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1. Introduction

The present article is devoted to the studies of the existehstationary solutions
of the following system of integro-differential equations

Oy, s
o = Pn(=A)"um + | K (2 = y)gm(u(y, 0)dy + fn(z),  (1.1)
RQ
1 < m < N, which appears in the cell population dynamics. The spadahblax
here corresponds to the cell genotype, functiopéz, t) describe the cell density
distributions for various groups of cells as functions d@itlgenotype and time,

u(z,t) = (uy(z,1), ug(, t), ..., un(z, 1))’

The right side of the system of equations (1.1) describegvbtition of cell den-
sities by means of the cell proliferation, mutations and icglux or efflux. The
anomalous diffusion terms with positive coefficier?s, correspond to the change
of genotype due to small random mutations, and the nonlowalygtion terms
describe large mutations. Functiops(u) stand for the rates of cell birth which
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depend on: (density dependent proliferation), and the kern€}s(x — y) express
the proportions of newly born cells changing their genotiypen y to z. Let us as-
sume that they depend on the distance between the genofype&inctionsf,,(x)
describe the influx or efflux of cells for different genotypes

The operators—A)*~, 1 < m < N insystem (1.1) describe a particular case of
anomalous diffusion actively treated in the context of masiapplications in plasma
physics and turbulence [7], [18], surface diffusion [14]6], semiconductors [17]
and so on. Anomalous diffusion can be understood as a randoregs of particle
motion characterized by the probability density distribatof jump length. The
moments of this density distribution are finite in the casaaimal diffusion, but
this is not the case for the anomalous diffusion. The asytiggbehavior at infinity
of the probability density function determines the valye 1 < m < N of the
power of the negative Laplacian (see [15]). The operatet&)* ", 1 < m < N
are defined by virtue of the spectral calculus. Let us condige case of) <
sm < 1/2, 1 < m < N in the present article. A similar system in the case of the
standard Laplacian in the diffusion term was treated régémt[30]. Let us note
that the restriction on the powess,, 1 < m < N here comes from the solvability
conditions of our problem.

We set here alD,,, = 1 and establish the existence of solutions of the system of
equations

—(=A)*mup, + . Koz —y)gm(u(y))dy + frn(x) =0, 0<s, < %, (1.2)
wherel < m < N. We treat the case when the linear part of this operator fails
to satisfy the Fredholm property. Consequently, the cotmeal methods of non-
linear analysis may not be applicable. Let us use the sdityabonditions for the
operators without Fredholm property along with the methbdamtraction map-
pings.

Let us consider the problem

—Au+ V(x)u — au = f, (1.3)

whereu € £ = H*(R?) andf € F = L*(RY), d € N, a is a constant and the scalar
potential functionV/ () is either zero identically or converges(@at infinity. For
a > 0, the essential spectrum of the operator £ — F' corresponding to the left
side of equation (1.3) contains the origin. Consequertig,dperator fails to satisfy
the Fredholm property. Its image is not closed,dor 1 the dimension of its kernel
and the codimension of its image are not finite. The preséictais devoted to the
studies of certain properties of the operators of this kivhote that elliptic equations
with non Fredholm operators were studied actively in regears. Approaches
in weighted Sobolev and Holder spaces were developed in [2], [4], [5],
[6]. The Schrodinger type operators without Fredholm propwere treated with
the methods of the spectral and the scattering theory in, [12%], [24]. The
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Laplace operator with drift from the point of view of non Fhedim operators was
studied in [27] and linearized Cahn-Hilliard equations #2]and [28]. Nonlinear
non Fredholm elliptic equations were treated in [26] and ].[ZBhe significant
applications to the theory of reaction-diffusion type pgesbs were developed in
[9], [10]. The operators without Fredholm property arisgoalvhen studying wave
systems with an infinite number of localized traveling waiges [1]). In particular,
whena = 0 the operatord is Fredholm in some properly chosen weighted spaces
(see [2], [3], [4], [5], [6]). However, the case af#£ 0 is significantly different and
the method developed in these works cannot be used. Fropagation problems
with anomalous diffusion were treated largely in recentryésee e.g. [20], [21]).

