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Abstract

The asymptotic behavior of a family of singularly perturbed PDEs in two time variables in the complex
domain is studied. The appearance of a multilevel Gevrey asymptotics phenomenon in the perturbation
parameter is observed. We construct a family of analytic sectorial solutions in ε which share a common
asymptotic expansion at the origin, in different Gevrey levels. Such orders are produced by the action of
the two independent time variables.
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1 Introduction

This work is devoted to the study of a family of nonlinear initial value Cauchy problems of the
form

(1) Q1(∂z)Q2(∂z)∂t1∂t2u(t, z, ε) = (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε))

+
∑

0≤l1≤D1,0≤l2≤D2

ε∆l1,l2 t
dl1
1 ∂

δl1
t1
t
d̃l2
2 ∂

δ̃l2
t2
Rl1,l2(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε),

with initial null data u(0, t2, z, ε) ≡ u(t1, 0, z, ε) ≡ 0. Here, D1, D2 ≥ 2 are integer numbers, and
for every 0 ≤ l1 ≤ D1 and 0 ≤ l2 ≤ D2 we take non negative integers dl1 , δl1 , d̃l2 , δ̃l2 ,∆l1,l2 . The
elements Q1, Q2, R0 and Rl1,l2 for 0 ≤ l1 ≤ D1 and 0 ≤ l2 ≤ D2 turn out to be polynomials
with complex coefficients, and P1, P2 are polynomials in their first variable, with coefficients

∗The author is partially supported by the project MTM2016-77642-C2-1-P of Ministerio de Economı́a y Com-
petitividad, Spain
†The author is partially supported by the project MTM2016-77642-C2-1-P of Ministerio de Economı́a y Com-

petitividad, Spain.
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being holomorphic and bounded functions in a neighborhood of the origin, say D(0, ε0), for
some ε0 > 0: P1, P2 ∈ (O(D(0, ε0))[X].

The coefficient c0(t, z, ε) and the forcing term f(t, z, ε) are holomorphic and bounded func-
tions on D(0, r)2 ×Hβ ×D(0, ε0), where r > 0, and Hβ stands for the horizontal strip

Hβ := {z ∈ C : |Im(z)| < β},

for some β > 0.
The precise assumptions on the elements involved in the definition of the problem, and the

construction of the coefficients and the forcing term are described in detail in Section 5. We
mention two direct extensions that can be made to this study, and which do not offer any
additional difficulty. On one hand, the existence of a quadratic nonlinearity can be extended to
any higher order derivatives. On the other hand, the monomials in t1 and t2 appearing in the
linear part of the right-hand side of the main equation can be substituted by any polynomial
p(t1, t2) ∈ C[t1, t2]. We have restricted our study to the family of equations in the form (1) for
the sake of brevity, aiming for a more comprehensive reading.

The present work is a continuation of that in [7]. In that work, the existence of a k−summable
formal power series in the perturbation parameter ε is established, connecting the analytic so-
lution of the problem with the formal one via Gevrey asymptotics. More precisely, the analytic
solution is constructed in terms of a fixed point argument applied on a contractive map defined
on appropriate Banach spaces. It admits the formal solution as its Gevrey asymptotic of cer-
tain order with respect to the perturbation parameter ε, with coefficients belonging to certain
Banach space of functions. The Gevrey order emerges from the coefficients and the forcing term
appearing in the Cauchy problem.

The importance of the present work with respect to that previous one is mainly due to
the appearance of a multilevel Gevrey asymptotics phenomenon in the perturbation parameter,
when dealing with a multivariable approach in time. On the way, different and more assorted
situations appear. In addition to this, novel Banach spaces in zero, one and several time variables
appearing in the reasoning are necessary in order to describe exponential growth with respect
to certain monomial, or both time variables at the same time.

A recent overview on summability and multisummability techniques under different points
of view is displayed in [11].

In recent years, an increasing interest on complex singularly perturbed PDEs has been ob-
served in the area. Parametric Borel summability has been described in semilinear systems of
PDEs of Fuchsian type by H. Yamazawa and M. Yoshino in [16]

η

n∑
j=1

λjxj
∂

∂xj
u(x) = f(x, u),

where x = (x1, . . . , xn) ∈ Cn and f(x, u) = (f1(x, u), . . . , fN (x, u)), for n,N ≥ 1, and λj ∈ C.
ν is a small complex perturbation parameter and f stands for a holomorphic vector function
in a neighborhood of the origin in Cn × CN . Also, in partial differential equations of irregular
singular type by M. Yoshino in [17]:

η
n∑
j=1

λjx
sj
j

∂

∂xj
u(x) = g(x, u, η),

where sj ≥ 2 for 1 ≤ j ≤ m < n, and g(x, u, η) is a holomorphic vector function in some
neighborhood of the origin in Cn × CN × C.
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Recently, S.A. Carrillo and J. Mozo-Fernández have studied properties on monomial summa-
bility and the extension of Borel-Laplace methods to this theory in [4, 5]. In the last section of
the second work, a further development on multisummability with respect to several monomials
is proposed. Novel Gevrey asymptotic expansions and summability with respect to an analytic
germ are described in [13] and applied to different families of ODEs and PDEs such as(

x2
∂P

∂x2
+ αP k+1 + PA

)
x1

∂f

∂x1
−
(
x1
∂P

∂x1
+ βP k+1 + PB

)
x2

∂f

∂x2
= h,

where P is an homogeneous polynomial, k ∈ N? and h,A,B are convergent power series, and
α, β satisfy certain conditions.

The present research joins monomial summability techniques to obtain multisummability of
formal solutions of certain family of nonlinear PDEs.

The procedure in our study is as follows. The main problem under consideration, (1) is
specified in terms of an auxiliary problem through the change of variable (T1, T2) = (εt1, εt2)
and the properties of inverse Fourier transform (see Proposition 8). This change of variable has
been successfully applied previously by the authors in [12, 10, 7] and rests on the work by M.
Canalis-Durand, J. Mozo-Fernández and R. Schäfke [3]. This auxiliary problem is given by (32).
We guarantee the existence of a formal power series

Û(T1, T2,m, ε) =
∑

n1,n2≥1

Un1,n2(m, ε)Tn1
1 Tn2

2 ,

which formally solves (32) (see Proposition 10). Its coefficients depend holomorphically on
ε ∈ D(0, ε0), for some ε0 > 0, and belong to a Banach space of continuous functions with
exponential decay on R. The singular operators involved in the problem allow to expand them
into certain irregular operators at (T1, T2) = (0, 0), following the approach in the work [14]. A
second auxiliary problem (42) is obtained by means of two consecutive Borel transforms of order
k1 with respect to T1 and order k2 with respect to T2 in order to arrive at a convolution-like
problem.

At this point, we make use of a fixed point argument to an appropriate convolution operator
(see Proposition 11) in a Banach space of functions under certain growth and decay properties on
their variables (see Definition 1). It is worth mentioning that several Banach spaces are involved
in this result, due to the splitting of the sums in the linear operator which concerns functions
which only depend on τ1 or τ2, or which depend on both or neither of the variables in time.
This entails additional technical considerations on the way that different Banach spaces act on
convolution operators (see Section 2). Let k = (k1, k2). The fixed point theorem guarantees
the existence of a solution of the second auxiliary problem (42), ωk(τ1, τ2,m, ε), continuous on
D(0, ρ)2 × R×D(0, ε0) and holomorphic with respect to (τ1, τ2, ε) on D(0, ρ)2 ×D(0, ε), which

can be extended to functions ω
dp1 ,d̃p2
k (τ1, τ2,m, ε) defined on a set Sdp1 × Sdp2 × R × Ep1,p2 , for

every 0 ≤ p1 ≤ ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1. Here, Sdp1 (resp. Sd̃p2
) stands for an infinite sector

with vertex at the origin and bisecting direction dp1 ∈ R (resp. d̃p2 ∈ R), and (Ep1,p2)0≤p1≤ς1−1
0≤p2≤ς2−1

is a good covering of C? of finite sectors with vertex at the origin (see Definition 6). In addition

to this, the functions ω
dp1 ,d̃p2
k satisfy that

ω
dp1 ,d̃p2
k (τ1, τ2,m, ε)| ≤ $dp1 ,d̃p2 (1+|m|)−µ

| τ1ε |
1 + | τ1ε |2k1

| τ2ε |
1 + | τ2ε |2k2

exp(−β|m|+ν1|
τ1

ε
|k1−ν2|

τ2

ε
|k2),
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for some $dp1 ,d̃p2
> 0, and all (τ1, τ2,m, ε) ∈ Sdp1 × Sdp2 × R × Ep1,p2 . Returning to our main

problem, this entails that the function

up1,p2(t, z, ε) =
k1k2

(2π)1/2

∫ +∞

−∞

∫
Lγp1

∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizm

du2

u2

du1

u1
dm

defines a bounded and holomorphic function on (T1 ∩D(0, h′′))× (T2 ∩D(0, h′′))×Hβ′ ×Ep1,p2 ,
for some bounded sectors T1, T2 with vertex at 0, some h′′ > 0, and where Hβ′ is a horizontal
strip. The properties of Laplace and inverse Fourier transform guarantee that up1,p2 is an actual
solution of the main problem under study (1).

The previous statement shapes the first part of Theorem 1. The second part of that result
proves that the difference of two consecutive solutions up1,p2 and up′1,p′2 (in the sense that Ep1,p2

and Ep′1,p′2 are consecutive sectors in the good covering, with nonempty intersection) can be
classified into two categories: those pairs ((p1, p2), (p′1, p

′
2)) ∈ Uk1 such that

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kpe
− Mp

|ε|k1 , ε ∈ Ep1,p2 ∩ Ep′1,p′2 ,

uniformly for every tj ∈ Tj ∩D(0, h′′), for j = 1, 2 and all z ∈ Hβ′ ;
and those pairs ((p1, p2), (p′1, p

′
2)) ∈ Uk2 such that

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kpe
− Mp

|ε|k2 , ε ∈ Ep1,p2 ∩ Ep′1,p′2 ,

uniformly for every tj ∈ Tj ∩D(0, h′′), for j = 1, 2 and all z ∈ Hβ′ .
The second main result, Theorem 2, makes use of a multilevel version of Ramis-Sibuya

Theorem (see Theorem (RS)) and the exponential decay at zero with respect to the perturbation
parameter observed in Theorem 1, in order to state the existence of a formal power series
û(t1, t2, z, ε), written as a formal power series in ε, with coefficients in the Banach space F of
holomorphic and bounded functions on (T1∩D(0, h′′))×(T2∩D(0, h′′))×Hβ′ with the supremum
norm. This formal power series can be split as a sum of two formal power series in F[[ε]], and
each of the holomorphic solutions is decomposed accordingly in such a way that different Gevrey
asymptotic behavior can be observed in each term of the sum. This phenomenon is the key point
to multisummability, as described in [1] and also Section 7.5 in [11].

The structure of the paper is as follows.
Section 2 analyzes the structure of Banach spaces involved in the construction of the solution of
the main problem, and their behavior with respect to different convolution operators. A brief
overview on Laplace and Fourier transforms and related properties is described in Section 3.
Section 4 is devoted to the construction of two auxiliary problems and the existence of a fixed
point of certain operator which is the source for the construction of analytic solutions to the
main problem (1), obtained in Theorem 1 of Section 5. Finally, in Theorem 2 of Section 6,
we proof the existence of a formal solution, which is connected to the analytic solutions via a
multilevel Gevrey asymptotic representation.

2 Banach spaces functions with exponential growth and decay

We denote by D(0, r) an open disc centered at 0 with radius r > 0 in C, and by D̄(0, r) its
closure. Let Sdj be open unbounded sectors with bisecting directions dj ∈ R for j = 1, 2, and E
be an open sector with finite radius rE , all centered at 0 in C. For the sake of brevity, we denote
τ = (τ1, τ2).

The definition of the following norm heavily rests on that considered in [7]. Here, the
exponential growth is held with respect to the two time variables which are involved.
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Definition 1 Let ν1, ν2, β, µ > 0 and ρ > 0 be positive real numbers. Let k1, k2 ≥ 1 be integer
numbers and let ε ∈ E. We put ν = (ν1, ν2), k = (k1, k2), d = (d1, d2), and denote Fd(ν,β,µ,k,ε)
the vector space of continuous functions (τ ,m) 7→ h(τ ,m) on the set (D̄(0, ρ)∪Sd1)× (D̄(0, ρ)∪
Sd2)×R, which are holomorphic with respect to (τ1, τ2) on (D(0, ρ)∪ Sd1)× (D(0, ρ)∪ Sd2) and
such that

(2) ||h(τ ,m)||(ν,β,µ,k,ε)

= sup
τ∈(D̄(0,ρ)∪Sd1 )×(D̄(0,ρ)∪Sd2 )

m∈R

(1+|m|)µ
1 + | τ1ε |

2k1

| τ1ε |
1 + | τ2ε |

2k2

| τ2ε |
exp(β|m|−ν1|

τ1

ε
|k1−ν2|

τ2

ε
|k2)|h(τ,m)|

is finite. One can check that the normed space (Fd(ν,β,µ,k,ε), ||.||(ν,β,µ,k,ε)) is a Banach space.

Throughout the whole section, we assume ε ∈ E , µ, β,> 0 are fixed numbers. We also fix
ν = (ν1, ν2) for some positive numbers ν1, ν2, and k = (k1, k2) is a couple of positive integer
numbers. Additionally, we take d1, d2 ∈ R, and write d for (d1, d2). The next results are stated
without proofs, which are analogous to those in Section 2 of [7]. The integrals appearing in
these results can be split accordingly, in order to apply the proof therein.

Lemma 1 Let (τ ,m) 7→ a(τ ,m) be a bounded continuous function on (D̄(0, ρ)∪Sd1)×(D̄(0, ρ)∪
Sd2)× R, holomorphic with respect to τ on (D(0, ρ) ∪ Sd1)× (D(0, ρ) ∪ Sd2). Then,
(3)

||a(τ ,m)h(τ ,m)||(ν,β,µ,k,ε) ≤

(
sup

τ∈(D̄(0,ρ)∪Sd1 )×(D̄(0,ρ)∪Sd2 ),m∈R
|a(τ ,m)|

)
||h(τ ,m)||(ν,β,µ,k,ε)

for all h(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Proposition 1 Let γ21, γ22 > 0 be real numbers. Assume that k1, k2 ≥ 1 are such that 1/kj ≤
γ2j ≤ 1, for j = 1, 2. Then, a constant C1 > 0 (depending on ν,k, γ21, γ22) exists with

(4) ||
∫ τ

k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)γ21(τk2
2 − s2)γ22f(s

1/k1

1 , s
1/k2

2 ,m)
ds2

s2

ds1

s1
||(ν,β,µ,k,ε)

≤ C1|ε|k1γ21+k2γ22 ||f(τ,m)||(ν,β,µ,k,ε)

for all f(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Proposition 2 in [7] is adapted to the Banach space considered in this work.

