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Abstract

We consider a family of linear singularly perturbed Cauchy problems which combines partial differential
operators and linear fractional transforms. This work is the sequel of a study initiated in [17]. We con-
struct a collection of holomorphic solutions on a full covering by sectors of a neighborhood of the origin
in C with respect to the perturbation parameter e. This set is built up through classical and special
Laplace transforms along piecewise linear paths of functions which possess exponential or super exponen-
tial growth/decay on horizontal strips. A fine structure which entails two levels of Gevrey asymptotics of
order 1 and so-called order 17 is witnessed. Furthermore, unicity properties regarding the 1T asymptotic
layer are observed and follow from results on summability w.r.t a particular strongly regular sequence
recently obtained in [13].
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1 Introduction

In this paper, we aim attention at a family of linear singularly perturbed equations that involve
linear fractional transforms and partial derivatives of the form

(1) P(t72767 {mk,t,e}kefaat7az)y<t7z76) =0

where P(t, z, €, {Ux }rer, V1, V2) is a polynomial in Vi, Vs, linear in Uy, with holomorphic coeffi-
cients relying on ¢, z, e in the vicinity of the origin in C?, where my i stands for the Moebius
operator acting on the time variable my . y(t, 2, €) = y( z, €) for k belonging to some finite
subset I of N.

More precisely, we assume that the operator P can be factorized in the following manner
P = P1Py where P; and P, are linear operators with the specific shapes

_t
T+ket?

731 (t) Z, €, {mk‘,t,E}k‘Elv ata az) = P(€t2at)a§ - Z CE(Za E)ka,t,e(t28t)k0 8517
E:(k:o,k‘l,kz)EA
Polt, 2,600, 0:) = Po(c?00)05 — 3" di(z,e)top o,

1=(lo,l1,l2)€B

Here, A and B are finite subsets of N® and S, Sg > 1 are integers that are submitted to the
constraints (66) and (204) with (205). Moreover, P(X) and Pg(X) represent polynomials that



are not identically vanishing with complex coefficients and suffer the property that their roots
belong to the open right plane C; = {z € C/Re(z) > 0} and avoid a finite set of suitable
unbounded sectors Sdp C C4, 0 <p<it—1 centered at 0 with bisecting directions d, € R. The
coefficients cj(z,€) and dj(z,¢€) for k € A, | € B define holomorphic functions on some polydisc
centered at the origin in C2. We consider the equation (1) together with a set of initial Cauchy
data

Yik(te) ifke[-n,n]

(2) (024)(£,0,¢) = {Wp(t, e) if0<p<.i—1

for 0 <j < Sg—1and

i B
(3) (agpz(t,Z,E,@t,az)y)(tv()’ 6) = (Ph’k(t’ 6) 1 ke [[ n,n]]
Ona,(te) f0<p<i—1

for 0 < h < S — 1 and some integer n > 1. We write [—n,n] for the set of integer numbers
m such that —n < m < n. For 0 < j < Sg—1,0 < h <S5 —1, the functions v, 1 (t,€) and
onk(t,€) (resp. ¥jq,(t,€) and @y g, (t, €)) are holomorphic on products T x £} ; for k € [—n,n]
(resp. on T x &g i for 0 < p < ¢ —1), where T is a fixed open bounded sector centered at 0
with bisecting direction d = 0 and € = {€};; }re[-nmn) U {€s,, Yo<p<,—1 represents a collection
of open bounded sectors centered at 0 whose union form a covering of U \ {0}, where U stands
for some neighborhood of 0 in C (the complete list of constraints attached to £ is provided at
the beginning of Subsection 3.3).

This work is a continuation of a study harvested in the paper [17] dealing with small step
size difference-differential Cauchy problems of the form

(4) e@sﬁin(s, z,€) = Q(S, 2,6, {Tk etres, 05, 02) Xi(s, 2z, €) + P(z,€, Xi(s, 2, €))

for given initial Cauchy conditions (BgXi)(s, 0,€) = xj(s,€), for 0<i<v—-1,0<5<85—1,
where v, 5 > 2 are integers, Q is some differential operator which is polynomial in time s,
holomorphic near the origin in z, €, that includes shift operators acting on time, T}, ¢ X;(s, 2, €) =
Xi(s+ ke, z,¢€) for k € J that represents a finite subset of N and P is some polynomial. Indeed,
by performing the change of variable ¢ = 1/s, the equation (1) maps into a singularly perturbed
linear PDE combined with small shifts T} ., & € I. The initial data z;;(s,€) were supposed
to define holomorphic functions on products (S N {|s| > h}) x & C C? for some h > 0 large
enough, where S is a fixed open unbounded sector centered at 0 and & = {&;}o<i<,—1 forms a
set of sectors which covers the vicinity of the origin. Under appropriate restrictions regarding
the shape of (4) and the inputs z;;(s, €), we have built up bounded actual holomorphic solutions
written as Laplace transforms

Xz-(s,z,e):/ Vi(r, 2 €) exp(— T )dr
L €

€

along halflines L., = Rgaﬁei contained in C; U{0} and, following an approach by G. Immink
(see [9]), written as truncated Laplace transforms

ST

I'; log(§2;s/€)
Xi(s,z,€) = / Vi(T, 2, €) exp(——)dr
0 €

provided that I'; € C_ = {z € C/Re(z) < 0}, for well chosen §; € C*. In general, these
truncated Laplace transforms do not fulfill the equation (4) but they are constructed in a way



that all differences X;11 — X; define flat functions w.r.t s on the intersections &1 N &;. We
have shown the existence of a formal power series X (s,z,¢€) = > 50 hu(s, 2)€el with coefficients
h; determining bounded holomorphic functions on (SN {|s| > h}) x D(0,6) for some § > 0,
which solves (4) and represents the 1—Gevrey asymptotic expansion of each X; w.r.t € on &,
0 <i < v —1 (see Definition 7). Besides a precised hierarchy that involves actually two levels
of asymptotics has been uncovered. Namely, each function X; can be split into a sum of a
convergent series, a piece XZ-1 which possesses an asymptotic expansion of Gevrey order 1 w.r.t
€ and a part XZ-2 whose asymptotic expansion is of Gevrey order 17 as € tends to 0 on &; (see
Definition 8). However two major drawbacks of this result may be pointed out. Namely, some
part of the family {X;}o<i<,—1 do not define solutions of (4) and no unicity information were
obtained concerning the 1T —Gevrey asymptotic expansion (related to so-called 1 —summability
as defined in [9], [10], [11]).

In this work, our objective is similar to the former one in [17]. Namely, we plan to construct
actual holomorphic solutions yi(t,2,¢€), k € [-n,n] (vesp. yaq,(t,2,¢), 0 < p < v —1) to
the problem (1), (2), (3) on domains 7 x D(0,0) x Slkﬂn (resp. T x D(0,6) x &g, ) for some
small radius § > 0 and to analyze the nature of their asymptotic expansions as ¢ approaches 0.
The main novelty is that we can now build solutions to (1), (2), (3) on a full covering £ of a
neighborhood of 0 w.r.t e. Besides, a structure with two levels of Gevrey 1 and 1T asymptotics
is also observed and unicity information leading to 1T —summability is achieved according to
a refined version of the Ramis-Sibuya Theorem obtained in [17] and to the recent progress on
so-called summability for a strongly regular sequence obtained by the authors and J. Sanz in
[13] and [18].

The manufacturing of the solutions y; and yg, is divided in two main parts and can be
outlined as follows.

We first set the problem

(5) Pl(t,Z,E, {mk,t,e}k€1a8t7az)u<t7Z76) =0

for the given Cauchy inputs

t, if k€ [-n,
) @)(1,0,0) = § i R E Ll

Ona,(t,e) f0<p<i—1
for 0 < h < S — 1. Under the restriction (66) and suitable control on the initial data (displayed
through (73), (74) and (102)), one can build a first collection of actual solutions to (5), (6) as
special Laplace transforms

d
uk(t,z,e):/ wHJn(u,z,e)exp(—E)—u
Py

et u
which are bounded holomorphic on T x D(0,6) x & 7,» where wyyj, defines a holomorphic
function on a domain H.J,, x D(0,9) x D(0,€p) \ {0} for some radii §, g > 0 and HJ,, represents
the union of two sets of consecutively overlapping horizontal strips

Hy={z€C/ap <Im(z) <bg, Re(z) <0} , Jp={z€C/e; <Im(z) <dg, Re(z) <0}

as described at the beginning of Subsection 3.1 and P is the union of a segment joining 0 and
some well chosen point Ay € Hj and the horizontal halfline {A; — s/s > 0}, for k € [—n,n].
Moreover, wg j, (T, 2z, €) has (at most) super exponential decay w.r.t 7 on Hy (see (77)) and (at



most) super exponential growth w.r.t 7 along Jj. (see (78)), uniformly in z € D(0,¢), provided
that € € D(0,¢p) \ {0} (Theorem 1).