Let us setk,,(z) = &, (x), wheres,,, > 0, such that
€= MAT1<m<NEmM, S := MAT1<m<NSm
with0 < s < % and suppose that the assumption below is fulfilled.
Assumption 1. Let1 < m < N and conside® < s, < % Let fn(z) : R? - R
be nontrivial for somen. Let f,,(z) € L'(R*) N L*(R?) and
(~A)'" fu(z) € LA(R?).
We assume also that,,(z) : R* — R, such that,,(z) € L'(R?) and
(A5, (z) € L (R?).

Moreover,
Z 1KCon () || 71 g2y >

and

N
Q=) I(=A) K@) F2ze) > 0.

m=1

We choose here the space dimensios 2, which is related to the solvability
conditions for the linear Poisson type equation (4.1) givebemma 6 below. For
the applications, the space dimension is not restricteti402, because the space
variable here corresponds to the cell genotype but not taighal physical space.

In d = 1 our system was studied in [33] with dll< s,, = s < — based on the
solvability conditions for the analog of (4.1) in one dimi@ms Ind = 3 our system

was treated in [31] with allji < S =58 < R As distinct from the situation in
lower dimensiongl = 1,2, in R? we were able to apply the Sobolev inequality for
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the fractional negative Laplacian (see Lemma 2.2 of [12Zpa]13]). Let us use
the Sobolev spaces for the technical purposes tviths < 1, namely

H*(R?) = {¢(z) : R* = R| ¢(z) € L*(R?), (-A)*¢ € L*(R*)}
equipped with the norm
19172 m2)y = 19 72(m2) + (= 2)° D)1 Z2me)- (1.4)
For a vector vector function
u(@) = (ur(@), uz(2), ..., un(2))",

throughout the article we will use the norm

N
|’u”§{2(R2,RN) = ”u”i2(R2,RN) + Z ”AUmH%%R% (1.5)
m=1
with
N
||u||%2(]R2,RN) = Z ||Um||%2(m<2)-
m=1

By virtue of the standard Sobolev embedding in two dimersiare have

Pl e @2y < cell@] 2 ®2), (1.6)

wherec, > 0 is the constant of the embedding. When all the nonnegatiranpa:
terse,, = 0, we arrive at the linear Poisson type equations

(=AY Uy (x) = fru(x), 1< m < N. (1.7)

By virtue of Lemma 6 below along with Assumption 1 each edqurafil.7) admits
a unique solution

1
Uom(7) € H*"(R?), 0< 8, < =

1<m<N
27 —m— )

such that no orthogonality conditions are required herecofding to Lemma 6
below, when; < s,, < 1, a certain orthogonality condition (see formula (4.3)) is
needed to be able to solve equation (1.7}iti~ (R?). Because

—Aug(z) = (=AY fo(z) € LAR?), 1<m<N

due to Assumption 1, we obtain for the unique solution ofdingroblem (1.7) that
eachug,(z) € H*(R?), such that

uo(w) 1= (ug (), up2(), ..., uon ()" € H*(R* RY).
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Let us look for the resulting solution of nonlinear systeneqtiations (1.2) as
u(z) = uo(z) + up(x), (1.8)

with
up(z) = (up1 (), up (), ...,uva(:L’))T.

Evidently, we easily derive the perturbative system of éigna

1
()" (&) = £ [ Kol = (o) + w0y 0< 50 < 5, (L9)
R
with 1 < m < N. We introduce a closed ball in the Sobolev space
B, = {u(z) € H*R* R") | |lul| 2@z ev) < p}, 0<p< 1L (1.10)

Let us look for the solution of system (1.9) as the fixed poirthe auxiliary non-
linear problem

(8"t (0) = 2 | Konle = g (uoy) + )y, 0 <5 < 3. (12)

RQ
wherel < m < N in ball (1.10). For a given vector functiar(y) this is a system
of equations with respect to(x). The left side of (1.11) contains the operators
without the Fredholm property

(=A)*m . H*m(R?) — L*(R?).