Proposition 2 Let γ11, γ12 ≥ 0 and χ21, χ22 > −1 be real numbers. Let ξ21, ξ22 ≥ 0 be integer
numbers. We write γ1 = (γ11, γ12). We consider aγ,k ∈ O((D(0, ρ) ∪ Sd1) × (D(0, ρ) ∪ Sd2),
continuous on (D̄(0, ρ) ∪ Sd1)× (D̄(0, ρ) ∪ Sd2), such that

|aγ1,k(τ )| ≤ 1

(1 + |τ1|k1)γ11(1 + |τ2|k2)γ12
, τ ∈ (D̄(0, ρ) ∪ Sd1)× (D̄(0, ρ) ∪ Sd2).

Assume that for j = 1 and j = 2, one of the following holds

• χ2j ≥ 0 and ξ2j + χ2j − γ1j ≤ 0, or
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• χ2j =
χ̃j
kj
− 1, for some χ̃j ≥ 1 and ξ2j + 1

kj
− γ1j ≤ 0.

Then, there exists a constant C2 > 0 (depending, eventually, on ν, ξ21, ξ22, χ21, χ22,γ1, χ̃1, χ̃2,k)
such that

(5) ||aγ1,k(τ )

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)χ21(τk2
2 − s2)χ22sξ21

1 sξ22
2 f(s

1/k1

1 , s
1/k2

2 ,m)ds2ds1||(ν,β,µ,k,ε)

≤ C2|ε|k1(1+ξ21+χ21−γ11)+k2(1+ξ22+χ22−γ12)||f(τ,m)||(ν,β,µ,k,ε)

for all f(τ ,m) ∈ Fd(ν,β,µ,k,ε).

The previous result can also be particularized to each of the variables in time in the following
manner. We write the result which corresponds to the first time variable, but one can reproduce
the same arguments symmetrically on the second variable in time, τ2.

Proposition 3 Let γ1 ≥ 0 and χ2 > −1 be real numbers, and ξ2 ≥ 0 be an integer number. We
consider aγ1,k1 ∈ O(D(0, ρ) ∪ Sd1), continuous on D̄(0, ρ) ∪ Sd1, such that

|aγ1,k1(τ1)| ≤ 1

(1 + |τ1|k1)γ1
, τ1 ∈ D̄(0, ρ) ∪ Sd1 .

Assume that

• χ2 ≥ 0 and ξ2 + χ2 − γ1 ≤ 0, or

• χ2 = χ̃
k1
− 1, for some χ̃ ≥ 1 and ξ2 + 1

k1
− γ1 ≤ 0.

Then, there exists a constant C2 > 0 (depending, eventually, on ν, ξ2, χ2, γ1, χ̃, k1) such that

(6) ||aγ1,k1(τ1)

∫ τ
k1
1

0
(τk1

1 − s1)χ2sξ21 f(s
1/k1

1 , τ2,m)ds1||(ν,β,µ,k,ε)

≤ C2|ε|k1(1+ξ2+χ2−γ1)||f(τ ,m)||(ν,β,µ,k,ε)

for all f(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Proposition 4 Let Q1(X), Q2(X), R(X) ∈ C[X] such that

(7) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0, m ∈ R.

Assume that µ > max(deg(Q1) + 1, deg(Q2) + 1). Let m 7→ b(m) be a continuous function on R
such that

|b(m)| ≤ 1

|R(im)|
, m ∈ R.

Then, there exists a constant C3 > 0 (depending on Q1, Q2, R, µ,k,ν) such that

(8) ||b(m)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)
1
k1 (τk2

2 − s2)
1
k2

×
(∫ s1

0

∫ s2

0

∫ +∞

−∞
Q1(i(m−m1))f((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)

×Q2(im1)g(x
1/k1

1 , x
1/k2

2 ,m1)
1

(s1 − x1)x1

1

(s2 − x2)x2
dm1dx2dx1

)
ds2ds1||(ν,β,µ,k,ε)

≤ C3|ε|2||f(τ ,m)||(ν,β,µ,k,ε)||g(τ ,m)||(ν,β,µ,k,ε)

for all f(τ ,m), g(τ ,m) ∈ Fd(ν,β,µ,k,ε).
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Definition 2 Let ε ∈ E. We denote F d1

(ν1,β,µ,k1,ε)
the vector space of continuous functions

(τ1,m) 7→ h(τ1,m) defined on the set (D̄(0, ρ)∪Sd1)×R, which are holomorphic with respect to
τ1 on D(0, ρ) ∪ Sd1 and such that

(9) ||h(τ1,m)||(ν1,β,µ,k1,ε)

= sup
τ1∈(D̄(0,ρ)∪Sd1 ),m∈R

(1 + |m|)µ
1 + | τ1ε |

2k1

| τ1ε |
exp(β|m| − ν1|

τ1

ε
|k1)|h(τ1,m)|

is finite. The normed space (F d1

(ν1,β,µ,k1,ε)
, ||.||(ν1,β,µ,k1,ε)) is a Banach space.

The enunciate of Proposition 4 can be adapted in the following form to the Banach spaces
involved, as follows.

Proposition 5 Let Q1(X), Q2(X), R(X) ∈ C[X] such that

(10) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0, m ∈ R.

Assume that µ > max(deg(Q1) + 1,deg(Q2) + 1). Let m 7→ b(m) be a continuous function on R
such that

|b(m)| ≤ 1

|R(im)|
, m ∈ R.

Then, there exists a constant C3.2 > 0 (depending on Q1, Q2, R, µ,k,ν) such that

(11) ||b(m)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)
1
k1 (τk2

2 − s2)
1
k2

×
(∫ s1

0

∫ +∞

−∞
Q1(i(m−m1))f((s1 − x1)1/k1 ,m−m1)

×Q2(im1)g(x
1/k1

1 , s
1/k2

2 ,m1)
1

(s1 − x1)x1
dm1dx1

)
ds2

s2
ds1||(ν,β,µ,k,ε)

≤ C3.2|ε|2||f(τ1,m)||(ν1,β,µ,k1,ε)||g(τ ,m)||(ν,β,µ,k,ε)

for all f(τ1,m) ∈ F d1

(ν1,β,µ,k1,ε)
and g(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Proof A first stage of the proof is analogous to that of Proposition 3 in [7], concerning the
operators involving the first variable in time, τ1. One leads to

||b(m)aγ2,k2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)
1
k1 (τk2

2 − s2)
1
k2

(∫ s1

0

∫ +∞

−∞
Q1(i(m−m1))

f((s1 − x1)1/k1 ,m−m1)×Q2(im1)g(x
1/k1

1 , s
1/k2

2 ,m1)
1

(s1 − x1)x1
dx1dm1

)
ds2

s2
ds1||(ν,β,µ,k,ε)

≤ sup
τ2∈D(0,ρ)∪Sd2

C̃3.2|ε|
1 +

∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp(−ν2

∣∣∣τ2

ε

∣∣∣k2

)

∫ |τ2|k2

0
(|τ2|k2 − |s2|)1/k2

|s2|1/k2/|ε|
1 + |s2|2/|ε|2k2

exp(ν2
|s2|
|ε|k2

)
d|s2|
|s2|
‖f‖(ν1,β,µ,k1,ε)

‖g‖(ν,β,µ,k,ε) ,
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for some C̃3.2 > 0. The change of variable |s2| = h|ε|k2 in the integral above allow us guarantee
that the previous expression is upper bounded by

C̃3.2|ε|2 sup
x≥0

1 + x2

x1/k2
exp(−ν2x)

∫ x

0
(x− h)1/k2

h1/k2

1 + h2
exp(ν2h)

dh

h
‖f‖(ν1,β,µ,k1,ε)

‖g‖(ν,β,µ,k,ε)

= C̃3.2|ε|2 sup
x≥0

A(x) ‖f‖(ν1,β,µ,k1,ε)
‖g‖(ν,β,µ,k,ε) .

It is straight to check that A(x) is bounded for all x ≥ 0, and the result is attained. 2

The previous result is also valid by interchanging the role of the variables τ1 and τ2. The
following definition deals with a Banach space considered in [7]. We provide inner operaions
linking this and the previous Banach spaces.

Definition 3 Let β, µ ∈ R. We denote by E(β,µ) the vector space of continuous functions
h : R→ C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) equipped with the norm ||.||(β,µ) is a Banach space.

Proposition 6 Let Q(X), R(X) ∈ C[X] such that

(12) deg(R) ≥ deg(Q) , R(im) 6= 0

for all m ∈ R. Assume that µ > deg(Q) + 1. Let m 7→ b(m) be a continuous function such that

|b(m)| ≤ 1

|R(im)|
, m ∈ R.

Then, there exists a constant C4 > 0 (depending on Q,R, µ,k, ν) such that

(13)

||b(m)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 −s1)
1
k1 (τk2

2 −s2)
1
k2

∫ +∞

−∞
f(m−m1)Q(im1)g(s

1/k1

1 , s
1/k2

2 ,m1)dm1
ds2

s2

ds1

s1
||(ν,β,µ,k,ε)

≤ C4|ε|2||f(m)||(β,µ)||g(τ ,m)||(ν,β,µ,k,ε)

for all f(m) ∈ E(β,µ), all g(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Proposition 7 Let Q1(X), Q2(X), R(X) ∈ C[X] such that

(14) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0, m ∈ R.

Assume that µ > max(deg(Q1)+1,deg(Q2)+1). Then, there exists a constant C5 > 0 (depending
on Q1, Q2, R, µ) such that

(15) || 1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1||(β,µ)

≤ C5||f(m)||(β,µ)||g(m)||(β,µ)
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for all f(m), g(m) ∈ E(β,µ). Therefore, (E(β,µ), ||.||(β,µ)) becomes a Banach algebra for the prod-
uct ? defined by

f ? g(m) =
1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1.

As a particular case, when f, g ∈ E(β,µ) with β > 0 and µ > 1, the classical convolution product

f ∗ g(m) =

∫ +∞

−∞
f(m−m1)g(m1)dm1

belongs to E(β,µ).

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We recall the definition of k−Borel summable formal power series with coefficients in a fixed
Banach space (E, ||.||E). This tool has been adapted from the classical version in [1], Section 3.2.

Definition 4 Let k ≥ 1 be an integer. Let mk(n) be the sequence defined by

mk(n) = Γ(
n

k
) =

∫ +∞

0
t
n
k
−1e−tdt, n ≥ 1.

A formal power series X̂(T ) =
∑∞

n=1 anT
n ∈ TE[[T ]] is mk−summable with respect to t in the

direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called a formal mk−Borel
transform of X̂

Bmk(X̂)(τ) =
∞∑
n=1

an
Γ(nk )

τn ∈ τE[[τ ]],

is absolutely convergent for |τ | < ρ.

ii) there exists δ > 0 such that the series Bmk(X̂)(τ) can be analytically continued with
respect to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0 and
K > 0 such that

||Bmk(X̂)(τ)||E ≤ CeK|τ |
k
, τ ∈ Sd,δ.

Under the previous hypotheses, the vector valued Laplace transform of Bmk(X̂)(τ) in the
direction d is defined by

Ldmk(B(X̂))(T ) = k

∫
Lγ

Bmk(X̂)(u)e−(u/T )k du

u
,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such a way

that cos(k(γ − arg(T ))) ≥ δ1 > 0, for some fixed δ1. The function Ldmk(Bmk(X̂))(T ) is well
defined, holomorphic and bounded in any sector

Sd,θ,R1/k = {T ∈ C∗ : |T | < R1/k , |d− arg(T )| < θ/2},
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where π
k < θ < π

k + 2δ and 0 < R < δ1/K. This function is called the mk−sum of the formal

series X̂(T ) in the direction d.

Some elementary properties regarding mk−sums of formal power series are the following:

1) Ldmk(Bmk(X̂))(T ) admits X̂(T ) as its Gevrey asymptotic expansion of order 1/k with respect
to t on Sd,θ,R1/k . More precisely, for every π

k < θ1 < θ, there exist C,M > 0 such that

(16) ||Ldmk(Bmk(X̂))(T )−
n−1∑
p=1

apT
p||E ≤ CMnΓ(1 +

n

k
)|T |n, n ≥ 2, T ∈ Sd,θ1,R1/k

Unicity of such function on sectors Sd,θ1,R1/k with opening θ1 >
π
k is guaranteed by Watson’s

lemma (see Proposition 11 p. 75, [1]).

2) Let us assume that (E, ||.||E) also has the structure of a Banach algebra for a product ?. Let
X̂1(T ), X̂2(T ) ∈ TE[[T ]] be mk−summable formal power series in direction d. Let q1 ≥ q2 ≥ 1 be
integers. We assume that X̂1(T ) + X̂2(T ), X̂1(T ) ? X̂2(T ) and T q1∂q2T X̂1(T ), which are elements
of TE[[T ]], are mk−summable in direction d. Then, the following equalities

(17) Ldmk(Bmk(X̂1))(T ) + Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 + X̂2))(T ),

Ldmk(Bmk(X̂1))(T ) ? Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 ? X̂2))(T )

T q1∂q2T L
d
mk

(Bmk(X̂1))(T ) = Ldmk(Bmk(T q1∂q2T X̂1))(T )

hold for all T ∈ Sd,θ,R1/k .

The next result recalls some properties on the mk−Borel transform, successfully used in [7, 8]

Proposition 8 Let (E, ||.||E) be a Banach algebra for some product ?. Let f̂(t) =
∑

n≥1 fnt
n ∈

E[[t]], ĝ(t) =
∑

n≥1 gnt
n ∈ E[[t]]. Let k,m ≥ 1 be integers. Then, the following formal identities

hold.