The idea of considering function spaces sharing both super exponential growth and decay
on strips and Laplace transforms along piecewise linear paths departs from the next example
worked out by B. Braaksma, B. Faber and G. Immink in [5] (see also [7]),

(7) h(s+1) —as th(s) =s!

for a real number a > 0, for which solutions are given as special Laplace transforms
hn(s) = / e 5TeT % dr

for each n € Z, where C,, is a path connecting 0 and +o0 + i for some 6 € (5 + 2nm, 37” + 2nm)
built up with the help of a segment and a horizontal halfline as above for the path P,. The
function 7 — e7~%%" has super exponential decay (resp. growth) on a set of strips —H}, (resp.
—Ji) as explained in the example after Definition 3. Furthermore, the functions h,(s) possess an
asymptotic expansion of Gevrey order 1, h(s) = > lus~! that formally solves (7), as s — oo
on C,. -

On the other hand, a second set of solutions to (5), (6) can be found as usual Laplace

transforms
u . du

udp(tazae) = /L ’LUdp(U,Z,E) exp(_g);
'de

along halflines L,, = R+eﬁwp C Sg, U{0}, that define bounded holomorphic functions on
T x D(0,6) x Es, , where wq,(7,z,€) represents a holomorphic function on (Sq, U D(0,r)) x
D(0,8) xD(0,€p)\{0} with (at most) exponential growth w.r.t 7 on Sg,, uniformly in z € D(0, 0),
whenever € € D(0,¢p) \ {0}, 0 <p <:¢—1 (Theorem 1).

In a second stage, we focus on both problems

(8) Po(t, z,€,0¢,0,)y(t, z,€) = ug(t, z,€)
with Cauchy data

(9) (02y)(,0,€) = Yju(t,€)

for 0<j<Sg—1, k€ [-n,n] and

(10) Pa(t, z,€,01,0:)y(t, 2,€) = uq,(t, 2, €)
under the conditions

(11) (D2y)(t,0,€) = ¥jq,(t,€)

for 0 < j < Sg—1,0<p<.:—1. We first observe that the coupling of the problems (5),
(6) together with (8), (9) and (10), (11) is equivalent to our initial question of searching for
solutions to (1) under the requirements (2), (3).

The approach which consists to consider equations presented in factorized form follows from
a series of works by the same authors [14], [15], [16]. In our situation, the operator P; cannot
contain arbitrary polynomials in ¢ neither general derivatives 8%1, l1 > 1, since wyy, (T, 2,€)
would solve some equation of the form (44) with exponential coefficients which would also contain



convolution operators like those appearing in equation (169). But the spaces of functions with
super exponential decay are not stable under the action of these integral transforms. Those
specific Banach spaces are however crucial to get bounded (or at least with exponential growth)
solutions w s, (T, 2, €) to (44) leading to the existence of the special Laplace transforms uy(t, z, €)
along the paths Pi. In order to deal with more general sets of equations, we compose P; with
suitable differential operators P, which do not enmesh Moebius transforms. In this work, we
have decided to focus only on linear problems. We postpone the study of nonlinear equations
for future investigation.

Taking for granted that the constraints (204) and (205) are observed, under adequate han-
dling on the Cauchy inputs (9), (11) (detailed in (207), (208)), one can exhibit a foremost set
of actual solutions to (8), (9) as special Laplace transforms

u . du

t = _— ) —
yk( 7276) Lk UHJ,,L(U,Z,G)eXp( ft) U

that define bounded holomorphic functions on 7 x D(0,6) x £ 7, Where vy g, (7, 2, €) represents
a holomorphic function on HJ, x D(0,0) x D(0,¢p) \ {0} with (at most) exponential growth
w.r.t 7 along Hy, (see (213)) and withstanding (at most) super exponential growth w.r.t 7 within
Ji (see (214)), uniformly in z € D(0,0) when € € D(0,¢p) \ {0}, k € [-n,n] (Theorem 2).
Furthermore, a second group of solutions to (10), (11) is achieved through usual Laplace

transforms
u . du

Ya,(t,z,€) = /L vg, (u, 2, €) exp(—g)?
’de

defining holomorphic bounded functions on 7 x D(0,d) x Es iy where vg, (7, 2, €) stands for a
holomorphic function on (Sg, U D(0,7)) x D(0,6) x D(0,¢) \ {0} with (at most) exponential
growth w.r.t 7 on Sg,, uniformly in z € D(0,0), for all e € D(0,¢€p)\ {0}, 0 < p <+ —1 (Theorem

2).
As a result, the merged family {y}re[—nn] and {ya, }o<p<,—1 defines a set of solutions on
a full covering £ of some neighborhood of 0 w.r.t €. It remains to describe the structure of
their asymptotic expansions as € tend to 0. As in our previous work, we see that a double layer
of Gevrey asymptotics arise. Namely, each function yi(t,z,€), k € [—n,n] (resp. yq,(t, 2, €),
0 <p<:—1) can be decomposed as a sum of a convergent power series in ¢, a piece yé(t, Z,€)
(resp. ycllp (t,z,€)) that possesses an asymptotic expansion §'(t,z,€) = 3,50 yi(t, 2)e of Gevrey
order 1 w.r.t € on £f; (resp. on Es,,) and a last tail yi(t,z,€) (resp. yﬁp(t,z,e)) whose
asymptotic expansion §%(t,z,€) = Y50 Y2 (L, 2)el is of Gevrey order 17 as e becomes close
to 0 on 5113Jn (resp. on &g, ). Furthermore, the functions y3.,.(t, 2, €) and yﬁp (t,z,€) are the
restrictions of a common holomorphic function y?(t, z,€) on T x D(0, §) x (Exly YR, U;)_:B €s,,)
which is the unique asymptotic expansion of §?(t, z,€) of order 17 called 1* —sum in this work
that can be reconstructed through an analog of a Borel/Laplace transform in the framework of
M—summability for the strongly regular sequence M = (M,,)n>0 with M,, = (n/Log(n + 2))"
(Definition 8). On the other hand, the functions yép (t,z, €) represent 1—sums of §! w.r.t € on
Es, whenvener its aperture is strictly larger than 7 in the classical sense as defined in reference
books such as [1], [2] or [6] (Theorem 3). These informations regarding Gevrey asymptotics
complemented by unicity features is achieved through a refinement of a version of the Ramis-
Sibuya theorem obtained in [17] (Proposition 23) and the flatness properties (215), (218), (219)
and (220) for the differences of neighboring functions among the two families {yy }xe[—nn) and

{ydp}OSPSL—L



The paper is organized as follows.

In Section 2, we consider a first ancillary Cauchy problem with exponentially growing coeffi-
cients. We construct holomorphic solutions belonging to the Banach space of functions with su-
per exponential growth (resp. decay) on horizontal strips and exponential growth on unbounded
sectors. These Banach spaces and their properties under the action of linear continuous maps
are described in Subsections 2.1 and 2.2.

In Section 3, we provide solutions to the problem (5), (6) with the help of the problem solved
in Section 2. Namely, in Section 3.1, we construct the solutions uy(t, z,€) as special Laplace
transforms, along piecewise linear paths, on the sectors 5}“[ g, wrteke [—n,n]. In Section 3.2,
we build up the solutions ug, (t,z,€) as usual Laplace transforms along halflines provided that e
belongs to the sectors Esdp, 0 < p <:¢—1. In Section 3.3, we combine both families {u,}re[—n,n]
and {ug, fo<p<,—1 in order to get a set of solutions on a full covering £ of the origin in C* and
we provide bounds for the differences of consecutive solutions (Theorem 1).

In Section 4, we concentrate on a second auxiliary convolution Cauchy problem with poly-
nomial coefficients and forcing term that solves the problem stated in Section 2. We establish
the existence of holomorphic solutions which are part of the Banach spaces of functions with
super exponential (resp. exponential) growth on L—shaped domains and exponential growth on
unbounded sectors. A description of these Banach spaces and the action of integral operators
on them are provided in Subsections 4.1, 4.2 and 4.3.

In Section 5, we present solutions for the problems (8), (9) and (10), (11) displayed as special
and usual Laplace transforms forming a collection of functions on a full covering £ of the origin
in C* (Theorem 2).

In Section 6, the structure of the asymptotic expansions of the solutions ug, yx and ug,,,
Y4, w.r.t e (stated in Theorem 3) is described with the help of a version of the Ramis-Sibuya
Theorem which entails two Gevrey levels 1 and 17 disclosed in Subsection 6.1.

2 A first auxiliary Cauchy problem with exponential coefficients

2.1 Banach spaces of holomorphic functions with super-exponential decay on
horizontal strips

Let D(0,7) be the closed disc centered at 0 and with radius r > 0 and let D(0, o) = D(0, €9)\ {0}
be the punctured disc centered at 0 with radius ¢g > 0 in C. We consider a closed horizontal
strip H described as

(12) H={z€C/a<Im(z) <b, Re(z) <0}

for some real numbers a < b. For any open set D C C, we denote O(D) the vector space of
holomorphic functions on D. Let b > 1 be a real number, we define ((b) = >°°91/(n + 1)°.
Let M be a positive real number such that M > ((b). We introduce the sequences r,(3) =
=0 Gy and sp(B8) = M —ry(B) for all 8 > 0.