Its essential spectrum fills the nonnegative semi-g@xisoo). Therefore, such op-
erator has no bounded inverse. The similar situation apgdearworks [26] and
[29] but as distinct from the present case, the problemsesdutiere required or-
thogonality conditions. The fixed point techniqgue was used[23] to estimate
the perturbation to the standing solitary wave of the Na@dmSchrodinger (NLS)
equation when either the external potential or the nontitean in the NLS were
perturbed but the Schrodinger operator involved in thdinear equation there pos-
sessed the Fredholm property (see Assumption 1 of [23], @Yo Let us define
the closed ball in the space 6f dimensions as

I:={z e R ||z] < ce||uo|l g2z rry + ce} (1.12)
and the closed balD,, in the space of?(I, RY) vector functions given by

{9(2) = (91(2), 92(2), ..., gn (2)) € C*(L,RY) | llgllezrmmy < M}, (1.13)

with M > 0. Here the norms
N
lgllczrzyy =3 lgmllc2ay, (1.14)
m=1
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lgmllc2y = lgmlloa + H Do
n=1 n

, (1.15)
elty)

DG
62n82’l

N
c(I) + 7;1 ’

where|| g o = maz.cr|gm(2)|. We make the following technical assumption
on the nonlinear part of problem (1.2).

Assumption 2. Let1 < m < N. Assume thay,,(z) : RY — R, such that
9m(0) = 0andVyg,,(0) = 0. Itis also assumed that(z) € D), and itis not equal
to zero identically in the ball.

Let us introduce the operatdi,, such that. = 7,v, wherew is a solution of
problem (1.11). Our first main result is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then for everg (0, 1] there exists
e* > 0, such that system (1.11) defines the rigp B, — B,, which is a strict
contraction for all0 < ¢ < &*. The unique fixed point,(x) of this mapT}, is the
only solution of problem (1.9) if8,.

Obviously, the resulting solution(x) of problem (1.2) will not vanish identi-
cally since the source termys,(x) are nontrivial for somed < m < N and all
9gm(0) = 0 due to the one of our assumptions. Let us make use of the folpw
elementary lemma.

Lemma 4. For R € (0, 4o00) consider the function

1
©(R) := aR*™* + 0<s< =, a>0.

Ris’ 2
: . 25 S
It attains the minimal value ai?* := | ————, which is given by
a(l —2s)
(1—25)271
R') = —————a*

Our second main proposition deals with the continuity offtked point of the
map 7, which existence was established in Theorem 3 above witlecégp the
nonlinear vector functiop.

Theorem 5. Letj = 1, 2, the assumptions of Theorem 3 hold, such tha{z)
is the unique fixed point of the mdp, : B, — B, which is a strict contraction for
all 0 < e < ¢ andd :=min(ej, e3). Then foralld < ¢ < § the estimate

up1 — Upoll 2@ zyy < Cllgr — g2llc2my) (1.16)

holds, whereg” > 0 is a constant.



Let us proceed to the proof of our first main statement.
2. The existence of the perturbed solution

Proof of Theorem 3.Let us choose an arbitrary vector functiofw) € B, and
denote the terms involved in the integral expressions irritite side of problem
(1.11) as

G () == gm(uo(x) +v(x)), 1<m<N.

Throughout the article we will use the standard Fourierdfam

o) = — | p(x)eda. 2.1)

2 R2
Clearly, we have the upper bound
~ 1
o)l =2y < 5 —ll¢(@) | mey. (2.2)
We apply (2.1) to both sides of problem (1.11). This yields

~ Kn(p)Gor(p)

Um(p) = em2T e 1<m< N
p|=m

Then we express the norm as

Kn(p) 121G (p)?
[ :47r253;1/RQ‘ (p|)p|‘4‘8m W, 1<m<n (23

As distinct from works [26] and [29] with the standard Lapéacin the diffusion
term, here we do not try to control the norms

Kn(p)

L 1<m<N.
p5m

)

Lo (R2)

Instead, let us estimate the right side of (2.3) via the anafdound (2.2) applied
to functions/C,,, andG,, with R € (0, +o0) as

i 21 A 2 i 21 A 2
47T253n[/ IlCm(p)ILGm(p)l dp+/ IlCm(p)ILGm(p)l dp} <
Ip|<R |p[*sm Ip|>R |p[*sm