(18) Bmk(tk+1∂tf̂(t))(τ) = kτkBmk(f̂(t))(τ)

(19) Bmk(tmf̂(t))(τ) =
τk

Γ(mk )

∫ τk

0
(τk − s)

m
k
−1Bmk(f̂(t))(s1/k)

ds

s

and

(20) Bmk(f̂(t) ? ĝ(t))(τ) = τk
∫ τk

0
Bmk(f̂(t))((τk − s)1/k) ? Bmk(ĝ(t))(s1/k)

1

(τk − s)s
ds

Some regular properties of inverse Fourier transform are also involved in our construction.

Proposition 9 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f , defined
by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm, x ∈ R,

extends to an analytic function on the strip

(21) Hβ = {z ∈ C/|Im(z)| < β}.
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Let φ(m) = imf(m) ∈ E(β,µ−1). Then, it holds

(22) ∂zF−1(f)(z) = F−1(φ)(z), z ∈ Hβ.

Let g ∈ E(β,µ) and put ψ(m) = 1
(2π)1/2 f ∗ g(m), the convolution product of f and g, for all

m ∈ R. From Proposition 7, one gets that ψ ∈ E(β,µ). Moreover, we have

(23) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z), z ∈ Hβ

4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

Let k1, k2 ≥ 1 andD1, D2 ≥ 2 be integers. For j ∈ {1, 2} and 1 ≤ lj ≤ Dj , let dl1 , δl1 ,∆l1,l2 , d̃l2 , δ̃l2
be non negative integers. We assume that

(24) 1 = δ1 = δ̃1 , δl1 < δl1+1 , δ̃l2 < δ̃l2+1

for all 1 ≤ l1 ≤ D1 − 1 and 1 ≤ l2 ≤ D2 − 1. We also make the assumptions that

(25) dD1 = (δD1 − 1)(k1 + 1) , dl1 > (δl1 − 1)(k1 + 1)

for all 1 ≤ l1 ≤ D1 − 1, and

(26) d̃D2 = (δ̃D2 − 1)(k2 + 1) , d̃l2 > (δ̃l2 − 1)(k2 + 1)

for all 1 ≤ l2 ≤ D2 − 1. We take

(27) ∆D1,D2 = dD1 + d̃D2 − δD1 − δ̃D2 + 2 , ∆D1,0 = dD1 − δD1 + 1 , ∆0,D2 = d̃D2 − δ̃D2 + 1

Let Q1(X), Q2(X), R0(X) ∈ C[X], and for 1 ≤ l1 ≤ D1 and 1 ≤ l2 ≤ D2, we take Rl1,l2(X) ∈
C[X] such that

(28) RD1,l2 ≡ Rl1,D2 ≡ 0, 1 ≤ l1 ≤ D1, 1 ≤ l2 ≤ D2

and such that RD1,D2 can be factorized in the form RD1,D2(X) = RD1,0(X)R0,D2(X). We write
RD1 := RD1,0 and RD2 := R0,D2 for simplicity. Let P1, P2 be polynomials with coefficients
belonging to O(D(0, ε0))[X], for some ε0 > 0. We assume that

(29) deg(Qj) ≥ deg(RDj ), j ∈ {1, 2},

and

(30) deg(Qj) ≥ deg(RDj ) , deg(RD1,D2) ≥ deg(Rl1,l2)

deg(RD1,D2) ≥ deg(P1) , deg(RD1,D2) ≥ deg(P2) , Qj(im) 6= 0 , RD1,D2(im) 6= 0

for all m ∈ R, all j ∈ {1, 2} and 0 ≤ lj ≤ Dj − 1.
For every non negative integer n, we take m 7→ C0,n(m, ε), and m 7→ Fn+1(m, ε), belonging

to the Banach space E(β,µ) for some β > 0 and µ > max{deg(P1) + 1, deg(P2) + 1}, depending
holomorphically on ε ∈ D(0, ε0), for some positive ε0. We assume the existence of K0, T0 > 0
such that

(31) ||Cn1,n2(m, ε)||(β,µ) ≤ K0(
1

T0
)n1+n2 , ||Fn1,n2(m, ε)||(β,µ) ≤ K0(

1

T0
)n1+n2
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for all n1, n2 ≥ 1 and ε ∈ D(0, ε0). We write T = (T1, T2) and put

C0(T ,m, ε) =
∑

n1,n2≥0

Cn1,n2(m, ε)Tn1
1 Tn2

2 , F (T ,m, ε) =
∑

n1,n2≥1

Fn1,n2(m, ε)Tn1
1 Tn2

2

which are convergent series on D(0, T0/2) ×D(0, T0/2) with values in E(β,µ). We consider the
following singular initial value problem

(32)(
Q1(im)∂T1 − T

(δD1
−1)(k1−1)

1 ∂
δD1
T1

RD1(im)
)(

Q2(im)∂T2 − T
(δ̃D2

−1)(k2−1)

2 ∂
δ̃D2
T2

RD2(im)

)
U(T ,m, ε)

= ε−2 1

(2π)1/2

∫ +∞

−∞
P1(i(m−m1), ε)U(T ,m−m1, ε)P2(im1, ε)U(T ,m1, ε)dm1

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−2T

dl1
1 T

d̃l2
2 ∂

δl1
T1
∂
δ̃l2
T2
R`1,`2(im)U(T ,m, ε)

+ ε−2 1

(2π)1/2

∫ +∞

−∞
C0(T ,m−m1, ε)R0(im1)U(T ,m1, ε)dm1

+ ε−2F (T ,m, ε)

for given initial data U(T1, 0,m, ε) ≡ U(0, T2,m, ε) ≡ 0.

Proposition 10 There exists a unique formal series

Û(T ,m, ε) =
∑

n1,n2≥1

Un1,n2(m, ε)Tn1
1 Tn2

2

solution of (32) with initial data U(T1, 0,m, ε) ≡ U(0, T2,m, ε) ≡ 0, where the coefficients m 7→
Un1,n2(m, ε) belong to E(β,µ) for β > 0 and µ > max(deg(P1) + 1,deg(P2) + 1) given above and
depend holomorphically on ε in D(0, ε0) \ {0}.

Proof Proposition 8 and the conditions in the statement above yield Un1,n2(m, ε) are determined
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by the following recursion formula and belong to E(β,µ) for all ε ∈ D(0, ε0) \ {0},

(33) (n1 + 1)(n2 + 1)Un1+1,n2+1(m, ε)

=
ε−2

Q1(im)Q2(im)

∑
n11+n12=n1
n11,n12≥1

∑
n21+n22=n2
n21,n22≥1

1

(2π)1/2

×
∫ +∞

−∞
P1(i(m−m1))Un11,n21(m−m1, ε)P2(im1)Un12n22(m1, ε)dm1

+
RD1(im)

Q1(im)
(n2 + 1)

δD1
−1∏

j=0

(n1 + δD1 − (δD1 − 1)(k1 − 1)− j)Un1+δD1
−(δD1

−1)(k1−1),n2+1

+
RD2(im)

Q2(im)
(n1 + 1)

δ̃D2
−1∏

j=0

(n2 + δ̃D2 − (δ̃D2 − 1)(k2 − 1)− j)Un1+1,n2+δ̃D2
−(δ̃D2

−1)(k2−1)

−RD1(im)

Q1(im)

RD2(im)

Q2(im)

δD1
−1∏

j1=0

δ̃D2
−1∏

j2=0

(n1+δD1−(δD1−1)(k1−1)−j1)(n2+ δ̃D2−(δ̃D2−1)(k2−1)−j2)

× Un1+δD1
−(δD1

−1)(k1−1),n2+δ̃D2
−(δ̃D2

−1)(k2−1)

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−2 R`1,`2(im)

Q1(im)Q2(im)

δ`1−1∏
j1=0

(n1 + δl1 − dl1 − j1)

×
δ̃`2−1∏
j2=0

(n2 + δ̃l2 − d̃l2 − j2)Un1+δl1−dl1 ,n2+δ̃l2−d̃l2

+
ε−2

Q1(im)Q2(im)

∑
n11+n12=n1
n11,n12≥1

∑
n21+n22=n2
n21,n22≥1

1

(2π)1/2

∫ +∞

−∞
Cn11,n21(m−m1, ε)R0(im1)Un12,n22(m1, ε)dm1

+
ε−2

Q1(im)Q2(im)

∑
n11+n12=n1
n11,n12≥1

1

(2π)1/2

∫ +∞

−∞
Cn11,0(m−m1, ε)R0(im1)Un12,n2(m1, ε)dm1

+
ε−2

Q1(im)Q2(im)

∑
n21+n22=n2
n21,n22≥1

1

(2π)1/2

∫ +∞

−∞
C0,n21(m−m1, ε)R0(im1)Un1,n22(m1, ε)dm1

+
ε−2

Q1(im)Q2(im)

1

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Un1,n2(m1, ε)dm1

+
ε−2

Q1(im)Q2(im)
Fn1,n2(m, ε)

for all n1 ≥ max1≤l≤D1 dl and n2 ≥ max1≤l≤D2 d̃l. 2

The following relations (see [14], p. 40) hold

(34) T
δD1

(k1+1)

1 ∂
δD1
T1

= (T k1+1
1 ∂T1)δD1 +

∑
1≤p1≤δD1

−1

AδD1
,p1T

k1(δD1
−p1)

1 (T k1+1
1 ∂T1)p1

= (T k1+1
1 ∂T1)δD1 +AδD1

(T1, ∂T1)
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(35) T
δ̃D2

(k2+1)

2 ∂
δ̃D2
T2

= (T k2+1
2 ∂T2)δ̃D2 +

∑
1≤p2≤δ̃D2

−1

Ãδ̃D2
,p2
T
k2(δ̃D2

−p2)

2 (T k2+1
2 ∂T2)p2

= (T k2+1
2 ∂T2)δ̃D2 + Ãδ̃D2

(T2, ∂T2)

for some real numbers AδD1
,p1 , p1 = 1, . . . , δD1 − 1 and Ãδ̃D2

,p2
, p2 = 1, . . . , δ̃D2 − 1. We write

AD1 (resp. ÃD2) for AδD1
(resp. Ãδ̃D2

) for the sake of simplicity. Let dl1,k1 , d̃l1,k2 ≥ 0 satisfying

(36) dl1 + k1 + 1 = δl1(k1 + 1) + dl1,k1 d̃l2 + k2 + 1 = δ̃l2(k2 + 1) + d̃l2,k2

for all 1 ≤ l1 ≤ D1 − 1 and 1 ≤ l2 ≤ D2 − 1. Multiplying the equation (32) by T k1+1
1 T k2+1

2 and
taking into account (34,35), we rewrite (32) in the form

(37)
(
Q1(im)T k1+1

1 ∂T1 −
(

(T k1+1
1 ∂T1)δD1 +AD1(T1, ∂T1)

)
RD1(im)

)
×
(
Q2(im)T k2+1

2 ∂T2 −
(

(T k2+1
2 ∂T2)δ̃D2 + ÃD2(T2, ∂T2)

)
RD2(im)

)
U(T ,m, ε)

= ε−2T k1+1
1 T k2+1

2

1

(2π)1/2

∫ +∞

−∞
P1(i(m−m1), ε)U(T ,m−m1, ε)P2(im1, ε)U(T,m1, ε)dm1

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

ε∆l1,l2
−dl1−dl2+δl1+δ̃l2−2T

δl1 (k1+1)+dl1,k1
1 ∂

δl1
T1

× T δ̃l2 (k2+1)+d̃l2,k2
2 ∂

δ̃l2
T2
Rl1,l2(im)U(T ,m, ε)

+ ε−2T k1+1
1 T k2+1

2

1

(2π)1/2

∫ +∞

−∞
C0(T ,m−m1, ε)R0(im1)U(T ,m1, ε)dm1

+ ε−2T k1+1
1 T k2+1

2 F (T ,m, ε)

We write τ = (τ1, τ2) and denote by ωk(τ ,m, ε) for the formal mk1−Borel transform with re-
spect to T1 and themk2−Borel transform with respect to T2 of Û(T1, T2,m, ε). Let ϕk(τ1, τ2,m, ε)
denote the formal mk1−Borel transform with respect to T1 and the mk2−Borel transform with
respect to T2 of C0(T ,m, ε); and ψk(τ ,m, ε) the formal mk1−Borel transform with respect to
T1 and the mk2−Borel transform with respect to T2 of F (T ,m, ε),

ωk(τ ,m, ε) =
∑

n1,n2≥1

Un1,n2(m, ε)
τn1

1

Γ(n1
k1

)

τn2
2

Γ(n2
k2

)
,

ϕk(τ ,m, ε) =
∑

n1,n2≥1

Cn1,n2(m, ε)
τn1

1

Γ(n1
k1

)

τn2
2

Γ(n2
k2

)
,

ϕ1
k(τ1,m, ε) =

∑
n1≥1

Cn1,0(m, ε)
τn1

1

Γ(n1
k1

)
,

ϕ2
k(τ2,m, ε) =

∑
n2≥1

C0,n2(m, ε)
τn2

2

Γ(n2
k2

)
,

ψk(τ ,m, ε) =
∑

n1,n2≥1

Fn1,n2(m, ε)
τn1

1

Γ(n1
k1

)

τn2
2

Γ(n2
k2

)
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Using (31) we arrive at ϕk(τ , ε) ∈ Fd(ν,β,µ,k,ε) and ψk(τ ,m, ε) ∈ Fd(ν,β,µ,k,ε), for all ε ∈ D(0, ε0) \
{0}, any unbounded sectors Sd1 and Sd2 centered at 0 and bisecting directions d1 ∈ R and
d2 ∈ R, respectively, for some ν = (ν1, ν2) ∈ (0,+∞)2. Indeed, we have

(38) ||ϕk(τ ,m, ε)||(ν,β,µ,k,ε) ≤
∑

n1,n2≥1

||Cn1,n2(m, ε)||(β,µ)

× ( sup
τ∈(D̄(0,ρ)∪Sd1 )×(D̄(0,ρ)∪Sd2 )

1 + | τ1ε |
2k1

| τ1ε |
1 + | τ2ε |

2k2

| τ2ε |
exp(−ν1|

τ1

ε
|k1 − ν2|

τ2

ε
|k2)
|τ1|n1 |τ2|n2

Γ(n1
k1

)Γ(n2
k2

)
),

||ψk(τ ,m, ε)||(ν,β,µ,k,ε) ≤
∑

n1,n2≥1

||Fn1,n2(m, ε)||(β,µ)

× ( sup
τ∈(D̄(0,ρ)∪Sd1 )×(D̄(0,ρ)∪Sd2 )

1 + | τ1ε |
2k1

| τ1ε |
1 + | τ2ε |

2k2

| τ2ε |
exp(−ν1|

τ1

ε
|k1 − ν2|

τ2

ε
|k2)
|τ1|n1 |τ2|n2

Γ(n1
k1

)Γ(n2
k2

)
)

Using classical estimates and Stirling formula we guarantee the existence of A1, A2 > 0 depending
on ν,k such that, if ε0A2 < T0, then for all ε ∈ D(0, ε0) \ {0}. One has

(39) ||ϕk(τ ,m, ε)||(ν,β,µ,k,ε) ≤
A1K0(
T0
ε0A2
− 1
)2 , ||ψk(τ ,m, ε)||(ν,β,µ,k,ε) ≤

A1K0(
T0
ε0A2
− 1
)2

for all ε ∈ D(0, ε0) \ {0}.
One can also check that in the case that ε0 fulfills ε0A2 < T0, then

(40) ||ϕ1
k(τ1,m, ε)||(ν1,β,µ,k1,ε) ≤

A1K0

T0
ε0A2
− 1

, ||ϕ2
k(τ2,m, ε)||(ν2,β,µ,k2,ε) ≤

A1K0

T0
ε0A2
− 1

for all ε ∈ D(0, ε0) \ {0}.
From the properties of the formal mk1−Borel and mk2−Borel transforms stated in Proposi-

tion 6 we get the following equation satisfied by ωk(τ ,m, ε). In the following writing, AD1(τ1, ∂T1)
(resp. ÃD2(τ2, ∂T2)) stands for the mk1−Borel transform of the operator AD1(T1, ∂T1) with re-
spect to T1 (resp. the mk2−Borel transform of the operator ÃD2(T2, ∂T2) with respect to T2),
i.e.