Definition 1 Let g = (01,02,03) where 01,09,03 > 0 be positive real numbers and > 0 an
integer. Let € € D(O,eo). We denote SED g 5 1) the vector space of holomorphic functions

v() on H (which stands for the interior of H) and continuous on H such that

[o(7)]

llo(7)l| s e ( &
v(T He) =SUp ———exp | ——
(B,o,H,€) i |7.|

(Bl + 7250(8) exp(o—s|f|>)

el



is finite. Let 6 > 0 be a real number. We define SED (4 p1.¢ 5) to be the vector space of all formal
series v(T,2) = Y 55 vg(7)27 | B! with coefficients vg(T) € SED 4 4. 1.¢), for B> 0 and such that

§8
HU(T Z)HUH65 ZHUﬁ H,BUHE B'

8>0

is finite. One can ascertain that SED 4 c 5) equipped with the norm ||.|(g,f.e,5) turns out to be
a Banach space.

In the next proposition, we show that the formal series belonging to the latter Banach spaces
define actual holomorphic functions that are convergent on a disc w.r.t z and with super expo-
nential decay on the strip H w.r.t 7.

Proposition 1 Let v(7,2) € SED(5 p 5. Let 0 < 01 < 1. Then, there exists a constant
Co > 0 (depending on ||v||(s,m,cs) and 1) such that

(13) [v(r, 2)| < Colr] exp ( aaf|—»02<Af-—<<b>>exp<asqw>>

for all T € H, all z € C with 2 < 6.

Proof Let v(7,2) = > 55 vg(1)2P /B! € SED (4 H.s)- By construction, there exists a constant
co > 0 (depending on [[v]|(4,f,c5)) With

(14) (7)< colr|exp(Tor(B) 1] = oos(8) exp(oalr])) 81 5)°

for all 5 >0, all 7 € H. Take 0 < §; < 1. Departing from the definition of {(b), we deduce that

(15) |v(7, 2)| < co|7| ZeXp(%m(ﬂ)lTl — aasp(B) exp(os|7])) (61)°
>0
1

C)|7| = o2(M = (b ))eXP(U3\T!))1_51

< cOIT\exp

for all z € C such that l%‘ < 01 < 1, all 7 € H. Therefore (13) is a consequence of (15). O

In the next three propositions, we study the action of linear operators constructed as mul-
tiplication by exponential and polynomial functions and by bounded holomorphic functions on
the Banach spaces introduced above.

Proposition 2 Let kg, ko > 0 and k1 > 1 be integers. Assume that the next condition

bk
(16) ki > bk 4+ —2
g3

holds. Then, for all € € D(0,€), the operator v(t, z) — %0 exp(—ko7)0; " v(T, 2) is a bounded
linear operator from (SED (41 ¢.5) ||||(o,m,e,5) nto itself. Moreover, there exists a constant C1 >
0 (depending on ko, k1, k2, 0,b), independent of €, such that

(17) 1750 exp(—k2m) 02 0(7, 2) | (g .68y < Culel™ 6™ [0(7, 2)|| (0,110

for allv e SED, ), all € € D(0, €p).



Proof Let v(7,2) =} 5 vg(7)2? /B! belonging to SED (4 p.es) By definition,

_ &8
(18)  [|7* exp(—kom)0; M0 (7, 2) 0,11y = D |7 exp(—kaT)vp_s, (T)H(B,Q,H,e)ﬁ'
B>k1 '
Lemma 1 There exists a constant Cy1 > 0 (depending on ko, k1, ko, 0,b) such that
ko ko bkio+ 52"
(19) |77 exp(—koT)vg—ky (T)[|(8,0,11,c) < Cralel™ (B +1)""" 78 [[vg—ky (T)||(8-k1 .0, H,e)

for all B> k.

Proof First, we perform the next factorization

20) (7 exp(— )i ()] exo (—Em(ﬁ)!ﬂ —— exp(ogrm)

= M exp (—Ulrb(ﬁ — k1)|7| + o28(B — k1) eXP(U3‘T|)>

7| e
x (’Tko exp(—kot)| eXP(—%(Tb(B) — (8 — k1))|7]) exp(o2(sp(B) — s6(8 — k1)) 6XP(U3|T|))>

On the other hand, by construction, we observe that

(21) ro(B) —1p(B — k1) = 3 f_ll)b , s6(B) —sp(B — k1) < — @ ﬁ_ll)b
for all 5 > k;. According to (20) and (21), we deduce that
(22) 1750 exp(—ka)vp—1, (Tl (5.0,11,0) < AB) 05—k (T)]](5—ky 0, 11,6)
where
_ ko _a k1
A(B) _Egg ’T‘ eXp(’“Q’TDeXp( ’6’ (5+1)b‘T’)
< exp(—2 s exploalr) < A(3)42(6)

with .

— ko _a L

) =g e
and s
As(B) = ig% exp(kax) eXp(_UQm exp(o37))

for all B > k1. In the next step, we provide estimates for A;(f). Namely, from the classical
bounds for exponential functions

(23) sup ™ exp(—max) < (ﬂ)m1 exp(—my)
x>0 ma

for any integers m; > 0 and mo > 0, we get that

ko X _Lklﬁ
NGRS

k1 ko
< [e*o sup X*0 exp(— 2t X) = |e]fo(—)* exp(—k 4 1)Pko
e sup X4 exp(— 74505 X) = e (ko) 5+ 1)

(24) Ai(B) = |¢[* sup(-—

z>0 €]




for all 8 > k;. In the last part, we focus on the sequence As(f3). First of all, if ko = 0, we

observe that Ay(B) < 1 for all 8 > k;. Now, we assume that ko > 1. Again, we need the help

of classical bounds for exponential functions
sup cx — aexp(bx) < E(log( )—1)

x>0 b ab

for all positive integers a, b, ¢ > 0 provided that ¢ > ab. We deduce that

b kob
P 1) = ep(-2 4 Biog 9%

As(B) < exp(@(log(

o3 o309k o309k

whenever 8 > k1 and (5 + 1)b > 0903k1/ka. Besides, we also get a constant C g > 0 (depending

on ko, 09, k1,b,03) such that
kob

As(B) < Cro(B+1)°s

for all 8 > ky with (8 + 1)® < 0903k1 /ke. In summary, we get a constant Cro >0 (depending
on kQ, g9, k‘l, b, 03) with

kb
(25) Az(8) < Cro(B+1) s
for all 5 > k;. Finally, gathering (22), (24) and (25) yields (19). O

Bearing in mind the definition of the norm (18) and the upper bounds (19), we deduce that

_ bko+ 2k2
(26) [|7*0 exp(—kom)0; ¥ 10 (7, 2)|| (0, ) < D Crale/(1+ B) T
B>k1

(,6’ k1)! W 00M
ko He)0
3l Vst (Dl (3—1,0,1,0) (B —k1)!

In accordance with the assumption (16), we get a constant C 2 > 0 (depending on ko, k1, k2, b, 03)
such that

bko-i-f (ﬁ kl)
B!

for all 5 > ky. Lastly, clustering (26) and (27) furnishes (17). O

(27) (1+58) <Ci2

Proposition 3 Let ko, ko > 0 be integers. Let o = (01,02,03) and o' = (0}, 0%, 0%) with o > 0
and o’ >0 for j =1,2,3, such that

(28) o1 >0 , oy<oy , o3=0%.

Then, for all € € D(0,€), the operator v(r,z) — T exp(—koT)v(T,2) is a bounded linear
map fromv(SED(g/7H7675), [0’ H,e.5)) into (SED (g m.e6): |-l(o,f,6,6))- Moreover, there exists a
constant Cy > 0 (depending on ko, ka,o,0’, M,b) such that

(29) 1770 exp(—k2)0(7, 2)ll (0, H.e.5) < Culel™ [0(7, 2)l(07,11,6.0)

Jor allv € SED (4 ¢ 5)-
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Proof Take v(7,2) = 3 554 v5 (T)Zﬁ—f within SED 4 g ¢ 5)- According to Definition 1, we see that

58

1742 exp(—am)o(r. 2ty = 17 exp(—kar)us(Dll i

=0
Lemma 2 There exists a constant Cy > 0 (depending on ko, ks, 0,0’, M,b) such that
|70 exp(=kar)0p(7)||(8.0.1,0) < Calel™Joa (7|50, 1.0

Proof We operate the next factorization
ko 1 g1
ks eXp(—]fﬂ)%’(T)’m exp —Hrb(ﬁ)lﬂ + o254(83) exp(os|7])

= ieX —U—ir 7|+ ohs exp(oh|r
~ sl exp (= @) + ohen(8) explctio) )

o
% 7R exp(—kar)| exp(— T2 71

el

r5(B)|7]) exp ((o2 — 05)su(B) exp(3|7])) .