2 2 1 2 R o
< 5m”’CmHL1(R2) E"Gm(x)HLl(RQ) 1_9

1
R HGm<x>HiZ(R2>}. (2.4

Sm

Be means of norm definition (1.5) along with the triangle &gy and since
v(z) € B, we easily arrive at

||UO + U||L2(R2,RN) S ||u0||H2(R2,RN) + 1.
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Sobolev embedding (1.6) gives us
|U() —+ U| S Ce<”uOHH2(R2,RN) -+ 1)

Let the dot stand for the scalar product of two vector®ih The representation

() = /O Vg (t(uo(2) + 0(2))) (o (x) + v()dt, 1< m <N,
where the ball is defined in (1.12) implies
(Con(@)] < super| Vg (2)luo(@) + v(2)] < Muo(x) +v(z)].
Therefore,
|G (@) z2(e2) < Mljuo + vl aqge vy < M(Jluollaqee vy + 1)-
Evidently, fort € [0,1] and1 < m,j < N, we have the representation

S t(uole) + (@) = [ VG (r{unfe) + 0(a))-(wo(e) + )

This gives us

OGrm OGm
2 tlun(e) ()| < supser| VG o) +0(a)] <
N
0 gm
= Z Haz 0z; C(I)|u0<x> (@)l
n=1 need
Thus,
N 829
|G (@)] < [uo(z)+v(z)| TN Juo () ()] < Mug(x) +o()]?.
02, 0z; llc()
n,j=1 ne
Therefore,
|G (@) || 12y < Mluo + 0172 gy < M (o]l 22 mvy +1)% (2.5)

This allows us to derive the estimate from above for the rgih¢ of (2.4) as

(||u0||H2(R2,RN) + 1)2R2—4sm . 1
47(1 — 28,,) T

Em M| Knll7 o) (10l 22 vy + 1)2{

whereR € (0,+o00). Lemma 4 yields the minimal value of the expression above.
Hence,

M2
(1 — 25,,) (878, )25

|2 @2) < e 1ol 7 a2y (1ol mr2gge vy + 1)
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We introduce
1 1

W = mal’lgmg]\fW,

) 1
with 0 < S < 5 Hence

M2
(1 - 25)(875)2"

)2+4s

[l 22 g2 vy < €22 (o]l 2z pvy + 1 (2.6)

Evidently, (1.11) gives us

—Auy,(x) = 5m(—A)1_8m/ Kn(z —y)Gn(y)dy, 1<m <N,
R2

. 1 : : .
with 0 < s,, < =. By virtue of the analog of estimate (2.2) applied to functio,,
along with (2.5) we arrive at

AU Z2@2) < enll Gl ) (= A) = Kl Zagey <

< M (Jluoll e eyy + D) I(=2) 7" K |2 g2y

Therefore,
N

D AU Fagzy < M3 (JJuo]l 22 pr) + 1)@ (2.7)
m=1
Thus, by means of the definition of the norm (1.5) along wittnestes (2.6) and
(2.7) we obtain the upper bound fu|| 2 g2 vy as

1
2

IC2 O, 1 4s—2
2 (HUOHH (R2,RN) + ) + Q2 < P (28)

(1— 25)(875)2S

eM([|uol| g2(r2 vy + 1)

for all e > 0 small enough. Therefore,(x) € B, as well. If for somev(z) € B,
there exist two solutions, »(z) € B, of problem (1.11), their difference(z) :=
uy(z) — up(z) € L?(R? RY) satisfies

1
(—=A)’mw,,(z) =0, 0<sm<§, 1<m<N.

Since the operatdr-A)*~ considered on the wholg? does not have any nontrivial
square integrable zero modes,z) = 0 a.e. onR?. Hence, system (1.11) defines a
mapTy, : B, — B, for all e > 0 sufficiently small.