(41)

AδD1
ωk(τ ,m, ε) =

∑
1≤p1≤δD1

−1

AδD1
,p1τ

k1
1

Γ(δD1 − p1)

∫ τ
k1
1

0
(τk1

1 − s1)δD1
−p1−1k1s

p1
1 ωk(s

1/k1

1 , τ2,m, ε)
ds1

s1
,

Ãδ̃D2
ωk(τ ,m, ε) =

∑
1≤p2≤δ̃D2

−1

Ãδ̃D2
,p2
τk2

2

Γ(δ̃D2 − p2)

∫ τ
k2
2

0
(τk2

2 − s2)δ̃D2
−p2−1k2s

p2
2 ωk(τ1, s

1/k2

2 ,m, ε)
ds2

s2
.

We arrive at
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(42) (Q1(im)k1τ
k1
1 − (k1τ

k1
1 )δD1RD1(im))(Q2(im)k2τ

k2
2 − (k2τ

k2
2 )δ̃D2RD2(im))ωk(τ ,m, ε)

= (Q1(im)k1τ
k1
1 − (k1τ

k1
1 )δD1RD1(im))ÃD2RD2(im)ωk(τ ,m, ε)

+ (Q2(im)k2τ
k2
2 − (k2τ

k2
2 )δ̃D2RD2(im))AD1RD1(im)ωk(τ ,m, ε)

−AD1ÃD2RD1(im)RD2(im)ωk(τ ,m, ε)

+ ε−2 τk1
1 τk2

2

Γ(1 + 1
k1

)Γ(1 + 1
k2

)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
(

1

(2π)1/2
s1s2

∫ s1

0

∫ s2

0

∫ +∞

−∞
P1(i(m−m1), ε)ωk((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1, ε)

×P2(im1, ε)ωk(x
1/k1

1 , x
1/k2

2 ,m1, ε)
1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

)
ds2

s2

ds1

s1

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

Rl1,l2(im)ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−2 τk1

1 τk2
2

Γ
(
dl1,k1
k1

)
Γ

(
d̃l2,k2
k2

)
∫ τ

k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)dl1,k1
/k1−1(τk2

2 − s2)d̃l2,k2
/k2−1k

δl1
1 k

δ̃l2
2 s

δl1
1 s

δ̃l2
2 ωk(s

1/k1

1 , s
1/k2

2 ,m, ε)
ds2

s2

ds1

s1

+ ε−2 τk1
1 τk2

2

Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

1

(2π)1/2

× s1s2

∫ s1

0

∫ s2

0

∫ ∞
−∞

ϕk((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1, ε)R0(im1)ωk(x
1/k1

1 , x
1/k2

2 ,m1, ε)

1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

ds2

s2

ds1

s1

+ ε−2 τk1
1 τk2

2

Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

1

(2π)1/2

×s1

∫ s1

0

∫ ∞
−∞

ϕ1
k((s1−x1)1/k1 ,m−m1, ε)R0(im1)ωk(x

1/k1

1 , s
1/k2

2 ,m1, ε)
1

(s1 − x1)x1
dm1dx1

ds2

s2

ds1

s1

+ ε−2 τk1
1 τk2

2

Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

1

(2π)1/2

×s2

∫ s2

0

∫ ∞
−∞

ϕ2
k((s2−x2)1/k2 ,m−m1, ε)R0(im1)ωk(s

1/k1

1 , x
1/k2

2 ,m1, ε)
1

(s2 − x2)x2
dm1dx2

ds2

s2

ds1

s1

+ ε−2 τk1
1 τk2

2

Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

1

(2π)1/2

×
∫ ∞
−∞

C0,0(m−m1, ε)R0(im1)ωk(s
1/k1

1 , s
1/k2

2 ,m1, ε)dm1
ds2

s2

ds1

s1

+ε−2 τk1
1 τk2

2

Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 −s1)1/k1(τk2
2 −s2)1/k2ψk(s

1/k1

1 , s
1/k2

2 ,m, ε)
ds2

s2

ds1

s1
.
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For the sake of simplicity, we write the previous equation in the form

(43) (Q1(im)k1τ
k1
1 − (k1τ

k1
1 )δD1RD1(im))(Q2(im)k2τ

k2
2 − (k2τ

k2
2 )δD2RD2(im))ωk(τ ,m, ε)

= (Q1(im)k1τ
k1
1 − (k1τ

k1
1 )δD1RD1(im))ÃD2RD2(im)ωk(τ ,m, ε)

+ (Q2(im)k2τ
k2
2 − (k2τ

k2
2 )δD2RD2(im))AD1RD1(im)ωk(τ ,m, ε)

−AD1ÃD2RD1(im)RD2(im)ωk(τ ,m, ε) + Θ(τ ,m, ε)ωk(τ ,m, ε).

We make the additional assumption that for j = 1, 2, there exist unbounded sectors

SQj ,RDj = {z ∈ C/|z| ≥ rQj ,RDj , |arg(z)− dQj ,RDj | ≤ ηQj ,RDj }

with directions dQj ,RDj ∈ R, aperture ηQj ,RDj > 0 for some radius rQj ,RDj > 0 such that

(44)
Qj(im)

RDj (im)
∈ SQj ,RDj

for all m ∈ R. We consider the polynomial Pm,j(τj) = Qj(im)kj − RDj (im)k
δDj
j τ

(δDj−1)kj

j

and assume that {ql,1}0≤l≤(δD1
−1)k1−1 and {ql,2}0≤l≤(δ̃D2

−1)k2−1 are the complex roots of each

polynomial, for m ∈ R. Following an analogous manner as in the construction of [7], one can
choose unbounded sectors Sd1 and Sd2 , with vertex at 0 and ρ > 0 such that

(45) |Pm,1(τ1)| ≥ CP (rQ1,RD1
)

1
(δD1

−1)k1 |RD1(im)|(1 + |τ1|k1)
(δD1

−1)− 1
k1 ,

for all τ1 ∈ Sd1 ∪D(0, ρ), and m ∈ R; and

(46) |Pm,2(τ2)| ≥ CP (rQ2,RD2
)

1
(δ̃D2

−1)k2 |RD2(im)|(1 + |τ2|k2)
(δ̃D2

−1)− 1
k2 ,

for all τ2 ∈ Sd2 ∪D(0, ρ), and m ∈ R. From now on, we write

Ck1 = CP (rQ1,RD1
)

1
(δD1

−1)k1 , Ck2 := CP (rQ2,RD2
)

1
(δ̃D2

−1)k2

for a more compact writing.
Let d = (d1, d2). The next result guarantees the existence of an element in Fd(ν,β,µ,k,ε) which

turns out to be a fixed point for certain operator to be described, solution of (42). Here β, µ are
fixed at the beginning of this section.

Proposition 11 Under the assumption that

(47) δD1 ≥ δl1 +
2

k1
, δ̃D2 ≥ δ̃l2 +

2

k2
, ∆l1,l2 + k1(1− δD1) + k2(1− δ̃D2) + 2 ≥ 0,

for all 1 ≤ l1 ≤ D1 − 1, 1 ≤ l2 ≤ D2 − 1, there exist constants $, ζ1, ζ2 > 0 (depending on
Q1, Q2,k, CP , µ,ν, ε0, Rl1,l2 ,∆l1,l2 , δl1 , δ̃l2 , dl1 , d̃l2 for 0 ≤ l1 ≤ D1 and 0 ≤ l2 ≤ D2) such that if

(48) ||ϕk(τ ,m, ε)||(ν,β,µ,k,ε) ≤ ζ1 , ||ψk(τ ,m, ε)||(ν,β,µ,k,ε) ≤ ζ2

||ϕ1
k(τ1,m, ε)||(ν1,β,µ,k1,ε) ≤ ζ

1
1 , ||ϕ2

k(τ2,m, ε)||(ν2,β,µ,k2,ε) ≤ ζ
2
1 , ||C0,0(m, ε)||(β,µ) ≤ ζ0

1

for all ε ∈ D(0, ε0) \ {0}, the equation (42) has a unique solution ωdk(τ ,m, ε) in the space
Fd(ν,β,µ,k,ε) where β, µ > 0 are defined in Proposition 6 which verifies ||ωdk(τ ,m, ε)||(ν,β,µ,k,ε) ≤ $,

for all ε ∈ D(0, ε0) \ {0}.
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Proof
Let ε ∈ D(0, ε0) \ {0}. We consider the operator Hε, defined by

(49) Hε(ω(τ ,m)) :=
8∑
j=1

Hjε(ω(τ ,m))

where

H1
ε (ω(τ ,m)) :=

RD2(im)

Pm,2(τ2)

ÃD2

τk2
2

ω(τ ,m) +
RD1(im)

Pm,1(τ1)

AD1

τk1
1

ω(τ ,m)

− RD1(im)

Pm,1(τ1)

RD2(im)

Pm,2(τ2)

AD1

τk1
1

ÃD2

τk2
2

ω(τ ,m)

H2
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ(1 + 1
k1

)Γ(1 + 1
k2

)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
(

1

(2π)1/2
s1s2

∫ s1

0

∫ s2

0

∫ +∞

−∞
P1(i(m−m1), ε)ω((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)

×P2(im1, ε)ω(x
1/k1

1 , x
1/k2

2 ,m1)
1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

)
ds2

s2

ds1

s1

H3
ε (ω(τ ,m)) :=

∑
1≤l1≤D1−1,1≤l2≤D2−1

Rl1,l2(im)

Pm,1(τ1)Pm,2(τ2)
ε∆l1,l2

−dl1−d̃l2+δl1+δ̃l2−2 1

Γ
(
dl1,k1
k1

)
Γ

(
d̃l2,k2
k2

)
∫ τ

k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)dl1,k1
/k1−1(τk2

2 − s2)d̃l2,k2
/k2−1k

δl1
1 k

δ̃l2
2 s

δl1
1 s

δ̃l2
2 ω(s

1/k1

1 , s
1/k2

2 ,m)
ds2

s2

ds1

s1

H4
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

× s1s2

(2π)1/2

∫ s1

0

∫ s2

0

∫ ∞
−∞

ϕk((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1, ε)R0(im1)ωk(x
1/k1

1 , x
1/k2

2 ,m1)

1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

ds2

s2

ds1

s1

H5
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

× s1

(2π)1/2

∫ s1

0

∫ ∞
−∞

ϕ1
k((s1−x1)1/k1 ,m−m1, ε)R0(im1)ωk(x

1/k1

1 , s
1/k2

2 ,m1)
1

(s1 − x1)x1
dm1dx1

ds2

s2

ds1

s1
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H6
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

× s2

(2π)1/2

∫ s2

0

∫ ∞
−∞

ϕ2
k((s2−x2)1/k2 ,m−m1, ε)R0(im1)ωk(s

1/k1

1 , x
1/k2

2 ,m1)
1

(s2 − x2)x2
dm1dx2

ds2

s2

ds1

s1

H7
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

) ∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

× 1

(2π)1/2

∫ ∞
−∞

C0,0(m−m1, ε)R0(im1)ωk(s
1/k1

1 , s
1/k2

2 ,m1)dm1
ds2

s2

ds1

s1

H8
ε (ω(τ ,m)) :=

ε−2

Pm,1(τ1)Pm,2(τ2)Γ
(

1 + 1
k1

)
Γ
(

1 + 1
k2

)
×
∫ τ

k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2ψk(s

1/k1

1 , s
1/k2

2 ,m, ε)
ds2

s2

ds1

s1
.

Let $ > 0 and assume that ω(τ ,m) ∈ Fdν,β,µ,k,ε. Assume that ‖ω(τ ,m)‖(ν,β,µ,k,ε) ≤ $ for
all ε ∈ D(0, ε0) \ {0}. We first obtain the existence of $ > 0 such that the operator Hε sends
B(0, $) ⊆ Fd(ν,β,µ,k,ε) into itself. Here, B(0, $) stands for the closed ball of radius $, centerd at

0, in the Banach space Fd(ν,β,µ,k,ε).