We deduce that .
|I7%0 exp(—kom)vs(T)| (5.0.11.0) < AB)|[0g(T)|| (.07 11.0)

where
A(8) = sup [+ exp(—kar)] exp(= =T (B)7 exp (02— o3 su(8) exploalr)
< A1(B)A2(B)
with
/11(,8) = sg% a0 exp(—%rb(ﬂ)x) , /12(5) = sg% exp(kox) exp ((02 — ab)sp(B) exp(agaz)) .
Since 7(8) > 1 for all 8 > 0, we deduce from (23) that
(30) A1(8) < [effo sup( ) expl(—(o1 — o) ) < [efla(F2Eyio
- 2>0 €] Ylel” ~ o1 — 0}

In order to handle the sequence Ay(3), we observe that s,(8) > M — ((b) > 0, for all 8 > 0.
Therefore, we see that

./212(,8) < SL;[O) exp (k:gx + (o9 — b)) (M — ((b)) exp(agx))
which is a finite upper bound for all 5 > 0.

As a consequence, Proposition 3 follows directly from Lemma 2. O

Proposition 4 Let ¢(T, z,€) be a holomorphic function on H x D(0,p) x D(0,¢), continuous
on H x D(0,p) x D(0,¢€p), for some p > 0, bounded by a constant M. > 0 on H x D(0, p) x
D(0,€9). Let 0 < 6 < p. Then, the linear map v(7,z) — c(7,z,€)v(T,2) is bounded from
(SED (. 1,6,6) ||-|(0,,6,6)) into itself, for all € € D(0, €y). Furthermore, one can choose a con-

]

stant C1 > 0 (depending on M., 0, p) independent of € such that

(31) lle(m, 2, )v(7,2) (@ r.e.0) < Cillo(T, 2) (g,
for allv € SED (4 1 c.5)-



11

Proof We expand ¢(7, z,€) = Zﬁzo c(T, €)2% /3! as a convergent Taylor series w.r.t z on D(0, p)
and we set M. > 0 with

sup le(T, z,€)| < M,.
T€H,2€D(0,p),e€€

Let v(T,2) = ZB>0 v3(T)2” /B! belonging to SED (g f.s)- According to Definition 1, we get
that -

B! N
(32) IIC(T,z,e)v(T,Z)H(g,H,e,a)SZ Z ||Cﬁ1(7—7E)Uﬁz(T)H(ﬁ,g,H,e)W o
5>0 \f1+B2=B R

Besides, the Cauchy formula implies the next estimates

1
sup _[es(7, €)| < Me(5;)B!
TEH €

for any 6 < &’ < p, for all 3 > 0. By construction of the norm, since r,(8) > 7(f82) and
sp(B) < sp(B2) whenever By < 3, we deduce that

1 1
(33) lleg, (7, )vg, (Dll.gutre) < MeBil(5)™ 108, (M) |(.g.tre) < MeBil(5)" 105, (7) (52,2110

for all 81, B2 > 0 with 81 + S = 5. Gathering (32) and (33) yields the desired bounds

0
lle(r, 2, u(7, )@ re8) < Me(D_ ()07 2) (@ 1)
B=0

2.2 Banach spaces of holomorphic functions with super exponential growth
on horizontal strips and exponential growth on sectors

We keep the notations of the previous subsection 2.1. We consider a closed horizontal strip
(34) J={z€C/c<Im(z) <d, Re(z) <0}

for some real numbers ¢ < d. We denote Sy an unbounded open sector with bisecting direction
d € R centered at 0 such that S; C C; = {z € C/Re(z) > 0}.

Definition 2 Let ¢ = (01,%2,¢3) where o1,62,63 > 0 be positive real numbers and 3 > 0 be

an integer. Take ¢ € D(0,€p). We designate SEG 3 1) as the vector space of holomorphic

functions v(T) on J and continuous on J such that

om0 = sup POl (—(”rbw)m - exp(cgrﬂ))

7] el

is finite. Similarly, we denote EG (g4, 5,0D(0,r),¢) the vector space of holomorphic functions v(T)
on SqU D(0,7) and continuous on SqU D(0,r) such that

v(7)]
(DlB.01,50D0m),0 = sUD
T7€S4UD(0,r) |T’

exp(—%rmm)
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is finite. Let us choose 6 >0 a real number. We define SEG ¢ j.s) to be the vector space of all
formal series v(1,2) = 355 v(7)27 /B! with coefficients vg(T) € SEG g1, for B> 0 and

such that 5
0
0(7, 2)l(g,ge) = D HUB(T)H(B,S,J@)E

B=0

is finite. Likewise, we set EG 4, 5,uD(0,r),,5) @8 the vector space of all formal series v(r,2) =
2550 v(7)2P /B! with coefficients vs(T) € EG 8,6,,5,uD(0,r),¢), for B >0 with

&8
||’U(7', Z) | |(U1,SdUD(O,T),e,6) = Z Hvﬁ (T) ||(B,a1,SdUD(0,7’),e) ﬁ
B8>0 )

being finite.

Remark. These Banach spaces are slight modifications of those introduced in the former work
[17] of the second author. The next proposition will be enounced without proof since it follows
exactly the same steps as Proposition 1 above. It states that the formal series appertaining to
the latter Banach spaces turn out to be holomorphic functions on some disc w.r.t z and with
super exponential growth (resp. exponential growth) w.r.t 7 on the strip J (resp. on the domain
SqUD(0,r)).

Proposition 5 1) Let v(7,2) € SEG ( jcs)- Take some real number 0 < 61 < 1. Then, there
exists a constant Cy > 0 depending on [|v||(, 5) and 01 such that

(35) |v(T, 2)| < Co|7|exp <Ulé(b)|ﬂ + «2¢(b) exp(%lTl))

el

forall T € J, all z € C with % < d1.
2) Let us take v(T,2) € EG (4, 5,uD(0,r),e,5)- Choose some real number 0 < 6 < 1. Then, there
exists a constant Cy > 0 depending on ||v||(5, 5,0D(0,r),e,5) and 61 such that

g1

(36) [o(7, 2)| < Co|r]exp(;C(b)l7])

€]
forall T € SgUD(0,r), all z € C with % < 41.

In the next coming propositions, we study the same linear operators as defined in Propositions
2,3 and 4 but acting on the Banach spaces described in Definition 2.

Proposition 6 Let us choose integers ko, ko > 0 and k; > 1.
1) We take for granted that the next constraint
bko

k1 > bky + —
<3

holds. Then, for all e € D(0,€), the linear map v(t, z) — 70 exp(—ko7)0 "1 v(7, 2) is bounded
from (SEG ¢ yes5): ||-l(c,7.e5) into itself. Moreover, there exists a constant C3 > 0 (depending on
ko, k1, k2,<,b), independent of €, such that

(37) 7 exp(=kom)8; 1 0(7, 2)|l(¢ se0) < Calel®6™ [[o(7, 2)|6..0)
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for all v(r,2) € SEG( 5, all € € D(0, €p).
2) We suppose that the next restriction

k1 > bkg

holds. Then, for all e € D(0,€), the linear map v(t, z) — 70 exp(—ko7)0; *1v(7, 2) is bounded
Jrom EG 5, 5,uD(0,r),e,5) tnto itself. Moreover, there exists a constant C4 > 0 (depending on
ko, k1, ko, 01,7,b), independent of €, such that

(38)  |I7" exp(—ka) O M 0(7, 2)l| (61,5000 (0.),e0) < C3lel™ 6™ [0(T, 2)l(01,9,0D(0.).c.6)
for all v(r,2) € EG (4, 5,uD(0,).¢,6), all € € E.
Proof We only perform a sketch of proof since the lines of arguments are bordering the ones
used in Proposition 2. For the first point 1), we are reduced to show the next lemma
Lemma 3 Let vg_,(7) in SEG(ﬂ,kl&J,e), for all 8 > ky. There exists a constant C31 > 0
(depending on ko, k1, k2,<,b) such that
ko ko blo+ 12"
17 exp(—kaT)vg—k, (T)ll(8.6,00) < Caalel™ (B + 1) 5 |Jug—, (T)|| (-1 5,6)

for all B> k.

