m

φ↓

)
=

1√
2

 √
m

E+p
φ↓√

E+p
m

φ↓

 , (28)

v↑ = N−
↑

(
φ↑

−E−p
m

φ↑

)
=

1√
2

 √
E+p
m

φ↑

−
√

m
E+p

φ↑

 , (29)

v↓ = N−
↓

(
φ↓

−E+p
m

φ↓

)
=

1√
2

 √
m

E+p
φ↓

−
√

E+p
m

φ↓

 , (30)
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where the normalization to the unit was again used.
We again define the field operator as in (3) except for the polarization

index h, which answers now for the helicity. The commutation relations
are assumed to be the standard ones [5, 6, 11, 12], except for adjusting the
dimensional factor:[
aµ(p), a†λ(k)

]
+

= 2Epδ
(3)(p− k)δµλ , [aµ(p), aλ(k)]+ = 0 =

[
a†µ(p), a†λ(k)

]
+

,

(31)[
aµ(p), b†λ(k)

]
+

= 0 =
[
bµ(p), a†λ(k)

]
+

, (32)[
bµ(p), b†λ(k)

]
+

= 2Epδ
(3)(p− k)δµλ , [bµ(p), bλ(k)]+ = 0 =

[
b†µ(p), b†λ(k)

]
+

.

(33)

However, the attempt is now failed2 to obtain the previous result (18) for
Λµλ(p). In this helicity case v̄µ(p)uλ(−p) = iσy

µλ. The content of this Section
is taken from [13, 14, 15, 16, 17]. In the next Section we turn our attention
to the neutral particle theory by E. Majorana.

3 Analysis of the Majorana Anzatz.

It is well known that “particle=antiparticle” in the Majorana theory. So, in
the language of the quantum field theory we should have

bµ(Ep,p) = eiϕaµ(Ep,p) . (34)

Usually, different authors use ϕ = 0,±π/2 depending on the metrics and on
the forms of the 4-spinors and commutation relations.

So, on using (18) and the above-mentioned postulate we come to:

a†µ(p) = +ieiϕ(σ · n)µλaλ(−p) . (35)

On the other hand, on using (19) we make the substitutions Ep → −Ep,
p → −p to obtain

aµ(p) = +i(σ · n)µλb
†
λ(−p) . (36)

2Please do not be confused with signs during calculations. Remember, that
√

ab 6=√
a
√

b over the field of negative numbers [18].
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The totally reflected (34) is bµ(−Ep,−p) = eiϕaµ(−Ep,−p). Thus,

b†µ(−p) = e−iϕa†µ(−p) . (37)

Combining with (36), we come to

aµ(p) = +ie−iϕ(σ · n)µλa
†
λ(−p) , (38)

and
a†µ(p) = −ieiϕ(σ∗ · n)µλaλ(−p) . (39)

This contradicts with the equation (35) unless we have the preferred axis in
every inertial system.

Next, we can use another Majorana anzatz Ψ = ±eiαΨc with usual defi-
nitions

C =
(

0 iΘ
−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
. (40)

Thus, on using Cu∗↑(p) = iv↓(p), Cu∗↓(p) = −iv↑(p) we come to other rela-
tions between creation/annihilation operators

a†↑(p) = ∓ie−iαb†↓(p) , (41)

a†↓(p) = ±ie−iαb†↑(p) , (42)

which may be used instead of (34). Due to the possible signs ± the number
of the corresponding states is the same as in the Dirac case that permits us
to have the complete system of the Fock states over the (1/2, 0) ⊕ (0, 1/2)
representation space in the mathematical sense.3 However, in this case we
deal with the self/anti-self charge conjugate quantum field operator instead of
the self/anti-self charge conjugate quantum states. Please remember that it is
the latter that answers for the neutral particles; the quantum field operator
contains the information about more than one state, which may be either
electrically neutral or charged.

3Please note that the phase factors may have physical significance in quantum field
theories as opposed to the textbook nonrelativistic quantum mechanics, as was discussed
recently by several authors.
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4 Conclusions.

We conclude that something is missed in the foundations of both the original
Majorana theory and its generalizations.
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