Using Lemma 1 and Proposition 3, with (45) and (46) we get

(50)

∥∥∥∥∥RD2(im)

Pm,2(τ2)

ÃD2

τk2
2

ω(τ ,m)

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p2≤δ̃D2
−1

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)

C2

Ck2

|ε| ‖ω(τ ,m)‖(ν,β,µ,k,ε)

(51)

∥∥∥∥∥RD1(im)

Pm,1(τ1)

AD1

τk1
1

ω(τ ,m)

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p1≤δD1
−1

AδD1
,p1

Γ(δD1 − p1)

C2

Ck1

|ε| ‖ω(τ ,m)‖(ν,β,µ,k,ε)

(52)

∥∥∥∥∥RD1(im)

Pm,1(τ1)

AD1

τk1
1

RD2(im)

Pm,2(τ2)

ÃD2

τk2
2

ω(τ ,m)

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p1≤δD1
−1

∑
1≤p2≤δ̃D2

−1

AδD1
,p1

Γ(δD1 − p1)

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)

(C2)2

Ck1Ck2

|ε|2 ‖ω(τ ,m)‖(ν,β,µ,k,ε)

Proposition 4 and Lemma 1 yield
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(53)

∥∥∥∥∥ ε−2

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
(∫ s1

0

∫ s2

0

∫ +∞

−∞
P1(i(m−m1), ε)ω((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)

×P2(im1, ε)ω(x
1/k1

1 , x
1/k2

2 ,m1)
1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

)
ds2ds1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C3

Ck1Ck2

‖ω(τ ,m)‖2(ν,β,µ,k,ε)

From Proposition 2 and Lemma 1, we get

(54)

∥∥∥∥ Rl1,l2(im)

Pm,1(τ1)Pm,2(τ2)
ε∆l1,l2

−dl1−d̃l2+δl1+δ̃l2−2

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)dl1,k1
/k1−1(τk2

2 − s2)d̃l2,k2
/k2−1s

δl1
1 s

δ̃l2
2 ω(s

1/k1

1 , s
1/k2

2 ,m)
ds2

s2

ds1

s1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C2

Ck1Ck2

|ε|∆l1,l2
+δl1 (1+k1)−k1δD1

+δ̃l2 (1+k2)−k2δ̃D2 ‖ω(τ ,m)‖(ν,β,µ,k,ε)

Also, Proposition 4 and Lemma 1 yield

(55)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ s2

0

∫ ∞
−∞

ϕk((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1, ε)R0(im1)

× ω(x
1/k1

1 , x
1/k2

2 ,m1)
1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1ds2ds1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C3

Ck1Ck2

ζ1 ‖ω(τ ,m)‖(ν,β,µ,k,ε)

In view of Proposition 5 and Lemma 1 we get

(56)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ ∞
−∞

ϕ1
k((s1 − x1)1/k1 ,m−m1, ε)R0(im1)ω(x

1/k1

1 , s
1/k2

2 ,m1)
1

(s1 − x1)x1
dm1dx1

ds2

s2
ds1

≤ C3.2

Ck1Ck2

‖ω(τ ,m)‖(ν,β,µ,k,ε)
∥∥ϕ1

k(τ1,m, ε)
∥∥

(ν1,β,µ,k1,ε)

≤ C3.2

Ck1Ck2

‖ω(τ ,m)‖(ν,β,µ,k,ε) ζ
1
1
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(57)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ ∞
−∞

ϕ2
k((s2 − x2)1/k2 ,m−m1, ε)R0(im1)ω(s

1/k1

1 , x
1/k2

2 ,m1)
1

(s2 − x2)x2
dm1dx2ds2

ds1

s1

≤ C3.2

Ck1Ck2

‖ω(τ ,m)‖(ν,β,µ,k,ε)
∥∥ϕ2

k(τ2,m, ε)
∥∥

(ν2,β,µ,k2,ε)

≤ C3.2

Ck1Ck2

‖ω(τ ,m)‖(ν,β,µ,k,ε) ζ
2
1

Proposition 6 and Lemma 1 yield

(58)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ ∞
−∞

C0,0(m−m1, ε)R0(im1)ω(s
1/k1

1 , s
1/k2

2 ,m1)dm1
ds2

s2

ds1

s1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C4

Ck1Ck2

ζ0
1 ‖ω(τ ,m)‖(ν,β,µ,k,ε)

Finally, from Proposition 1 and Lemma 1 we get

(59)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×ψk(s
1/k1

1 , s
1/k2

2 ,m, ε)
ds2

s2

ds1

s1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

Ck1Ck2

∥∥∥ψk(s
1/k1

1 , s
1/k2

2 ,m, ε)
∥∥∥

(ν,β,µ,k,ε)

≤ C1

Ck1Ck2

ζ2.

In view of (48) and by choosing ε0, $, ζ1, ζ2, ζ
1
1 , ζ

0
1 , ζ

2
1 > 0 such that
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(60)
∑

1≤p2≤δ̃D2
−1

Ck1Ãδ̃D2
,p2

Γ(δ̃D2 − p2)
C2|ε0|$ +

∑
1≤p1≤δD1

−1

Ck2AδD1
,p1

Γ(δD1 − p1)
C2|ε0|$

+
∑

1≤p1≤δD1
−1

∑
1≤p2≤δ̃D2

−1

AδD1
,p1

Γ(δD1 − p1)

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)
(C2)2|ε0|2$ +

C3$
2

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

C2|ε0|∆l1,l2
+δl1 (1+k1)−k1δD1

+δ̃l2 (1+k2)−k2δ̃D2
k
δl1
1 k

δ̃l2
2

Γ(
dl1,k1
k1

)Γ(
d̃l2,k2
k2

)
$

+
C3ζ1$

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
+

C3.2ζ
1
1$

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
+

C3.2ζ
2
1$

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2

+
C4ζ

0
1$

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
+

C1ζ2

Γ(1 + 1
k1

)Γ(1 + 1
k2

)minm∈R|RD1(im)RD2(im)|
≤ $Ck1Ck2 .

In view of (50), (51), (52), (53), (54), (55), (56), (57), (58), (59), and (60), one gets that the
operator Hε is such that Hε(B(0, $)) ⊆ B(0, $). The next stage of the proof is to show that,
indeed, Hε is a contractive map in that ball. Let ω1, ω2 ∈ Fd(ν,β,µ,k,ε) with ‖ωj‖(ν,β,µ,k,ε) ≤ $.
Then, it holds that

(61) ‖Hε(ω1)−Hε(ω2)‖(ν,β,µ,k,ε) ≤
1

2
‖ω1 − ω2‖(ν,β,µ,k,ε) ,

for all ε ∈ D(0, ε0) \ {0}.
Analogous estimates as in (50), (51), (52), (54), (55), (56), (57) and (58) yield

(62)

∥∥∥∥∥RD2(im)

Pm,2(τ2)

ÃD2

τk2
2

(ω1(τ ,m)− ω2(τ ,m))

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p2≤δ̃D2
−1

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)

C2

Ck2

|ε| ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)

(63)

∥∥∥∥∥RD1(im)

Pm,1(τ1)

AD1

τk1
1

(ω1(τ ,m)− ω2(τ ,m))

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p1≤δD1
−1

AδD1
,p1

Γ(δD1 − p1)

C2

Ck1

|ε| ‖ω1(τ ,m)− ω2(τ ,m)‖ν,β,µ,k,ε

(64)

∥∥∥∥∥RD1(im)

Pm,1(τ1)

AD1

τk1
1

RD2(im)

Pm,2(τ2)

ÃD2

τk2
2

(ω1(τ ,m)− ω2(τ ,m))

∥∥∥∥∥
(ν,β,µ,k,ε)

≤
∑

1≤p1≤δD1
−1

∑
1≤p2≤δ̃D2

−1

AδD1
,p1

Γ(δD1 − p1)

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)

(C2)2

Ck1Ck2

|ε|2 ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)
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(65)∥∥∥∥∥ Rl1,l2(im)

Pm,1(τ1)Pm,2(τ2)
ε∆l1,l2

−dl1−d̃l2+δl1+δ̃l2−2

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)dl1,k1
/k1−1(τk2

2 − s2)d̃l2,k2
/k2−1s

δl1
1 s

δ̃l2
2

×(ω1(s
1/k1

1 , s
1/k2

2 ,m)− ω2(s
1/k1

1 , s
1/k2

2 ,m))
ds2

s2

ds1

s1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C2

Ck1Ck2

|ε|∆l1,l2
+δl1 (1+k1)−k1δD1

+δ̃l2 (1+k2)−k2δ̃D2 ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)

(66)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ s2

0

∫ ∞
−∞

ϕk((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1, ε)R0(im1)

× ω1(x
1/k1

1 , x
1/k2

2 ,m1)− ω2(x
1/k1

1 , x
1/k2

2 ,m1)

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1ds2ds1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C3

Ck1Ck2

ζ1 ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)

(67)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ ∞
−∞

ϕ1
k((s1 − x1)1/k1 ,m−m1, ε)R0(im1)(ω1(x

1/k1

1 , s
1/k2

2 ,m1)− ω2(x
1/k1

1 , s
1/k2

2 ,m1))

1

(s1 − x1)x1
dm1dx1

ds2

s2
ds1 ≤

C3.2

Ck1Ck2

‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) ζ
1
1

(68)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ s1

0

∫ ∞
−∞

ϕ2
k((s2 − x2)1/k2 ,m−m1, ε)R0(im1)(ω1(s

1/k1

1 , x
1/k2

2 ,m1)− ω2(s
1/k1

1 , x
1/k2

2 ,m1))

1

(s2 − x2)x2
dm1dx2ds2

ds1

s1
≤ C3.2

Ck1Ck2

‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) ζ
2
1

(69)

∥∥∥∥∥ε−2 1

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
∫ ∞
−∞

C0,0(m−m1, ε)R0(im1)(ω1(s
1/k1

1 , s
1/k2

2 ,m1)− ω2(s
1/k1

1 , s
1/k2

2 ,m1))dm1
ds2

s2

ds1

s1

∥∥∥∥
(ν,β,µ,k,ε)

≤ C4

Ck1Ck2

ζ0
1 ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) .



24

Finally, put

W1 := w1((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)− w2((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1),

and W2 := w1(x
1/k1

1 , x
1/k2

2 ,m1)− w2(x
1/k1

1 , x
1/k2

2 ,m1). Then, taking into account that

(70) P1(i(m−m1), ε)w1((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)w1(x
1/k1

1 , x
1/k2

2 ,m1)

− P1(i(m−m1), ε)w2((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)w2(x
1/k1

1 , x
1/k2

2 ,m1)

= P1(i(m−m1), ε)W1P2(im1, ε)w1(x
1/k1

1 , x
1/k2

2 ,m1)

+ P1(i(m−m1), ε)w2((s1 − x1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)W2,

and by using Lemma 1 and analogous estimates as in (53) and (45), we get

(71)

∥∥∥∥∥ ε−2

Pm,1(τ1)Pm,2(τ2)

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)1/k1(τk2
2 − s2)1/k2

×
(∫ s1

0

∫ s2

0

∫ +∞

−∞
P1(i(m−m1), ε)W1

×P2(im1, ε)W2
1

(s1 − x1)x1(s2 − x2)x2
dm1dx2dx1

)
ds2ds1

∥∥∥∥
(ν,β,µ,k,ε)

≤ 2C3$

Ck1Ck2

‖ω1(τ ,m)− ω2(τ ,m)‖2(ν,β,µ,k,ε)

Let $, ε0, ζ1 > 0 such that

(72)
∑

1≤p2≤δ̃D2
−1

Ck1Ãδ̃D2
,p2

Γ(δ̃D2 − p2)
C2|ε0|+

∑
1≤p1≤δD1

−1

Ck2AδD1
,p1

Γ(δD1 − p1)
C2|ε0|

+
∑

1≤p1≤δD1
−1

∑
1≤p2≤δ̃D2

−1

AδD1
,p1

Γ(δD1 − p1)

Ãδ̃D2
,p2

Γ(δ̃D2 − p2)
(C2)2|ε0|2

+
2C3$

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

C2|ε0|∆l1,l2
+δl1 (1+k1)−k1δD1

+δ̃l2 (1+k2)−k2δ̃D2
k
δl1
1 k

δ̃l2
2

Γ(
dl1,k1
k1

)Γ(
d̃l2,k2
k2

)

+
C3

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
ζ1 +

C3.2

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
ζ1

1 +
C3.2

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
ζ2

1

+
C4

Γ(1 + 1
k1

)Γ(1 + 1
k2

)(2π)1/2
ζ0

1 ≤
1

2
Ck1Ck2 .

Then, (72) combined with (62), (63), (64), (65), (66), (67), (68), (69) and (71) yields (61).
We consider the ball B̄(0, $) ⊂ Fd(ν,β,µ,k,ε) constructed above. It turns out to be a complete

metric space for the norm ||.||(ν,β,µ,k,ε). As Hε is a contractive map from B̄(0, $) into itself,
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the classical contractive mapping theorem, guarantees the existence of a unique fixed point
ωk(τ ,m, ε) ∈ B̄(0, $) ⊆ Fd(ν,β,µ,k,ε) for Hε. The function ωk(τ ,m, ε) depends holomorphically

on ε in D(0, ε0) \ {0}. By construction, ωk(τ ,m, ε) defines a solution of the equation (42). 2

Regarding the construction of the auxiliary equations, one can obtain the analytic solutions
of (32) by means of Laplace transform.

Proposition 12 Under the hypotheses of Proposition 11, choose the sectors Sd1 , Sd2 and SQ1,RD1
, SQ2,RD2

in such a way that the roots of Pm,1(τ1) and Pm,2(τ2) fall appart from Sd1 and Sd2, respectively,
as stated before (45).

Notice that they apply for any small enough ε0 > 0, provided that (39) and (40) hold.
Let Sd1,θ1,h′|ε|, Sd2,θ2,h′|ε| be bounded sectors with aperture π/kj < θj < π/kj + 2δS,j, for

j = 1, 2 (where 2δS,j is the opening of Sdj ), with direction dj and radius h′|ε| for some h′ > 0
independent of ε. We choose 0 < β′ < β.

Then, equation (32) with initial condition U(T1, 0,m, ε) ≡ U(0, T2,m, ε) ≡ 0 has a solution
(T ,m) 7→ U(T ,m, ε) defined on Sd1,θ1,h′|ε|×Sd2,θ2,h′|ε|×R for some h′ > 0 and all ε ∈ D(0, ε0) \
{0}. Let ε ∈ D(0, ε0)\{0}, then for j = 1, 2 and all Tj ∈ Sdj ,θj ,h′|ε|, the function m 7→ U(T ,m, ε)
belongs to the space E(β′,µ) and for each m ∈ R, the function T 7→ U(T ,m, ε) is bounded
and holomorphic on Sd1,θ1,h′|ε| × Sd2,θ2,h′|ε|. Moreover, U(T ,m, ε) can be written as a Laplace
transform of order k1 in the direction d1 with respect to T1 and the Laplace transform of order
k2 in the direction d2 with respect to T2,

(73) U(T ,m, ε) = k1k2

∫
Lγ1

∫
Lγ2

ωdk(u1, u2,m, ε)e
−(

u1
T1

)k1−(
u2
T2

)k2 du2

u2

du1

u1

where Lγj = R+e
iγj ∈ Sdj ∪ {0}, for j = 1, 2 has bisecting direction which might depend on Tj.