Our aim is to prove that this map is a strict contraction. Weaode arbitrarily
v12(z) € B,. The argument above yields , := T,v;,» € B, as well. By virtue of
(1.11) we have fot <m < N

(A ™y () = 21 / Kon(@ — )gm(uoy) + )y, (2.9)
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(=A) " ug () = € ’C (= y)gm(uo(y) + va(y))dy, (2.10)
where all0 < s,,, < % Let us define

Gim(7) = gm(uo(2) +v1(2)),  Gom(z) = gm(uo(r) +va(z)), 1<mMm <N

and apply the standard Fourier transform (2.1) to both si@soblems (2.9) and
(2.10). This gives us

Kn(p)Gim(p) - Kn(0) G, (p)

U1 (p) = em2T , Ugm(p) = em2m
|p[?sm |p[#sm

Evidently,

| |G1m( ) GQ,m(p)P
|p[*sm

Ko
|t1m — UzmHL2(R2 =c 471'/ | dp.

Clearly, it can be bounded from above via estimate (2.2%H§C,.. |3, (&2) ¥

y |G 1m (%) = Gom ()| 71 g2y B2 N |G 1 () = Gom () (122 g2y
Am 1—2s,, Rism ’

whereR € (0, +o0). Let us make use of the representationtfet m < N

Grm(7) — Gom(x / Vgm(uo(z) +tvi(z) + (1 — t)va(z)).(vi(x) — v2(x))dL.
Evidently, fort € [0, 1]

[va(2) + t(v1(2) = va(@)) | 22y < v (@) 22y +

+(1 = DlJva(2)] 22 rvy <
which yields that,(z) + t(v1(x) — v2(x)) € B,. Thus,

|Grm () = Gom(@)] < supzer|Vgm(2)|[vi(z) — va(2)| < Mvi(z) — v2(2)].
This gives us
”Gl,m(l’) — G2,m(x)HL2(R2) S M”U1 — 'UQHLQ(RQ,RN) S M”U1 — 'UQHHQ(RQJRN).

Letus expressaag—m(uo( )+ tor(x) + (1 —t)vg(x)) forl <m,j < N as

/ V%< Tlup(2) + tor () + (1 — £)va(2)]).Juo(x) + tva(x) + (1 — t)va(x)]dr.
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Hence fort € [0, 1]

%ﬁl(uo(x) +to1(2) + (1= Hos(2)| <
S%;eiﬁzcmwmww¢mm»+u—wmum.

Thus we derive the estimate from abovedar,, (z) — G2, () in the absolute value
as

Mo (z) — va()|(io)| + 5lor (@)] + 5loa(a)]).

By virtue of the Schwarz inequality we obtain at the upperrzbfor the norm
|G1m(z) — GQ,m(x)HLl(]I@) as

1 1
Ml||v, — UQ”LQ(]RQ,RN) (HUOHLQ(RQ,RN) + éH'Ul”LQ(RQ,RN) + QHUQHLQ(RQRN)) <

< Mllvr = val oz mv) ([ wol w2z gy + 1) (2.11)

Hence we obtain the estimate from above for the ngpm,,(z) — uQ,m(:c)H%Q(RQ)
given by

1 Rt 1
ol M 01— walls ooy § = ol s vy + 11— + = .

4
Let us minimize the expression above overc (0, +o00) by virtue of Lemma 4.
Thus, we arrive au, () — uam(7)|| 72 gy <
(ol 2 g2 vy + 1)t
(1 — 28,,) (878, )%5m

< EQHICmH%l(R?)Mszl - UQH?“{?(R?,RN)
such that|u, (z) — ua ()] 7252 gry <

(luol| r2rzpry + 1)* 1

< KM ||vy — U2||%{2(R2,RN) 1—2s (8wS)28

(2.12)

Formulas (2.9) and (2.10) with< m < N give us

(=8) (urm (@) = uzm(w)) = Em(=A) 7" / Kn(x = y)[Grm(y) — Gom(y)]dy.