Proof We use the factorization

7 exp(—harus- (0l op (-] - an( el

= w exp <—0-17"b(5 —k1)|T| = Grp(B — k1) exp(§3’7'|)>

7] el

. (wo exp(—hor)] exp(~ 71 (1(8) = 13 — k)l exp(—(rs(8) ~ (8~ k) exp(csrrm) -

In accordance with (21), we get that

177 exp(—kam)vg—i, (M) (5.6,06) < BBvs—rs ()| (5—t1,6,6)

where
B(9) = sup ™ exp(llr) expl~ T o)
< expl—sa s explsal7]) < Ba(B) Ba()
with
B1(0) = g el - )
and

By () = sup exp(kaz) exp(—c2

225 1 )
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for all 5 > ki. From the estimates (24), we deduce that

Bu(B) < el (0 expl(—ko) (8 + 1)

O1R1

for all B > k. Bearing in mind the estimates (25), we get a constant Cs0 >0 (depending on

ko, <2, k1,b, ¢3) with
kob

Bsy(B) < Cao(B+1) %

for all 5 > ki, provided that ks > 1. When ko = 0, we obviously see that By(f) < 1 for all
B > k1. The lemma 3 follows. a

In order to explain the second point 2), we need to check the next lemma

Lemma 4 Let vg_,(7) in EG3_, 01,5,uD0,),6), Jor all B > ki. There exists a constant
C4 1 > 0 (depending on ko, ki, ke, 01,7,b) such that

175 exp(—=ka)vg—1, (T (8.01,550D(0).0) < Caalel™ (B + 1) [0y (T (8k1.01.,520D(0.r) )
for all B> k1.
Proof We need the help of the factorization

vk (T o1

\T’“O exp(—kaT)vg_p, (T)|’71‘ eXp(—%T’b(ﬁ)’TD = | exp( ,6,”)(6 —klr)
X \Tko exp(—ka)| eXp(—%(Tb(ﬁ) —1p(B — k1))|T])-

Due to the fact that there exists a constant C% 5 > 0 (depending on kg, r) such that | exp(—ka7)| <
C4 5 for all 7 € S; U D(0,r) and according to (21), we obtain that

‘ |Tk0 exp(_kQT)vﬁ—kl (T) ‘ |(,B,01,SdUD(O,r),e) < C(ﬁ) ‘ |Uﬁ—k:1 (T) | ‘ (B—k1,01,SqUD(0,r),€)

where .
CcB)=C,, sup |r|oexp(—Z—"1 1)) < LA
( ) S.QTeSdUD(O,r)’ ‘ ( ’6’ (5+1)b| |) 3.2 ( )
with
or ki

— ko - S

for all B > k1. Again, keeping in view the estimates (24), we deduce that
k
C1(B) < el (=)™ exp(—ko)(8 + 1)1
o1k

for all B > kq1. The lemma 4 follows.
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Proposition 7 Let kg, ko > 0 be integers.
1) We select < = (01,%2,53) and s" = (0},¢5,5) with 01,0} > 0, §j7§]'~ > 0 for j = 2,3 in order
that

(39) oL>0 L, @>d , a=dg.

Then, for all € € D(0,€y), the map v(t,z) — 7% exp(—koT)v(T, 2) is a bounded linear oper-
ator from (S’EG(S/’JM;), ”.H(SI’J,E’CS')) into (SEG(S’(LQ(S), H.||(S7J’E’5)). Furthermore, there exists a
constant C3 > 0 (depending on ko, ka,<,<") such that

(40) 1770 exp(—k2r)0(7, 2)ll(g,15) < Calel™[10(7, 2)ll(¢" 1.0

for allv € SEG (¢ jcs)-
2) Let 01,07 > 0 such that

(41) o1 >O'/1.

Then, for all e € D(0, ), the linear map v(r, z) — 7% exp(—kor)v(, 2) is bounded from the Ba-
nach space (EG (o} 5,00(0).c.0) |1l (01,50000.0).c0)) 180 (EG (g, 5,00(0.r).e6)> |](01,5,0D(0.r).¢.6))-
Besides, there ezists a constant C% > 0 (depending on ko, ko, 7, 01,04 ) such that

(42) 7% exp(=k2m)0(7, 2)|| (0, 5,00(0).c.0) < CaleI[0(T: 2)l (07, 5,0D(0.) 0

for allv € EG (41 5,0D(0,r).¢.,6)-

Proof As in Proposition 6, we only provide an outline of the proof since it keeps very close to
the one of Proposition 3. Concerning the first item 1), we are scaled down to show the next
lemma

Lemma 5 There exists a constant C3 > 0 (depending on ko, ka,s,s’) such that
k = k
177 exp(=ka7)vp ()l (5,26 < Cslel™[|va(T)ll(8,¢,0

Proof We perform the factorization

\Tko eXp(—/QT)Uﬁ(T)"; exp (-Erb(ﬁ)w — crp(B) eXP(<3|TD>

— Jos(r)] L exp (—(ﬁmww — n(8) exp(cgw)

7] €]
o1 — o}
x |74 exp(—ka7)| exp(— BT exp (~(2 = 3)ra(B) explsalr))
We get that
|| 7o exp(—k27)va(T)[l(8.e,76) < BB)|vg(T)ll(8,s7,70)
where

o1 — o}

() |7]) exp (—(s2 — s3)75(B) exp(s3| 7))
< By(8)B2(B)

B(B) =8115>|le0 exp(ka|7[) exp(— el
TE
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with
o ko g1 — 0'/1 ~ /
Bi(8) = Sup exp(—Trb(ﬁ)x) . By(B) = sup exp(kax) exp (—(s2 — 53)75(B) exp(sz)) -
x> Tz
With the help of (30), we check that
k()e_l

e
o1 — o]

By(B) < el

and since r(5) > 1 for all 8 > 0, we deduce

By(pB) < sup exp (kox — (s2 — b) exp(s3))

which is a finite majorant for all 5 > 0. The lemma follows. O

Regarding the second item 2), it boils down to the next lemma

Lemma 6 There exists a constant C’é > 0 (depending on ko, ka,7,01,07) such that
k X k
7% exp(—ko7)vs(T)l(8,01,5:0D(0,r),6) < Clel™10(T)l(8,01,5:0D(0,1).)

Proof Again we need to factorize the next expression

/

7o exp(—kmwmexp(—j’;mw)rﬂ) - |v5<7>||71|exp<—j’;|rb<ﬂ>m>
o1 — o}

el

By construction, we can select a constant C4 ; > 0 (depending on ko, ) such that | exp(—ka7)| <
C4 4 for all 7 € S; U D(0,7). We deduce that

x | 7R0 exp(—koT)| exp(—

ro(B)[7))-

(43) |77 exp(—ka7) v (7| (8,01,5,0D0,),0) < CBNva(NI(8,01,500D0,),6)

where

—_ , - -
CB) <y sup |7 exp(— 22— Tlry(B)|7]) < C4.1Ch(B)
7€S,UD(0,r) €]

with ,
C1(B) = supa? exp(—ZL—71
x>0 ‘6‘

y(B)T).

Through (30) we notice that

> ]{506_1
< ko 0=
Cl(ﬂ) = ‘6‘ (0_1 _ 0_1

for all 8 > 0. This yields the lemma. O

ke

a

The next proposition will be stated without proof since its explanation can be disclosed following
exactly the same steps and arguments as in Proposition 4.
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Proposition 8 1) Consider a holomorphic function c(t,z,€) on J x D(0,p) x D(0,€p), con-
tinuous on J x D(0,p) x D(0,€y), for some p > 0, bounded by a constant M. > 0 on J X
D(0,p) x D(0,¢p). We set 0 < 6 < p. Then, the operator v(T,z) — ¢(T, z,€)v(T, 2) is bounded
from (SEG (¢ jes) ||-|l(c,7.¢,6)) into itself, for all e € D(0,¢0). Besides, one can select a constant
Cs > 0 (depending on M., d,p) such that

||C(T, 2, 6)U<T7 Z) H(S,J,e,é) < 3| ‘U(Ta Z) | ’(S,J,e,zi)

for allv € SEG( jcs)-

2) Let us take a function c(t, z, €) holomorphic on (SqUD(0,r)) x D(0, p) x D(0, ), continuous
on (SqU D(0,7)) x D(0,p) x D(0,€), for some p > 0 and bounded by a constant M. > 0 on
(S4uD(0,7)) x D(0, p) x D(0,€). Let0 < & < p. Then, the linear map v(, 2) — c(, 2, €)v(T, 2)
is bounded from (EG (4, 5,0D(0,r),6,6)s |||/(01,5,0D(0,0),6,6)) into itself, for all e € D(0, €0). Further-

more, one can sort a constant C% > 0 (depending on M., 6, p) with

|le(T, 2, €)u(T, 2)| |(01,SdUD(O,T),e,6) < C§| (T, 2) ’(Gl,SdUD(O,r),e,cS)

Jor allv € EG (4, 5,uD(0,r),¢,)-

2.3 An auxiliary Cauchy problem whose coefficients suffer exponential growth
on strips and polynomial growth on unbounded sectors

We start this subsection by introducing some notations. Let A be a finite subset of N3. For
all & = (ko,k1,k2) € A, we consider a bounded holomorphic function cx(z,€) on a polydisc
D(0, p) x D(0, €g) for some radii p,ep > 0. Let S > 1 be an integer and let P(7) be a polynomial
(not identically equal to 0) with complex coefficients whose roots belong to the open right
halfplane C; = {z € C/Re(z) > 0}.

We consider the following equation

S _ k(2,€) ko k
(44) Fw(T, z,€) = Z Ws 070 exp(—koT)0  w(T, 2, €)
E:(ko,kl,kg)EA

Let us now enounce the principal statement of this subsection.