The function ωdk(τ ,m, ε) defines a continuous function on (D̄(0, ρ)∪Sd1)× (D̄(0, ρ)∪Sd2)×R×
D(0, ε0)\{0}, holomorphic with respect to (τ , ε) on (D(0, ρ)∪Sd1)× (D(0, ρ)∪Sd2)× (D(0, ε0)\
{0}). Moreover, there exists a constant $d (independent of ε) such that

(74) |ωdk(τ ,m, ε)| ≤ $d(1 + |m|)−µe−β|m|
| τ1ε |

1 + | τ1ε |2k1

| τ2ε |
1 + | τ2ε |2k2

exp(ν1|
τ1

ε
|k1 + ν2|

τ2

ε
|k2)

for all (τ ) ∈ (D(0, ρ) ∪ Sd1)× (D(0, ρ) ∪ Sd2), all m ∈ R, and ε ∈ D(0, ε0) \ {0}.

Proof Let ε ∈ D(0, ε0) \ {0}. We take the function ωdk(τ ,m, ε) constructed in Proposition 11

and consider (τ1,m) 7→ ωdk(τ ,m, ε), which is a function belonging to F d1

(ν1,β,µ,k1,ε)
, with values in

the Banach space of holomorphic functions in D(0, ρ) ∪ Sd2 with exponential growth of order
k2 in Sd2 , and continuous in D(0, ρ) × Sd2 . In view of the results stated in Section 3, one can
apply Laplace transform of order mk1 following direction d1 in order to obtain a holomorphic
and bounded function defined in Sd1,θ1,h′|ε|, for some h′ > 0. The function

(τ2,m) 7→ Ld1
mk1

(ωdk(τ ,m, ε))(T1)

belongs to F d2

(ν2,β,µ,k2,ε)
, and takes its values in the Banach space of holomorphic and bounded

functions in Sd1,θ1,h′|ε|. One can apply Laplace transform Ld2
mk2

in order to obtain the function

U(T ,m, ε), satisfying the statements above. Moreover, this function is of the form (73), and
preserves holomorphy with respect to the perturbation parameter in D(0, ε0) \ {0}.

Observe that U(T ,m, ε) is a solution of equation (32) due to the properties satisfied by
Laplace transform described in (17), the construction of C0(T ,m, ε) and F (T ,m, ε) in 39 and 40,
and the fact that ωdk(τ ,m, ε) is a solution of (42), as stated in Proposition 11. 2
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5 Analytic solutions of a nonlinear initial value Cauchy problem
with complex parameter

Let k1, k2 ≥ 1 and D1, D2 ≥ 2 be integer numbers. We fix, without loss of generality, that

k1 < k2,

for the roles of such parameters is symmetric. For j ∈ {1, 2} and 1 ≤ lj ≤ Dj , let dl1 , d̃l2 , δl1 , d̃l2 ,∆l1,l2 ≥
0 be non negative integers. We assume that

(75) 1 = δ1 = δ̃1 , δl1 < δl1+1 , δ̃l2 < δ̃l2+1

for all 1 ≤ l1 ≤ D1 − 1 and 1 ≤ l2 ≤ D2 − 1. We also assume that

(76) dD1 = (δD1 − 1)(k1 + 1) , dl1 > (δl1 − 1)(k1 + 1)

for all 1 ≤ l1 ≤ D1 − 1, and

(77) d̃D2 = (δ̃D2 − 1)(k2 + 1) , d̃l2 > (δ̃l2 − 1)(k2 + 1)

for all 1 ≤ l2 ≤ D2 − 1. In addition to this, we take

(78) ∆D1,D2 = dD1 + d̃D2 − δD1 − δ̃D2 + 2 , ∆D1,0 = dD1 − δD1 + 1 , ∆0,D2 = d̃D2 − δ̃D2 + 1

Let Q1(X), Q2(X), R0(X) ∈ C[X], and for 0 ≤ l1 ≤ D1 and 0 ≤ l2 ≤ D2 we take Rl1,l2(X) ∈
C[X] such that

RD1,l2 ≡ Rl1,D2 ≡ 0, 1 ≤ l1 ≤ D1, 1 ≤ l2 ≤ D2

and such that RD1,D2 can be factorized in the form RD1,D2(X) = RD1,0(X)R0,D2(X). We write
RD1 := RD1,0 and RD2 := R0,D2 for simplicity. Let P1, P2 be polynomials with coefficients
belonging to O(D(0, ε0))[X], for some ε0 > 0. We assume that

(79) deg(Qj) ≥ deg(RDj ), j ∈ {1, 2}.

and

(80) deg(Qj) ≥ deg(RDj ) , deg(RD1,D2) ≥ deg(Rl1,l2) , deg(RD1,D2) ≥ deg(Pj)

Qj(im) 6= 0 , RD1,D2(im) 6= 0

for all m ∈ R, all j ∈ {1, 2} and 0 ≤ lj ≤ Dj − 1. We denote t := (t1, t2).
We consider the following nonlinear initial value problem

(81) Q1(∂z)Q2(∂z)∂t1∂t2u(t, z, ε) = (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε))

+
∑

0≤l1≤D1,0≤l2≤D2

ε∆l1,l2 t
dl1
1 ∂

δl1
t1
t
d̃l2
2 ∂

δ̃l2
t2
Rl1,l2(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε)

for given initial data u(t1, 0, z, ε) ≡ u(0, t2, z, ε) ≡ 0.
The coefficient c0(t, z, ε) and the forcing term f(t, z, ε) are constructed as follows. We con-

sider families of functions m 7→ Cn1,n2(m, ε), for n1, n2 ≥ 0 and m 7→ Fn1,n2(m, ε), for n1, n2 ≥ 1,
that belong to the Banach space E(β,µ) for some β > 0, µ > max(deg(P1) + 1, deg(P2) + 1) and
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which depend holomorphically on ε ∈ D(0, ε0). We assume there exist constants K0, T0 > 0 such
that (31) hold for all n1, n2 ≥ 1, for all ε ∈ D(0, ε0). We deduce that the functions

C0(T , z, ε) =
∑

n1,n2≥0

F−1(m 7→ Cn1,n2(m, ε))(z)Tn1
1 Tn2

2

F(T , z, ε) =
∑

n1,n2≥1

F−1(m 7→ Fn1,n2(m, ε))(z)Tn1
1 Tn2

2

represent bounded holomorphic functions on D(0, T0/2)2 × Hβ′ × D(0, ε0) for any 0 < β′ < β
(where F−1 stands for the inverse Fourier transform, see Proposition 9). We define the coefficient
c0(t, z, ε) and the forcing term f(t, z, ε) as

(82) c0(t, z, ε) = C0(εt1, εt2, z, ε) , f(t, z, ε) = F(εt1, εt2, z, ε).

The functions c0 and f are holomorphic and bounded on D(0, r)2 ×Hβ′ ×D(0, ε0) where rε0 <
T0/2.

We make the additional assumption that there exist unbounded sectors

SQj ,RDj = {z ∈ C/|z| ≥ rQj ,RDj , |arg(z)− dQj ,RDj | ≤ ηQj ,RDj }

with direction dQj ,RDj ∈ R, aperture ηQj ,RDj > 0 for some radius rQj ,RDj > 0 such that

(83)
Qj(im)

RDj (im)
∈ SQj ,RDj

for all m ∈ R, and for j = 1, 2.
The assumptions made at the beginning of this section allow us to write equation (81) in

the form

(84)
(
Q1(∂z)∂t1 − ε(δD1

−1)(k1+1)−δD1
+1t

(δD1
−1)(k1+1)

1 ∂
δD1
t1

RD1(∂z)
)

×
(
Q2(∂z)∂t2 − ε(δ̃D2

−1)(k2+1)−δ̃D2
+1t

(δD2
−1)(k2+1)

2 ∂
δ̃D2
t2

RD2(∂z)

)
u(t, z, ε)

= (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε))

+
∑

1≤l1≤D1,1≤l2≤D2

ε∆l1,l2 t
dl1
1 ∂

δl1
t1
t
d̃l2
2 ∂

δ̃l2
t2
Rl1,l2(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε)

We recall the definition of a good covering in C?.

Definition 5 Let ς1, ς2 ≥ 2 be integer numbers. Let {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

be a finite family of open

sectors with vertex at 0, radius ε0 and opening strictly larger than π
k2

. We assume that the
intersection of three different sectors in the good covering is empty, and ∪0≤p1≤ς1−1

0≤p2≤ς2−1
Ep1,p2 =

U \ {0}, for some neighborhood of 0, U ∈ C. Such set of sectors is called a good covering in C∗.

Definition 6 Let ς1, ς2 ≥ 2 and {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

be a good covering in C∗. Let Tj be open

bounded sectors centered at 0 with radius rTj for j ∈ {1, 2}, and consider two families of open
sectors as follows. The first one is given by

Sdp1 ,θ1,ε0rT1 = {T1 ∈ C∗/|T1| < ε0rT1 , |dp1 − arg(T1)| < θ1/2}
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with opening θ1 > π/k1, and some dp1 ∈ R, for all 0 ≤ p1 ≤ ς1 − 1. This family is chosen to
satisfy that:

1) There exists a constant M1 > 0 such that

(85) |τ1 − ql1(m)| ≥M1(1 + |τ1|)

for all 0 ≤ l1 ≤ (δD1 − 1)k1 − 1, m ∈ R, and τ1 ∈ Sdp1 ∪ D̄(0, ρ), for all 0 ≤ p1 ≤ ς1 − 1, and
every root ql1 of the polynomial Pm,1(τ1).
2) There exists a constant M2 > 0 such that

(86) |τ1 − ql1,0(m)| ≥M2|ql1,0(m)|

for some root of Pm,1, ql0, all m ∈ R, τ1 ∈ Sdp1 ∪ D̄(0, ρ), for all 0 ≤ p1 ≤ ς1 − 1.
The second family is chosen in an analogous manner. It is given by

Sd̃p2 ,θ2,ε0rT2
= {T2 ∈ C∗/|T2| < ε0rT2 , |d̃p2 − arg(T2)| < θ2/2}

with opening θ2 > π/k2, and some d̃p2 ∈ R, for all 0 ≤ p2 ≤ ς2 − 1. This family is chosen to
satisfy analogous conditions with respect to the roots of the polynomial Pm,2(τ2).

In addition to the previous assumptions, we consider Sdp1 ,θ1,ε0rT1 and Sd̃p2 ,θ2,ε0rT2
such that

for all 0 ≤ p1 ≤ ς1 − 1, 0 ≤ p2 ≤ ς2 − 1, t ∈ T1 × T2, and ε ∈ Ep1,p2, one has

εt1 ∈ Sdp1 ,θ1,ε0rT1 and εt2 ∈ Sd̃p2 ,θ2,ε0rT2 .

We say that the family {(Sdp1 ,θ1,ε0rT1 )0≤p1≤ς1−1, (Sd̃p2 ,θ2,ε0rT2
)0≤p2≤ς2−1, T1 ×T2} is associated to

the good covering {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

.

The first main result of the present work is devoted to the construction of a family of actual
holomorphic solutions to the equation (84) for null initial data. Each of the elements in the family
of solutions is associated to an element of a good covering with respect to the complex parameter
ε. The strategy leans on the control of the difference of two solutions defined in domains with
nonempty intersection with respect to the perturbation parameter ε. The construction of each
analytic solution in terms of two Laplace transforms in different time variables requires to
distinguish different cases, depending on the coincidence of the integration paths or not.

Theorem 1 We consider the equation (84) and we assume that (75-80) and (83) hold. We also
make the additional assumption that

(87) δD1 ≥ δl1 +
2

k1
, δ̃D2 ≥ δ̃l2 +

2

k2
, ∆l1,l2 + k1(1− δD1) + k2(1− δ̃D2) + 2 ≥ 0,

for all 1 ≤ l1 ≤ D1 − 1 and 1 ≤ l2 ≤ D2 − 1. Let the coefficient c0(t1, t2, z, ε) and forcing term
f(t1, t2, z, ε) be constructed as in (82). Let {Ep1,p2} 0≤p1≤ς1−1

0≤p2≤ς2−1
be a good covering in C∗ such that a

family {(Sdp1 ,θ1,ε0rT1 )0≤p1≤ς1−1, (Sd̃p2 ,θ2,ε0rT2
)0≤p2≤ς2−1, T1 × T2} associated to this good covering

can be considered.
Then, there exist rQ,RD > 0, small enough ε0, ζ0 > 0 such that if

||C0,0(m, ε)||(β,µ) < ζ0

for all ε ∈ D(0, ε0) \ {0}, then for every 0 ≤ p1 ≤ ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1, one can construct
a solution up1,p2(t, z, ε) of (84) with up1,p2(0, t2, z, ε) ≡ up1,p2(t1, 0, z, ε) ≡ 0 which defines a
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bounded holomorphic function on the domain (T1 ∩D(0, h′))× (T2 ∩D(0, h′))×Hβ′ × Ep1,p2 for
any given 0 < β′ < β and for some h′ > 0.

Moreover, there exist constants 0 < h′′ ≤ h′, Kp,Mp > 0 (independent of ε), and sets
Uk1×Uk2 ⊆ {0, 1, . . . , ς1−1}×{0, 1, . . . , ς2−1} such that for every (p1, p2), (p′1, p

′
2) ∈ {0, 1, . . . , ς1−

1} × {0, 1, . . . , ς2 − 1}, one of the following holds:

• Ep1,p2 ∩ Ep′1,p′2 = ∅.

• Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

(88) sup
t∈(T1∩D(0,h′′))×(T2∩D(0,h′′)),z∈Hβ′

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kpe
− Mp

|ε|k1

for all ε ∈ Ep1,p2 ∩ Ep′1,p′2. In this situation, we say that {(p1, p2), (p′1, p
′
2)} belong to Uk1.

• Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

(89) sup
t∈(T1∩D(0,h′′))×(T2∩D(0,h′′)),z∈Hβ′

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kpe
− Mp

|ε|k2

for all ε ∈ Ep1,p2 ∩ Ep′1,p′2. In this situation, we say that {(p1, p2), (p′1, p
′
2)} belong to Uk2.

Proof Regarding Proposition 12, one can choose rQ1,RD1
> 0, and small enough ε0, ζ0 > 0 such

that
‖C0,0(m, ε)‖(β,µ) ≤ ζ0

for all ε ∈ D(0, ε0)\{0}. For each pair (p1, p2), we fix the multidirection (dp1 , d̃p2) with 0 ≤ pj ≤
ςj − 1 and construct Udp1 ,d̃p2 (T ,m, ε) such that Udp1 ,d̃p2 (0, T2,m, ε) ≡ Udp1 ,d̃p2 (T1, 0,m, ε) ≡ 0
and is a solution of

(90)(
Q1(im)∂T1 − T

(δD1
−1)(k1−1)

1 ∂
δD1
T1

RD1(im)
)(

Q2(im)∂T2 − T
(δ̃D2

−1)(k2−1)

2 ∂
δ̃D2
T2

RD2(im)

)
U(T ,m, ε)

= ε−2 1

(2π)1/2

∫ +∞

−∞
P1(i(m−m1), ε)U(T ,m−m1, ε)P2(im1, ε)U(T ,m1, ε)dm1

+
∑

1≤l1≤D1−1,1≤l2≤D2−1

ε∆l1,l2
−dl1−dl2+δl1+d̃l2−2T

dl1
1 T

d̃l2
2 ∂

δl1
T1
∂
δ̃l2
T2
R`1,`2(im)U(T ,m, ε)

+ ε−2 1

(2π)1/2

∫ +∞

−∞
C0(T ,m−m1, ε)R0(im1)U(T ,m1, ε)dm1

+ ε−2F (T ,m, ε),

where

C0(T ,m, ε) =
∑

n1,n2≥1

C0,n1,n2(m, ε)Tn1
1 Tn2

2 , F (T ,m, ε) =
∑

n1,n2≥1

Fn1,n2(m, ε)Tn1
1 Tn2

2

are convergent series in D(0, T0/2)2 with values in E(β,µ), for all ε ∈ D(0, ε0)\{0}. The function

(T ,m) 7→ Udp1 ,d̃p2 (T ,m, ε) is well defined on Sdp1 ,θ1,h′|ε| × Sd̃p2 ,θ2,h′|ε| × R where h′ > 0, for all
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ε ∈ D(0, ε0) \ {0}. Moreover, Udp1 ,d̃p2 (T ,m, ε) can be written as the iterated Laplace transform
of order k1 in the direction dp1 , and the Laplace transform of order k2 in the direction d̃p2

(91) Udp1 ,d̃p2 (T ,m, ε) = k1k2

∫
Lγp1

∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
T1

)k1−(
u2
T2

)k2 du2

u2

du1

u1

along Lγpj = R+e
iγpj which might depend on Tj . Here, ω

dp1 ,d̃p2
k (τ ,m, ε) defines a continuous

function on (D̄(0, ρ) ∪ Sdp1 ) × (D̄(0, ρ) ∪ Sdp2 ) × R × D(0, ε0) \ {0}, holomorphic with respect
to (τ , ε) on (D(0, ρ) ∪ Sdp1 )× (D(0, ρ) ∪ Sd̃p2 )× (D(0, ε0) \ {0}) for all m ∈ R. Moreover, there

exists a constant $dp1 ,d̃p2
(independent of ε) such that

(92) |ωdp1 ,d̃p2
k (τ ,m, ε)| ≤ $dp1 ,d̃p2

(1+|m|)−µe−β|m|
| τ1ε |

1 + | τ1ε |2k1

| τ2ε |
1 + | τ2ε |2k2

exp(ν1|
τ1

ε
|k1+ν2|

τ2

ε
|k2)

for all τ ∈ (D(0, ρ) ∪ Sdp1 )× (D(0, ρ) ∪ Sd̃p2 ), all m ∈ R and ε ∈ D(0, ε0) \ {0}. The function

(T , z) 7→ Udp1 ,d̃p2 (T , z, ε) = F−1(m 7→ Udp1 ,d̃p2 (T ,m, ε))(z)

turns out to be holomorphic on Sdp1 ,θ1,h′|ε| × Sd̃p2 ,θ2,h′|ε| × Hβ′ , for all ε ∈ D(0, ε0) \ {0} and

0 < β′ < β. For all 0 ≤ pj ≤ ςj − 1, j ∈ {1, 2} let

up1,p2(t, z, ε) = Udp1 ,d̃p2 (εt1, εt2, z, ε)

=
k1k2

(2π)1/2

∫ +∞

−∞

∫
Lγp1

∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizm

du2

u2

du1

u1
dm.

By construction (see Definition 6), the function up1,p2(t, z, ε) defines a bounded holomorphic
function on (T1 ∩ D(0, h′)) × (T2 ∩ D(0, h′)) × Hβ′ × Ep1,p2 . Moreover, up1,p2(0, t2, z, ε) ≡
up1,p2(t1, 0, z, ε) ≡ 0. Moreover, the properties of inverse Fourier transform described in Propo-
sition 9 guarantee that up1,p2(t, z, ε) is a solution of the main problem under study (84) on
(T1 ∩D(0, h′))× (T2 ∩D(0, h′))×Hβ′ × Ep1,p2 .

It is worth mentioning that all the functions τ 7→ ω
dp1 ,d̃p2
k (τ ,m, ε) provide the analytic

continuation of a common function

τ 7→ ωk(τ ,m, ε) =
∑

n1≥1,n2≥1

Un1,n2(m, ε)
τn1

1

Γ(n1
k1

)

τn2
2

Γ(n2
k2

)
∈ O(D(0, ρ)2, E(β,µ))

to Sdp1 × Sd̃p2 . Observe that Un1,n2(m, ε) ∈ E(β,µ) are the coefficients of the formal solution of

the equation (90), for all ε ∈ D(0, ε0) \ {0}, Û(T1, T2,m, ε) =
∑

n1≥1,n2≥1 Un1,n2(m, ε)Tn1
1 Tn2

2 .
The proof of the estimates (88) and (89) leans on those in the proof of Theorem 1 in [7].

In the present situation, different digressions are considered, due to the presence of two time
variables. Let pj , p

′
j ∈ {0, . . . , ςj − 1} for j ∈ {1, 2}, and assume that Ep1,p2 ∩ Ep′1,p′2 6= ∅. Then,

three different cases should be considered:
Case 1: Assume that the path Lγp1 coincides with Lγp′1

, and Lγp2 does not coincide with

Lγp′2
. Then, using that u2 7→ ω

dp1 ,d̃p2
k (u1, u2,m, ε) exp(−( u2

εt2
)k2)/u2 is holomorphic on D(0, ρ)

for all (m, ε) ∈ R× (D(0, ε0) \ {0}), and every u1 ∈ Lγp1 , one can deform one of the integration
paths to write

I =

∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−
(
u2
εt2

)k2 du2

u2
−
∫
Lγ
p′2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−
(
u2
εt2

)k2 du2

u2
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Figure 1: Path deformation in Case 1

in the form

(93)

∫
Lρ/2,γp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

−
∫
Lρ/2,γ

p′2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

+

∫
Cρ/2,γ

p′2
,γp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2
.

where Lρ/2,γp2 = [ρ/2,+∞)eiγp2 , Lρ/2,γp′2
= [ρ/2,+∞)e

iγp′2 and Cρ/2,γp′2
,γp2

is an arc of circle

connecting (ρ/2)e
iγp′2 and (ρ/2)eiγp2 with the adequate orientation.

The estimates for the previous expression can be found in detail in the proof of Theorem
1, [7].

Namely, we get the existence of constants Cp2,p′2
,Mp2,p′2

> 0 such that

|I| ≤ Cp2,p′2
$dp1 ,d̃p2

(1 + |m|)−µe−β|m|
|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1)e

−
M
p2,p
′
2

|ε|k2 ,

for t2 ∈ T2 ∩D(0, h′) and ε ∈ Ep1,p2 ∩ Ep′1,p′2 and u1 ∈ Lγp1 . We have

(94) |up1,p2(t, z, ε)− up′1,p′2(t, z, ε)|

≤ k1k2

(2π)1/2
Cp2,p′2

(∫ ∞
−∞

(1 + |m|)−µe−β|m|e−m|Im(z)|dm

)
×
∫
Lγp1

|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1) exp(−

(
u1

εt1

)k1

)

∣∣∣∣du1

u1

∣∣∣∣ e−
M
p2,p
′
2

|ε|k2 .

The last integral is estimated via the reparametrization u1 = reγp1
√
−1 and the change of variable

r = |ε|s by ∫ ∞
0

1

1 + s2
e−δ1s

k1
ds,

for some δ1 > 0, whenever t1 ∈ T1 ∩D(0, h′).
From the fact that z ∈ Hβ′ , we get that {(p1, p2), (p′1, p

′
2)} belong to Uk2 .
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Case 2: The path Lγp2 coincides with Lγp′2
, and Lγp1 does not coincide with Lγp′1

. It can

be handled analogously as Case 1. We get that the set {(p1, p2), (p′1, p
′
2)} belongs to Uk1 . More

precisely, we arrive at the expression

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)|

≤ k1k2

(2π)1/2
Cp1,p′1

(∫ ∞
−∞

(1 + |m|)−µe−β|m|e−m|Im(z)|dm

)
×
∫
Lγp2

|u2
ε |

1 + |u2
ε |2k2

exp(ν2|
u2

ε
|k2) exp(−

(
u2

εt2

)k2

)

∣∣∣∣du2

u2

∣∣∣∣ e−
M
p1,p
′
1

|ε|k1 .

Case 3: Assume that neither Lγp1 coincides with Lγp′1
, nor Lγp2 coincides with Lγp′2

.

We deform the integration paths with respect to the first time variable and write

up1,p2(t, z, ε)− up′1,p′2(t, z, ε) = J1 − J2 + J3,

where

J1 =
k1k2

(2π)1/2

∫
Lγp1 ,1

∫
Lγp2

∫ ∞
−∞

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizmdm

du2

u2

du1

u1
.

J2 =
k1k2

(2π)1/2

∫
Lγ
p′1
,1

∫
Lγ
p′2

∫ ∞
−∞

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizmdm

du2

u2

du1

u1
.

J3 =
k1k2

(2π)1/2

∫ ρ
2
eiθ

0

(∫ ∞
−∞

(∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

−
∫
Lγ
p′2

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

 eizmdm

 e
−(

u1
εt1

)k1 du1

u1
,

where ρ
2e
iθ is such that θ is an argument between γp1 and γp′1 . The path Lγp1 ,1 (resp. Lγp′1

,1)

consists of the concatenation of the arc of circle connecting ρ
2e
iθ with ρ

2e
iγp1 (resp. with ρ

2e
iγp′1 )

and the half line [ρ2e
iγp1 ,∞) (resp. [ρ2e

iγp′1 ,∞)).
We first give estimates for |J1|. We have∣∣∣∣∣
∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

∣∣∣∣∣ ≤ $dp1 ,d̃p2
(1 + |m|)−µe−β|m|

|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1)

×
∫
Lγp2

( |u2
ε |

1 + |u2
ε |2k2

exp(ν2

∣∣∣u2

ε

∣∣∣k2
)
|e−

(
u2
εt2

)k2

|
∣∣∣∣du2

u2

∣∣∣∣
≤ $dp1 ,d̃p2

Cp2(1 + |m|)−µe−β|m|
|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1),

for some Cp2 > 0, and t2 ∈ T2 ∩ D(0, h′). Using the parametrization u2 = reγp2
√
−1 and the

change of variable r = |ε|s. Using analogous estimations as in the Case 1, we arrive at

|J1| ≤ Cp,1e
−
Mp,1

|ε|k1 ,
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Figure 2: Path deformation in Case 3

for some Cp,1,Mp,1 > 0, for all ε ∈ Ep1,p2 ∩Ep′1,p′2 , where t1 ∈ T1 ∩D(0, h′) and t2 ∈ T2 ∩D(0, h′),
z ∈ Hβ′ .

Analogous calculations yield to

|J2| ≤ Cp,2e
−
Mp,2

|ε|k1 ,

for some Cp,2,Mp,2 > 0, for all ε ∈ Ep1,p2 ∩Ep′1,p′2 , where t1 ∈ T1 ∩D(0, h′) and t2 ∈ T2 ∩D(0, h′),
z ∈ Hβ′ .

In order to give upper bounds for |J3|, we consider∣∣∣∣∣∣
∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2
−
∫
Lγ
p′2

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

∣∣∣∣∣∣ .
We choose a deformation path in the form of that considered in Case 1. We get the previous
expression is upper estimated by

$dp1 ,d̃p2
Cp2,p′2

(1 + |m|)−µe−β|m|
|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1) exp

(
−
Mp2,p′2

|ε|k2

)
,

for ε ∈ Ep1,p2 ∩ Ep′1,p′2 , t2 ∈ T2 ∩D(0, h′), u1 ∈ [0, ρ/2eiθ]. We finally get

|J3| ≤
k1k2

(2π)1/2
Cp2,p′2

$dp1 ,d̃p2

(∫ ∞
−∞

(1 + |m|)−µe−β|m|e−m|Im(z)|dm

)
×

(∫ ρ/2eiθ

0

|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1)|e−

(
u1
εt1

)k1

|
∣∣∣∣du1

u1

∣∣∣∣
)

exp

(
−
Mp2,p′2

|ε|k2

)
.

We conclude that

|J3| ≤ Kp,3e
−
Mp,3

|ε|k2 ,

uniformly for (t1, t2) ∈ (T1 ∩D(0, h′′)) × (T2 ∩D(0, h′′)) for some h′′ > 0, and z ∈ Hβ′ for any
fixed β′ < β, where Kp,3,Mp,3 are positive constants. 2
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6 Asymptotics of the problem in the perturbation parameter

6.1 k−Summable formal series and Ramis-Sibuya Theorem

For the sake of completeness, we recall the definition of k−Borel summability of formal series
with coefficients in a Banach space, and Ramis-Sibuya Theorem. A reference for the details on
the first part is [1], whilst the second part of this section can be found in [2], p. 121, and [6],
Lemma XI-2-6.