RQ

By means of inequalities (2.2) and (2.11) we derive
1A 1 () = w2,m (@) | Z2@ey < E21G1m — Gl @) | (=2)' " Kol f2ge) <
< M |lor — vl B2 g vy (1ol 2z mvy + 1) (=) K| 72 ey -
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Therefore S, [|A (1 m (%) — iz (2))[|2> g2y <

< XM ||vy — U2”§{2(R2,RN)(HuOHHQ(RQ,IRN) +1)°Q% (2.13)

Estimates (2.12) and (2.13) imply that the nafm — us || y2g2 g~y can be bounded
from above by the expressien/ (||ug || g2 g2 zyy + 1) X

. { K2 (||wol| g2 g2 vy + 1)%2

—+ 2 V1 — U 2(m2 RNY. 2.14
(0 — 29875 Q} [v1 = v g2 (r2 m ) (2.14)

This implies that the maff, : B, — B, defined by problem (1.11) is a strict
contraction for all values of > 0 sufficiently small. Its unique fixed point,(x) is
the only solution of system (1.9) in the ba),. The resulting:(z) € H*(R* R")
given by (1.8) is a solution of problem (1.2). Note that bytwer of (2.8)u,(z)
converges to zero in thE?(R?, RY) norm ass — 0. u

Let us turn our attention to the proof of the second main psamm of our
article.

3. The continuity of the fixed point of the mapT,
Proof of Theorem 5Evidently, for all0 < ¢ < § we have
Upy = Tgup1,  Upo = Tgytpo.

Thus,
Up1 — Upo = Tgyup1 — Ty upo + Toupo — Ty,upo.

Obviously,
[up1—tp 2|l m2ee vy < ([ Tgyupa—Tg up el me@emy )+ Tg up2 =Ty, up 2| 22 v)-
Estimate (2.14) gives us

[Ty upy — Ty upallmzre mvy < €0llupt — up ol g2z mvy,

whereco < 1 because the map,, : B, — B, under the given assumptions is a
strict contraction. Here and further down we use the pasitonstant

ICQ(HUOHHQ(RQ,RN) —+ 1)45—2 Q2 2
(1 —25)(878)* '

g = M(HUOHHQ([R?,RN) —+ 1){
Hence, we arrive at
(1 —eo)|lup,1 — up2llmzreryy < | Tg tp2 — Tootip 2| 2(re rr)- (3.1)
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Evidently, for our fixed pointlj,u,» = u,2. We designatg(z) := T, u,». For
1 <m < N, we obtain

(AP n(z) = e / Ko — )gim(un(y) + upa()dy,  (3.2)

R2
()" tyam() =en [ Kl = 9)gemlioly) + walo)dy,  @3)
R2
withall 0 < s, < % We denote here

Gram() == g1m(uo(®) +up2(2)),  Goom(x) = gom(uo(w) + up2()).

Let us apply the standard Fourier transform (2.1) to botaesaf formulas (3.2) and
(3.3). This gives us

N Kon(9)G1.2.m R £ (0)Cos
gm(p) = £,,2T (p> 2i72, (p>’ up,2,m<p> — 21 <p> 2?2, (p)
bl pP>
Clearly,

|2‘G1,2,m<p) — G2,2,m<p)‘2
|p|4sm

Kom(p
||€m(l') - up,Q,m(x)H%z(Rz) = 537147'(2 /RQ ‘ ( ) dp

Obviously, it can be estimated from above via (2.2) by

2k |12 |G12m — G2,2,m”%1(R2) R24sm ||Grom — G2,2,m”%2(R2)
7|l mHLl(R2) e 1-2s,, + Résm ’

whereR € (0, +c0). Let us use the identity

G1om(2) —Gaom(z) = /01 V1g1,m = go,m] (t(uo(z) +up2())). (wo(x) +up,2(x))di.
Hence
|Gr2,m(7) = Ga2m ()] < |lg1m — g2,mllc2(r) [uo(T) + up ()]
This yields
|G12m — Ga2mll2®2) < [|g1m — Gomllc2n U0 + up ol r2@e vy <

< |lg1m — g2mllc2y(|voll 22, mry + 1).