Proposition 9 1) We impose the next requirements

a) There exist o = (01,09,03) for 01,092,053 > 0 and b > 1 being real numbers such that for all
k = (ko, ki1, k2) € A, we have

(45) SZ]ﬁ—i-b/{o—Fbgﬁ , S>>k
3
b) For all 0 < j < S —1, we consider a function T — w;(,€) that belong to the Banach space
SED o4 m,e) for all e € D(0,€y), for some closed horizontal strip H described in (12) and for a
tuple o' = (0, 05, 0%) with o1 > o} > 0, 02 < 04 and o3 = 0}
Then, there exist some constants I, R >0 and 0 < 0 < p (independent of €) such that if one
assumes that

S—1—h (5]

(46) Z ||wn (T, e)H(OngH’e)ﬁ <I
=0
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for all0 < h<S—1, foralle € D(O, €0), the equation (44) with initial data
(47) (Blw)(7,0,¢) = wj(r,6) , 0<j<S—1,

has a unique solution w(,z,€) in the space SED (g p5), for all e € D(0,€y) and satisfies
furthermore the estimates

(48) ||w(7_a 2, E)H(Q,H,e,é) < 5SR +1

for all e € D(0, ).
2) We demand the next restrictions

a) There exist ¢ = (01,52,53) where 01,52,63 > 0 and b > 1 real numbers taken in way that all
k = (ko, k1, k2) € A we have

(49) SZkl—l-bko-i-bgk2 , S > k.
3
b) For all 0 < j < S — 1, we choose a function T — w;(T,€) belonging to the Banach space
SEG (¢ 16 for all e € D(0,¢q), for some closed horizontal strip J displayed in (34) and for a
tuple ¢" = (0,5, ¢%) with o1 > o} >0, &2 > ¢ > 0 and ¢3 = .
Then, there exist some constants I, R >0 and 0 < 0 < p (independent of €) such that if one
takes for granted that

S—1—h 5]
(50) Z ||wj+h(7_> 6)||(0,S’,J,6)ﬁ <I

§=0
forall0 < h<S—1, foralle € D(O, €o), the equation'(M) with initial data (47) has a unique
solution w(t, z, €) in the space SEG (¢ jcs), for all € € D(0, o) and fulfills the next constraint

(51) (T, 2l (eres) < SR+

for all e € D(0,¢).

3) We ask for the next conditions.

a) We fiz some real number o1 > 0 and assume the ezistence of b > 1 a real number such that
for all k = (ko, k1, k) € A we have

(52) S>ki+bky , 5>k

b) For all 0 < j < S —1, we select a function T — w;(7,€) that belong to the Banach space
EG(0,01,5,0D(0,r),¢) for all € € D(O, €0), for some open unbounded sector Sy with bisecting direc-
tion d with Sq C C1 and D(0,7) a disc centered at 0 with radius r, for some 0 < o] < o1. The
sector Sy and the disc D(0,7) are chosen in a way that SqU D(0,7) does not contain any root
of the polynomial P(T).
Then, some constants I, R >0 and 0 < § < p (independent of €) can be sorted if one accepts
that
S—1—h

(53) Z |[wjn (T, E)H(O,U’I,SdUD(O,r),e)ﬁ <I
j=0 ’

forall0<h<S—1, foralle e D(O, €0), the equation (44) with initial data (47) has a unique
solution w(7, z, €) in the space EG 4, 5,uD(0,r),6,6), for all € € D(0, €0), with the bounds

(54) Hw@3%€NMnﬂ$DmJMﬁ)§6SR*‘I



19

for all e € D(0, ).

Proof Within the proof, we only plan to provide a detailed description of the point 1) since the
same lines of arguments apply for the points 2) and 3) by making use of Propositions 6,7 and 8
instead of Propositions 2,3 and 4. We consider the function

S—1 ;
ZJ
Ws(T,2,€) = ij(T, E)F
J=0 '
where w; (7, €) is displayed in 1)b) above. We introduce a map A, defined as
AU = Y Bk ok U 2)

kehoirkayea L)

+ Z c;;(;;)e) ¢ ko ko exp(—kng)(?les(T, z,€).
Ek=(ko,k1,k2)€A

In the forthcoming lemma, we show that A, represents a Lipschitz shrinking map from and into
a small ball centered at the origin in the space SED 4 p ¢ 5)-

Lemma 7 Under the constraint (45), let us consider a positive real number I > 0 such that

S—1—h 6J

> llwjgn(r, E)H(o,g',H,e)ﬁ <1
7=0

forall0 < h<S-—1, foree D(O, €0). Then, for an appropriate choice of I,
a) There exists a constant R > 0 (independent of €) such that

(55) HA6(U(7—7 Z))”(Q,H,e,é) <R

for allU(t,z) € B(0,R), for all € € D(0, &), where B(0, R) is the closed ball centered at 0 with
radius R in SED 4 11.c 5)-
b) The next inequality

1
(56) 1Ae(U1(7, 2)) = Ae(Ua(7: 2)l(o,b.c.0) = SIUL(T, 2) = V(7. 2)ll (0, 11,6.6)
holds for all Uy, Us € B(0, R), all € € D(0, ).

»(0) and s,(8) < s3(0) for all B > 0, we notice that for any 0 <h < S —1

Proof Since r,(8) > r
— h,

and 0<j<S5—-1

Nwjtn (T, .o i) < Nwjsn (T, )l 0,07,11,0)
holds. We deduce that 0" Wg(r, z, €) belongs to SED (4 g es) and moreover that

S—1—h (S]

(57) 102Ws(7, 2, 6)ll(or t1.e5) < Z [[wjtn (T, G)H(O,Q’,H,e)ﬁ <I,
=0
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for all 0 < h < S — 1. We start by focusing our attention to the estimates (55). Let U(r,z)
belonging to SED 4 g5y With |[U(7, 2)||(g,#.,5) < R. Assume that 0 < J < p. We put

cx(z,€)

M = sup Pl

" TE€EH,2€D(0,p),e€D(0,¢0)

for all k € A. Taking for granted the assumption (45) and according to Propositions 2 and 4, for
all k£ € A, we get two constants C; > 0 (depending on kg, k1, k2, S,0,b) and C; > 0 (depending
on My, 0,p) such that

cplz,€) _ _
(58) II’;((T))e R0k exp(—koT) 08 U (7, 2)|| (0, 1.0.0)

< GG MU (T, 2)||(g,1e0) = CLC16% MR

On the other hand, in agreement with Propositions 3 and 4 and with the help of (57), we obtain
two constants C; > 0 (depending on ko, k2,0, 0, M,b) and C > 0 (depending on My, 6, p) with

HCE(Z,E)

% 1P

E_ko’rko exp(_kQT)afl Ws (T7 2, 6) H(Q,H,e,é)
< élélH(??lWS(T, z, 6)|’(g/’H’€’5) < C1Cy T
Now, we choose d, R,I > 0 in such a way that

(60) > (C1C165 MR+ C1CiI) < R
keA

holds. Assembling (58) and (59) under (60) allows (55) to hold.
In a second part, we turn to the estimates (56). Let R > 0 with Uy, Uy belonging to
SEDy 1, s) inside the ball B(0, R). By means of (58), we see that

cplz,€) _ _
(61) H’;((T))e Koo exp(—kym) O 5 (UL (7, 2) = Ua(7, 2))l (0, 1.

< G101 M |Un (7, 2) = Ua (7, 2) (. 1)
where C1,Cy > 0 are given above. We select § > 0 small enough in order that

(62) > Gt <12,
ke A

Therefore, (61) under (62) supports that (56) holds.
At last, we sort 6, R, [ in a way that both (60) and (62) hold at the same time. Lemma 7
follows. -

Let the constraint (45) be fulfilled. We choose the constants I, R, as in Lemma 7. We select
the initial data w;(7,€), 0 < j < S —1 and a tuple ¢’ in a way that the restriction (46) holds.
Owing to Lemma 7 and to the classical contractive mapping theorem on complete metric spaces,
we deduce that the map A, has a unique fixed point called U(r, z,€) (depending analytically
on € € D(0,€)) in the closed ball B(0,R) C SED(, ), for all € € D(0,€). This means
that Ac(U(7,2,€)) = U(T, 2, ¢€) with [[U(7, 2,€)||(g,H,e,5) < R. As a result, we get that the next
expression
w(T, z,€) = 07°U(T, 2, €) + Ws(T, 2, €)
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solves the equation (44) with initial data (47). It remains to show that w(7, z,€) belongs to
SED (4 1,5 and to check the bounds (48). By application of Proposition 2 for kg = k2 = 0 and
k1 = S we check that

(63) 182U (7, 2, €)l|(g,1,6.0) < 6 NU(T, 2, €)l|(g,11,6.9)

Gathering (57) and (63) yields the fact that w(7, z, €) belongs to SED (4 g, 5) through the bounds
(48). O

3 Sectorial analytic solutions in a complex parameter of a sin-
gular perturbed Cauchy problem involving fractional linear
transforms

Let A be a finite subset of N3. For all k = (ko,k1,k2) € A, we denote cx(z,€) a bounded
holomorphic function on a polydisc D(0, p) x D(0,€g) for given radii p,eg > 0. Let S > 1 be
an integer and let P(7) be a polynomial (not identically equal to 0) with complex coefficients
selected in a way that its roots belong to the open right halfplane C; = {z € C/Re(z) > 0}. We
focus on the following singularly perturbed Cauchy problem that incorporates fractional linear
transforms

t
2 S _ 29 ko gk1
(64) Po)ofultze) = D eslze) ((Pa) 005 u) (20
k=(ko,k1,k2)€A

for given initial data
(65) (D9u)(t,0,¢) = pi(t,e) , 0<j<S—1.