Definition 7 Let k ≥ 1 be an integer. A formal series

X̂(ε) =
∞∑
j=0

aj
j!
εj ∈ F[[ε]]

with coefficients in a Banach space (F, ||.||F) is said to be k−summable with respect to ε in the
direction d ∈ R if

i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of
X̂ of order k

Bk(X̂)(τ) =

∞∑
j=0

ajτ
j

j!Γ(1 + j
k )
∈ F[[τ ]],

is absolutely convergent for |τ | < ρ,

ii) there exists δ > 0 such that the series Bk(X̂)(τ) can be analytically continued with respect
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and K > 0
such that

||B(X̂)(τ)||F ≤ CeK|τ |
k

for all τ ∈ Sd,δ.

If this is so, the vector valued Laplace transform of order k of Bk(X̂)(τ) in the direction d is
defined by

Ldk(Bk(X̂))(ε) = ε−k
∫
Lγ

Bk(X̂)(u)e−(u/ε)kkuk−1du,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a way

that cos(k(γ − arg(ε))) ≥ δ1 > 0, for some fixed δ1, for all ε in a sector

Sd,θ,R1/k = {ε ∈ C∗ : |ε| < R1/k , |d− arg(ε)| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. The function Ldk(Bk(X̂))(ε) is called the k−sum of

the formal series X̂(t) in the direction d. It is bounded and holomorphic on the sector Sd,θ,R1/k

and has the formal series X̂(ε) as Gevrey asymptotic expansion of order 1/k with respect to ε
on Sd,θ,R1/k . This means that for all π

k < θ1 < θ, there exist C,M > 0 such that

||Ldk(Bk(X̂))(ε)−
n−1∑
p=0

ap
p!
εp||F ≤ CMnΓ(1 +

n

k
)|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R1/k .
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Multisummability of a formal power series is a recursive process that allows to compute the
sum of a formal power series in different Gevrey orders. One of the approaches to multisumma-
bility is that stated by W. Balser, which can be found in [1], Theorem 1, p.57. Roughly speaking,
given a formal power series f̂ which can be decomposed into a sum f̂(z) = f̂1(z) + . . . + f̂m(z)
such that each of the terms f̂j(z) is kj-summable, with sum given by fj , then, f̂ turns out to be
multisummable, and its multisum is given by f1(z) + . . . + fm(z). More precisely, one has the
following definition.

Definition 8 Let (F, ‖·‖F) be a complex Banach space and let 0 < k1 < k2. Let E be a bounded
open sector with vertex at 0, and opening π

k2
+ δ2 for some δ2 > 0, and let F be a bounded open

sector with vertex at the origin in C, with opening π
k1

+ δ1, for some δ1 > 0 and such that E ⊆ F
holds.

A formal power series f̂(ε) ∈ F[[ε]] is said to be (k2, k1)−summable on E if there exist f̂2(ε) ∈
F[[ε]] which is k2−summable on E, with k2-sum given by f2 : E → F, and f̂1(ε) ∈ F[[ε]] which
is k1−summable on E, with k1-sum given by f1 : F → F, such that f̂ = f̂1 + f̂2. Furthermore,
the holomorphic function f(ε) = f1(ε) + f2(ε) on E is called the (k2, k1)−sum of f̂ on E. In
that situation, f(ε) can be obtained from the analytic continuation of the k1−Borel transform of
f̂ by the successive application of accelerator operators and Laplace transform of order k2, see
Section 6.1 in [1].

A novel version of Ramis-Sibuya Theorem has been developed in [15], and has provided
successful results in previous works by the authors, [8], [9]. A version of the result in two
different levels which fits our needs is now given without proof, which can be found in [8], [9].
Theorem (multilevel-RS) Let (F, ||.||F) be a Banach space over C and {Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
be

a good covering in C∗. Assume that 0 < k1 < k2. For all 0 ≤ p1 ≤ ς1 − 1 and 0 ≤ p2 ≤
ς2 − 1, let Gp1,p2 be a holomorphic function from Ep1,p2 into the Banach space (F, ||.||F) and for
every (p1, p2), (p′1, p

′
2) ∈ {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1} such that Ep1,p2 ∩ Ep′1,p′2 6= ∅ we define

Θ(p1,p2)(p′1,p
′
2)(ε) = Gp1,p2(ε)−Gp′1,p′2(ε) be a holomorphic function from the sector Z(p1,p2),(p′1,p

′
2) =

Ep1,p2 ∩ Ep′1,p′2 into F. We make the following assumptions.

1) The functions Gp1,p2(ε) are bounded as ε ∈ Ep1,p2 tends to the origin in C, for all 0 ≤ p1 ≤
ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1.

2) ({0, . . . , ς1 − 1} × {0, . . . , ς2})2 = U0 ∪ Uk1 ∪ Uk2, where
((p1, p2), (p′1, p

′
2)) ∈ U0 iff Ep1,p2 ∩ Ep′1,p′2 = ∅,

((p1, p2), (p′1, p
′
2)) ∈ Uk1 iff Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

||Θ(p1,p2),(p′1,p
′
2)(ε)||F ≤ Cp1,p2,p′1,p

′
2
e
−Ap1,p2,p′1,p′2

/|ε|k1

for all ε ∈ Z(p1,p2),(p′1,p
′
2).

((p1, p2), (p′1, p
′
2)) ∈ Uk2 iff Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

||Θ(p1,p2),(p′1,p
′
2)(ε)||F ≤ Cp1,p2,p′1,p

′
2
e
−Ap1,p2,p′1,p′2

/|ε|k2

for all ε ∈ Z(p1,p2),(p′1,p
′
2).

Then, there exists a convergent power series a(ε) ∈ F{ε} and two formal power series
Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that Gp1,p2(ε) can be split in the form

Gp1,p2(ε) = a(ε) +G1
p1,p2

(ε) +G2
p1,p2

(ε),
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where Gjp1,p2(ε) ∈ O(Ep1,p2 ,F), and admits Ĝj(ε) as its asymptotic expansion of Gevrey order
1/kj on Ep1,p2, for j ∈ {1, 2}.

Moreover, assume that

{((p0
1, p

0
2), (p1

1, p
1
2)), ((p1

1, p
1
2), (p2

1, p
2
2)), . . . , ((p2y−1

1 , p2y−1
2 ), (p2y

1 , p
2y
2 ))}

is a subset of Uk2, for some positive integer y, and

Epy1 ,py2 ⊆ Sπ/k1
⊆

⋃
0≤j≤2y

E
pj1,p

j
2
,

for some sector Sπ/k1
with opening larger than π/k1. Then, the formal power series Ĝ(ε) is

(k2, k1)−summable on Epy1 ,py2 and its (k2, k1)−sum is Gpy1 ,p
y
2
(ε) on Epy1 ,py2 .

6.2 Existence of formal power series solutions in the complex parameter and
asymptotic behavior

The second main result of our work states the existence of a formal power series in the perturba-
tion parameter ε, with coefficients in the Banach space F of holomorphic and bounded functions
on (T1 ∩D(0, h′′))× (T2 ∩D(0, h′′))×Hβ′ , with the norm of the supremum. Here h′′, T1, T2 are
determined in Theorem 1.

The importance of this result compared to the main one in [7] lies on the fact that a mul-
tisummability phenomenon can be observed here, in contrast to [7]. This situation is attained
due to the appearance of different Gevrey levels coming from the different variables in time.

Theorem 2 Under the assumptions of Theorem 1, a formal power series

û(t, z, ε) =
∑
m≥0

Hm(t, z)εm/m! ∈ F[[ε]]

exists, with the following properties. û is a formal solution of (81). In addition to that, û can
be split in the form

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),

where a(t, z, ε) ∈ F{ε}, and û1, û2 ∈ F[[ε]]. Moreover, for every p1 ∈ {0, . . . , ς1 − 1} and p2 ∈
{0, . . . , ς2 − 1}, the function up1,p2(t, z, ε) can be written as

up1,p2(t, z, ε) = a(t, z, ε) + u1
p1,p2

(t, z, ε) + u2
p1,p2

(t, z, ε),

where ε 7→ ujp1,p2(t, z, ε) is an F−valued function which admits ûj(t, z, ε) as its kj−Gevrey asymp-
totic expansion on Ep1,p2, for j = 1, 2.

Moreover, assume that

{((p0
1, p

0
2), (p1

1, p
1
2)), ((p1

1, p
1
2), (p2

1, p
2
2)), . . . , ((p2y−1

1 , p2y−1
2 ), (p2y

1 , p
2y
2 ))}

is a subset of Uk2, for some positive integer y, and

Epy1 ,py2 ⊆ Sπ/k1
⊆

⋃
0≤j≤2y

E
pj1,p

j
2
,

for some sector Sπ/k1
with opening larger than π/k1. Then, û(t, z, ε) is (k2, k1)−summable on

Epy1 ,py2 and its (k2, k1)−sum is upy1 ,p
y
2
(ε) on Epy1 ,py2 .
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Proof Let (up1,p2(t, z, ε))0≤p1≤ς1−1
0≤p2≤ς2−1

be the family constructed in Theorem 1. We recall that

(Ep1,p2)0≤p1≤ς1−1
0≤p2≤ς2−1

is a good covering in C?.

The function Gp1,p2(ε) := (t1, t2, z) 7→ up1,p2(t1, t2, z, ε) belongs to O(Ep1,p2 ,F). We consider
{(p1, p2), (p′1, p

′
2)} such that (p1, p2) and (p′1, p

′
2) belong to {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1}, and

Ep1,p2 and Ep′1,p′2 are consecutive sectors in the good covering, so their intersection is not empty. In
view of (88) and (89), one has that ∆(p1,p2),(p′1,p

′
2)(ε) := Gp1,p2(ε)−Gp′1,p′2(ε) satisfies exponentially

flat bounds of certain Gevrey order, which is k1 in the case that {(p1, p2), (p′1, p
′
2)} ∈ Uk1 and

k2 if {(p1, p2), (p′1, p
′
2)} ∈ Uk2 . Multilevel-RS Theorem guarantees the existence of formal power

series Ĝ(ε), Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that

Ĝ(ε) = a(ε) + Ĝ1(ε) + Ĝ2(ε),

and the splitting
Gp1,p2(ε) = a(ε) +G1

p1,p2
(ε) +G2

p1,p2
(ε),

for some a ∈ F{ε}, such that for every (p1, p2) ∈ {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1}, one has that
G1
p1,p2

(ε) admits Ĝ1
p1,p2

(ε) as its Gevrey asymptotic expansion of order k1, and G2
p1,p2

(ε) admits

Ĝ2
p1,p2

(ε) as its Gevrey asymptotic expansion of order k2. We define

Ĝ(ε) =: û(t, z, ε) =
∑
m≥0

Hm(t, z)
εm

m!
.

It only rests to prove that û(t, z, ε) is a formal solution of (81). For every 0 ≤ p1 ≤ ς1 − 1,
0 ≤ p2 ≤ ς2 − 1 and j = 1, 2, the existence of an asymptotic expansion concerning Gjp1,p2(ε) and
Ĝj(ε) implies that

(95) lim
ε→0,ε∈Ep1,p2

sup
(t,z)∈(τ1∩D(0,h′′))×(τ2∩D(0,h′′))×Hβ′

|∂`εup1,p2(t, z, ε)−H`(t)| = 0,

for every ` ∈ N. By construction, the function up1,p2(t, z, ε) is a solution of (81). Taking
derivatives of order m ≥ 0 with respect to ε on that equation yield

(96) Q1(∂z)Q2(∂z)∂t1∂t2∂
m
ε up1,p2(t, z, ε)

=
∑

m1+m2=m

m!

m1!m2!

( ∑
m11+m12=m1

m1!

m11!m12!
∂m11
ε P1(∂z, ε)∂

m12
ε up1,p2(t, z, ε)

)

×

( ∑
m21+m22=m2

m2!

m21!m22!
∂m21
ε P2(∂z, ε)∂

m22
ε up1,p2(t, z, ε)

)

+
∑

0≤l1≤D1,0≤l2≤D2

( ∑
m1+m2=m

m!

m1!m2!
∂m1
ε (ε∆l1,l2 )t

dl1
1 ∂

δl1
t1
t
d̃l2
2 ∂

δ̃l2
t2
Rl1,l2(∂z)∂

m2
ε up1,p2(t, z, ε)

)

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε c0(t, z, ε)R0(∂z)∂

m2
ε up1,p2(t, z, ε) + ∂mε f(t, z, ε),

for every m ≥ 0 and (t, z, ε) ∈ (T1 ∩D(0, h′′))× (T2 ∩D(0, h′′))×Hβ′ ×Ep1,p2 . Tending ε→ 0 in
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(96) together with (95), we obtain a recursion formula for the coefficients of the formal solution.

(97) Q1(∂z)Q2(∂z)∂t1∂t2Hm(t, z)

=
∑

m1+m2=m

m!

m1!m2!

( ∑
m11+m12=m1

m1!

m11!m12!
∂m11
ε P1(∂z, 0)Hm12(t, z)

)

×

( ∑
m21+m22=m2

m2!

m21!m22!
∂m21
ε P2(∂z, 0)Hm12(t, z)

)

+
∑

0≤l1≤D1,0≤l2≤D2

m!

(m−∆l1,l2)!
t
dl1
1 ∂

δl1
t1
t
d̃l2
2 ∂

δ̃l2
t2
Rl1,l2(∂z)Hm−∆l1,l2

(t, z)

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε c0(t, z, 0)R0(∂z)Hm2(t, z) + ∂mε f(t, z, 0),

for every m ≥ max1≤l1≤D1,1≤l2≤D2 ∆l1,l2 , and (t, z, ε) ∈ (T1 ∩D(0, h′′))× (T2 ∩D(0, h′′))×Hβ′ .
From the analyticity of c0 and f with respect to ε in a vicinity of the origin we get

(98) c0(t, z, ε) =
∑
m≥0

(∂mε c0)(t, z, 0)

m!
εm , f(t, z, ε) =

∑
m≥0

(∂mε f)(t, z, 0)

m!
εm,

for every ε ∈ D(0, ε0) and (t, z) as above. On the other hand, a direct inspection from the
recursion formula (97) and (98) allow us to affirm that the formal power series û(t, z, ε) =∑

m≥0Hm(t, z)εm/m! solves the equation (81). 2
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