We apply another useful representation formulafox j; < N andt¢ € [0,1],

namely

0

5, (91m = g2 (Huo(@) + upa(2))) =
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-/ v [ 01— 920) (7 00(0) () ) + ()

Hence, we arrive at

‘%(gl,m = g2.m) (t(uo () + up2(x)))| <

82 (gl,m - gZ,m)
02,0%;

|uo () + up ()]
c(I)

N
<.
n=1

Therefore,

1G12m(%) = Gapm ()] < lg1m — g2mllc2(n|uo(@) + upa()|?,

such that
1G12.m — Gaamllii@®) < [l91m — gamlle2llto + up2l| 72 g2 gy <

< |lg1.m — gomllcz(y (w0l 22 mvy + 1) (3.4)
This allows us to obtain the estimate from above for the npgm — up,2,mH%2(R2)
ase?||KConl|7 1 2y

(”uoHHQ(RQ,RN) +1)2R24sm . 1
47’(’(1 — 25m) Rism |

X (1ol 2wz zvy + 1) g1.m — g2,m”%;2(1)

This expression can be easily minimized oy&E (0, +o00) due to Lemma 4. We
derive the upper bounit,,,(z) — up 2., () H%Q(Rg) <

g1,m — g2,mH202(1)

< s (lolz oy + 1740 = S

such that

g1 — 92H202(I,]RN)
(1—2s)(875)25

1§ (@) = wp2(@) 72 (g2 mvy < €K (ol r2gre ey + 1)*

Equalities (3.2) and (3.3) with < m < N give us

~260(0) = n(=8)7" [ Kol = 0)Granlu)ds

Aty g (2) = Em( =AY / K (2 — )G (y)dy.
R2
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Therefore, by virtue of (2.2) and (3.4) the nofA (&, (z) — upg,m(x))”%g(ﬂ%g) can
be bounded from above by

E1G12m — Gaom| 7@y [ (=A) 7" K[| 22 g2y <
< lg1m — Gamlle(n (Juol 2@z vy + 1) (= A) " Ko |72 g2y -

Therefore,

N
D NAE () = upam(@)172m2) < €91 — g2lle s mn) (ol 2@z mv) + 1)*Q%
m=1

Hence, we obtaifj{(x) — u,2(7)|| g2 (r2ry) <

1
2

]CQ(”UOHH2(R27]RN) + 1)4872
(1 — 25)(375)9

+Q?

<ellgr — 92”02(1,RN)(HU0HH2(R2,RN) + 1)2

By means of inequality (3.1), the norjja,, 1 —w, 2| ;2r2 rv) CaN be estimated from
above by

1

€ K (|| wo || rrzme mvy + 1)* 72 2
1 — €U(||u0||H2(R2,RN)+1)2 (1 —2s)(875)28 +Q g1 —92”02(1,[@1\’)7
which completes the proof of our theorem. m

4. Auxiliary results

Let us state here the solvability conditions for the lineaisBon type equation
with a square integrable right side

(=A)Y’p=f(z), zeR*) 0<s<l. (4.1)

The inner product can be designated as

(F@) gDz = | fla)g(x)dz, (4.2)

with a slight abuse of notations when the functions involve(.2) are not square
integrable, like for instance the one involved in orthodidyaondition (4.3) of
Lemma 6 below. Indeed, if(x) € L'(R?) andg(z) € L>(R?), then the integral in
the right side of (4.2) is well defined. We have the followieghnical proposition,
which can be easily established by applying the standardid¢tomansform (2.1)
to both sides of problem (4.1) (see the part b) of the firstrdgn@moof [34] and for

s = % the part 2) of Lemma 3.1 of [32]).
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Lemma 6. Let f(z) : R? — R and f(z) € L*(R?).
1) When0 < s < 1 and additionallyf(z) € L'(R?), equation (4.1) possesses
a unique solution(z) € H*(R?).

2) Wheni < s < 1 and in addition|z|f(z) € L'(R?), problem (4.1) has a
unique solutions(x) € H*(R?) if and only if the orthogonality relation

(f(#), Dr2me) = 0 (4.3)

holds.

Let us note that for the lower values of the power of the nggdtiaplacian

1 . . . .
0<s< 3 under the conditions stated above no orthogonality relataye required

to solve the linear Poisson type problem (4.1# (R?).
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