We put the next assumption on the set A. There exist two real numbers & > 0 and b > 1 such
that for all k = (ko, k1, ko) € A,

b
(66) SZkl-l-bk:o-f-]gQ , S > k.

3.1 Construction of holomorphic solutions on a prescribed sector w.r.t € using
Banach spaces of functions with super exponential growth and decay on
strips

Let n > 1 be an integer. We denote [—n,n] the set of integers {j € N,—n < j < n}. We
consider two sets of closed horizontal strips {Hg}ire[—nn] and {Jx}re[—n,n) fulfilling the next
conditions. If one displays the strips Hy and Ji as follows,

Hiy={z€ C/ar <Im(z) <bg, Re(z) <0} , Jp={z€C/er <Im(z) <dg, Re(z) <0}

then, the real numbers ay, by, ¢, dj. are asked to fulfill the next constraints.

1) The origin 0 belongs to (co, dp).

2) We have ¢ < ap < di and cxy1 < by, < dj41 for —n < k < n — 1 together with ¢, < a,, < d,
and b, > d,. In other words the strips J_p, H_p, J_n+1,. .., In—1, Hn—1, Jn, H, are consecutively
overlapping.

3) We have ag41 > bg and cpqq > di for —n < k < n — 1. Namely, the strips Hy (resp. Ji) are
disjoints for k € [—n,n].
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Figure 1: Example of configuration for the sets Hy and Ji

We denote HJ,, = {z € C/c_,, < Im(z) < b,,Re(z) < 0}. We notice that H.J, can be
written as the union Upep_p nHi U J.-
An example of configuration is shown in Figure 1.

Definition 3 Letn > 1 be an integer. Let w(,€) be a holomorphic function on HJ, xD(0,e)
(where H.J,, denotes the interior of HJy,), continuous on H.J, x D(0,€). Assume that for
all e € D(0,¢p), for all k € [—n,n], the function T — w(T,€) belongs to the Banach spaces
SED(oo ) and SEG g o1 5, o) with o' = (071,04,03) and ¢' = (01,63,63) for some a7 > 0 and
aé-,gj’- > 0 for j = 2,3. Moreover, there exists a constant I, > 0 independent of €, such that

(67) Hw(T’ 6)”(O,Q’,Hk,e) < Iy ) Hw(Ta G)H(O,S’Jk,e) < va

for all k € [-n,n] and all e € D(0, ).

Let Epr g, be an open sector centered at 0 inside the disc D(0, ) with aperture strictly less than
m and T be a bounded open sector centered at 0 with bisecting direction d = 0 chosen in a way
that

(65) 7 — ang(t) — arg(e) € (=5 + 011,05 — O1s,)

2

for some small 675, > 0, for alle € Egy, andt € T.
We say that the set (w(t,€),Emy,,T) is (o’,¢')—admissible.

Example: Let w(r,e) = 7 exp(aexp(—7)) for some real number a > 0. One can notice that
lw(7, )] < |7[exp (a cos(Im(7)) exp(—Re(7)))
for all 7 € C, all e € C. For all k € Z, let Hy, be the closed strip defined as
Hy,={z€C/ g—l—n—i—le <Im(z) < 3%—77—}—2/{:71, Re(z) < 0}
for some real number 1 > 0 and let J; be the closed strip described as

3
Je=1{z€C/ T —n—m+2k-r <Im(z) < 7 +n+m+2km, Re(z) <0}
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for some n; > 0. Provided that n and n; are small enough, we can check that all the constraints
1) to 3) listed above are fulfilled for any fixed n > 1, for k € [—n,n].

By construction, we get a constant A, > 0 (depending on 1) with cos(Im(r)) < —A,
provided that 7 € Hy, for all k € Z. Let m > 0 be a fixed real number. We first show that there
exists Ky, ; > 0 (depending on m and k) such that

*RG‘(T) > Km,k|7-|
for all Re(7) < —m provided that 7 € Hy. Indeed, if one puts

s

yr = max{|y|/y € [2

+77+2k7r,3§—?7+2k7r]}

then the next inequality holds

—Re(7) ) x
>min—— - K
1 T @@ k0

for all 7 € C such that Re(r) < —m and 7 € Hy. Now, we set K = minge[_p n] K- As a
result, we deduce the existence of a constant €2,,, , > 0 (depending on m,k and a) such that

(T, €)] < L i|7] exp(—aly exp(Kimin|7])

for all 7 € Hy,.
On the other hand, we only have the upper bound cos(Im(7)) < 1 when 7 € Ji, for all k € Z.
Since —Re(7) < |7], for all 7 € C, we deduce that

[w(7, )] < |7[exp(aexp(|7]))

whenever 7 belongs to Jg, for all € € C. As a result, the function w(7, €) fulfills all the require-
ments asked in Definition 3 for

Q/ = (UivaAn/(M - 1)aKm;n) ) S/ = (Ui,a, 1)

for any given o} > 0.

Let n > 1 be an integer and let us take some integer k € [-n,n]. Foreach 0 < j < S —1
and cach integer k € [—n,n], let {w;(7,€),Ef; , T} be a (¢/,¢')—admissible set. As initial data
(65), we set

u . du

(69) Pl (t,e) = /P w;(u, €) eXp(_g)Z

where the integration path Py is built as the union of two paths Py ; and Py o described as
follows. P is a segment joining the origin 0 and a prescribed point Aj, € Hy and P o is the
horizontal line { Ay —s/s > 0}. According to (68), we choose the point Ay with |[Re(Ay)| suitably
large in a way that

™

(70) arg(Ar) — arg(c) — arg(t) € (~3 + 1, 5 — )

for some 7, > 0 close to 0, provided that € belongs to the sector Sllfl T

Lemma 8 The function Pjek (t,€) defines a bounded holomorphic function on (TND(0, 1)) X

5}“”” for some well selected radius r > 0.
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Proof We set
u du

k,1

Since the path Py ; crosses the domains Hy, J, for some ¢ € [—n,n], due to (67), we have the
coarse upper bounds

(7, )] < L 7] exp <| 7+ exp<<3|7>)

for all 7 € P, 1. We deduce the next estimates

[ wwoen-5% < [ e (Tt Gewtn)
k,1

X exp(—‘%| cos(arg(Ag) — arg(et)))dp’o.

From the choice of Ay fulfilling (70), we can find some real number é; > 0 with cos(arg(Ay) —
arg(et)) > 6y for all € € SIJE}JTL. We choose d3 > 0 and take t € T with [t| < 61/(d2 + 0}). Then,
we get

|Ak|
14
el (O] < L, /0 exp(sh eXp(%P))eXP(—H(Sz)dP

which implies that Lp; gr  (t,€) is bounded holomorphic on (7N D(0, 5,7+ + )) x E
CHJn n

In a second part, we put

u . du

2 — .
Feg, 00 = [ wm oY

Since the path Py 5 is enclosed in the strip Hj, using the hypothesis (67), we check the next
estimates

u  du
(71) | w;(u, €) exp(——;)
Pk,2 et

400 O',
< / ij|Ak — s|exp (‘€1|A/LC — 5| — oh(M — 1) exp(ah| Ag, — s|))
0

A — s ds
| - | cos(arg(Ay — 5) — arg(e) — ey

|

X exp(—
From the choice of Ay, fulfilling (70), we observe that

(72) arg(Ay — 5) — arg(e) — arg(t) € (—= + 7, = — )

2 2

for all s > 0, provided that € € £5 7, Consequently, we can select some §; > 0 with cos(arg(Ay —
s) — arg(e) — arg(t)) > 1. We sort d2 > 0 and take t € T with [¢t| < 61/(d2 + o}). On the other
hand, we may sort a constant K4, > 0 (depending on Ay) for which

[ Ak = s| = Ka (|Ax] + 5)
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whenever s > 0. Subsequently, we get

| Ay, — s
le|

oo Ka, 6 Ly,
<ty [ eI a4 a5 = el el
0 |6‘ KAk52

+oo
|g0§751,3] (t,€)] < Ly, /0 exp (—oy(M — 1) exp(o5|Ax — s|)) exp(— d2)ds

Ky, 0o
le|

As a consequence, go? ex  (t,€) represents a bounded holomorphic function on (7' N.D(0, 61 /(52 +
CH I

|Ak]).

a}))) x EI'fUn. Lemma 8 follows. O

Proposition 10 We make the assumption that the real number & introduced in (66) conforms
the next inequality

(73) ¢ < min(c},c}).
1) There exist some constants 1,6 > 0 (independent of €) selected in a way that if one assumes
that

S—1—h (5] S—1—h 5]

(74) Z ijJrh(Tv E)H(O,g’,Hk,e)ﬁ < I ) Z ijJrh(T? G)H(O,E’Jk,e)ﬁ < 1
j=0 ' Jj=0 ’

for all0 < h < S —1, all e € D(0,eg), all k € [—n,n], then the Cauchy problem (64), (65)
with initial data given by (69) has a solution ugk (t,z,€) which turns out to be bounded and

holomorphic on a domain (T N D(0,7r7)) x D(0,861) x EI%Jn for some fized radius r7 > 0 and
0<d <1.
Furthermore, Ugk - can be written as a special Laplace transform

u . du

(75) ugk (t,z,€) = /Pk w g, (U, 2, €) exp(—g)g

where w5, (T, z, €) defines a holomorphic function on HJ, x D(0,001) x D(0, €0), continuous
on HJ, x D(0,661) x D(0,€ey) that fulfills the next constraints. For any choice of two tuples
o = (01,02,03) and s = (01,52,53) with

(76) o1 > 01,0 < 09 < 05,03 = 05,52 > 53 = G4
there exist a constant Cy, > 0 and Cj, > 0 (independent of €) with

(77) (wh .1, (7,2, €)] < Cpy | 7] exp (EC(Z))!TI — 02(M — (b)) eXP(UsTI))

for all T € Hy, all z € D(0,001) and
g1
le]

for all T € Ji, all z € D(0,06,), provided that e € D(0, €y), for each k € [—n,n].
2) Let k € [—n,n] with k # n. Then, keeping €y and r small enough, there exist constants
My 1, My 2 >0 and My 3 > 1, independent of €, such that

(78) (wr 1, (7,2, €)] < Cyp|7|exp < C(b) 7]+ <2€(b) eXp(€3IT|))

)

M, M,
(79) Jugtrn (£, 2,€) —ugy  (t,2,€)] < M exp(—~ =2 Log—=2

b, 7]

for allt € TN DO, r7), alle € EX, NEFEY £ 0 and all z € D(0,66).
HJy, HJy,
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Proof We consider the equation (44) for the given initial data
(80) (0lw)(7,0,€) = wj(r,6) , 0<j<S—1

where w; (7, €) are given above in order to construct the functions Pjek (t,€) in (69).

In a first step, we check that the problem (44), (80) possesses a unique formal solution

B
(81) wryg, (T,2,€) = ZZU5(7', e)ﬁ

B8=0

where wg(7, €) are holomorphic on HJ, x D(0,€), continuous on H.J,, x D(0, ). Namely, if
one expands cg(z,€) = > 55 cr.5(€)27 /B! as Taylor series at z = 0, the formal series (81) is
solution of (44), (80) if and only if the next recursion holds

¢ ko ko

P(r)

exp(—hyr) | 3 D) W (7:e)

(82) wg1s(T,€) =
2 sim=s PV B!

k=(ko,k1,k2)€A

for all B > 0. Since the initial data w;(7,¢€), for 0 < j < S —1 are assumed to define holomorphic
functions on H.J,, x D(0, ), continuous on H.J, x D(0, €y), the recursion (82) implies in particular
that all wy(7,€) for n > S are well defined and represent holomorphic functions on HJ, x
D(0, €), continuous on H.J,, x D(0, ).

According to the assumption (66) together with (73) and the restriction on the size of the
initial data (74), we notice that the requirements 1)a)b) and 2)a)b) in Proposition 9 are realized.
We deduce that
1) The formal solution wgy, (T, z,€) belongs to the Banach spaces SED (g 1,65, for all € €

D(0,¢€p), all k € [-n,n], for any tuple ¢ = (01,02, 03) chosen as in (76), with an upper bound

Ch, > 0 (independent of ¢€) such that
(83) Wiz, (7, 2,6l (0, y66) < Chys

for all € € D(0, €p).

2) The formal series wp , (7, 2, €) belongs to the Banach spaces SEG ¢ j, ), for all € € D(0, ),
all k € [—n,n], for any tuple ¢ = (01, <2,¢3) selected as in (76). Besides, we can get a constant
Cj, > 0 (independent of €) with

(84) ||’UJHJn (Tv 2, 6) | ’(S,Jk,e,é) < éka

for all € € D(0, €p).

Bearing in mind (83) and (84), the application of Proposition 1 and Proposition 5 1) yields
in particular the fact that the formal series wr s, (7, 2, €) actually defines a holomorphic function
on HJ, x D(0,88) x D(0, ), continuous on H.J,, x D(0,56;) x D(0, ), for some 0 < ; < 1,
that satisfies moreover the estimates (77) and (78).

Following the same steps as in the proof of Lemma 8, one can show that for each k € [—n, n],
the function Ugk defined as a special Laplace transform

n

u . du

ugh (t,z,€) = /Pk w g, (U, 2, €) exp(—g);
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Figure 2: Integration path for the difference of solutions

represents a bounded holomorphic function on (7N D(0,77)) x D(0,616) x £f;; for some fixed
radius r+ > 0 and 0 < §; < 1. Besides, by a direct computation, we can check that ugk (t,z,¢€)

solves the problem (64), (65) with initial data (69) on (7 N D(0,77)) x D(0,610) x 5§Jn.

In a second part of the proof, we focus our attention to the point 2). Take some k € [—n,n]
with k& # n. Let us choose two complex numbers

1 .
h, = —pLog(—eX4
q = —oLog(—e™)
for g =k,k + 1, where 0 < p < 1 and where x, € R are directions selected in a way that

(85) io(arg(t) + arg(e) — xq) € Hy

for all € € 5}?1 7, ﬁé‘flfi, all t € T. Notice that such directions y, always exist for some 0 < p < 1
small enough since by definition the aperture of £ 173 7, ﬂé’ﬁ}i is strictly less than 7, the aperture
of T is close to 0. By construction, we get that h, belongs to H, for ¢ = k,k + 1 since hy can
be expressed as

1 )
%z—@®y+wWWHwMQﬁm~

From the fact that u +— wg, (u, 2, €) exp(—%)/u is holomorphic on the strip HJ,, for any
fixed z € D(0,601) and € € EF, 7, N Ez'f,i, by means of a path deformation argument (according
to the classical Cauchy theorem, the integral of a holomorphic function along a closed path is
vanishing) we can rewrite the difference Ugks! —Ugp &S a Sum of three integrals

u  du
(86) “s’;ﬁ;(tvz’e) _ugan(tazaE) = _/Lh wi g, (U, 2, €) eXP(—a)Z
PSS
u . du u . du
w0 e sgen-DT [ v ez gen-5)%
L, n e’ u L . o et’ u
k41 k+1>

where Lp, oo = {hq —s/s > 0} for ¢ = k,k + 1 are horizontal halflines and Ly, p,,., = {(1 —
s)hy + shit1/s € [0,1]} is a segment joining hy and hy41. This situation is shown in Figure 2.
We first furnish estimates for

[ =
! et’ u

u . du
/ wi g, (u, 7, €) exp(— =) 24|
L

hp,00
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Since the path Lp, o is contained inside the strip Hj, in accordance with the bounds (77), we
reach the estimates

+oo
1) 1< O [ I slexp (Bl — o = a0 <o) explonli — 5)

X exp <— |h7€t_‘ il cos(arg(hy — s) — arg(e) — arg(t))>

ds
|hy — s|

Provided that ¢y > 0 is chosen small enough, |Re(hy)| = oLog(1/|et|) becomes suitably large
and implies the next range

7T T
arg(hy, — 5) — arg(e) — arg(t) € (= + 1, 5 — )

for some 7 > 0 close to 0, according that € belongs to 8’;1 7, N Ellfﬁ]i and t is inside T, for all
s > 0. Consequently, we can select some d; > 0 with

(88) cos(arg(hy — s) — arg(e) — arg(t)) > 01

forall s >0,te 7T and € € EJIEUH N 5?3711 On the other hand, we can rewrite

1 1/2
e — 5| = (@Log(W T ) + @ (arg(t) + arg(c) — m?)

1 s 0 (arg(t) + arg(e) — xx)? 1/2
) Tt T roa( ) 42

provided that |et| < 1 which holds if one assumes that 0 < ¢g < 1 and 0 < ry < 1. For that
reason, we get a constant mjy > 0 (depending on Hy and p) such that

= (oLog(

1
(89) |hy — s| > mk(gLog(| 7

forall s > 0, allt € 7 and € € EI@Jn N EI’}E Now, we select 5 > 0 and take ¢ € T with
|t| < 1/(01¢(b) + d2). Then, gathering (88) and (89) yields

+0c0 h +o0 hi —
(90) Il S CHk/O exp <| | )’hk — ’ | k— |(51) ds S CHk/O eXp<—(52‘ k S‘)ds

et el

1 oo s
< Cp, exp( 52mk‘ ‘Log(| t|)>/ exp(—égmkg)ds

)+ 5)

€ 1
< O s (b os( )

whenever ¢ € 7N D(0,61/(51¢(b) + 02)) and € € Ef;; N SZT,}L
Let
I =

/ w g, (U, 2, €) exp(—g)d—u .
L

et u
Ri41,00

In a similar manner, we can grab constants d1,d2 > 0 and my4q1 > 0 (depending on Hy1 and
0) with

€0 1
91 L <C _— 1) L
(91) 2 S Ot o — exp < 2mk;+1| | Og(‘ !TT)>
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for all t € TN D(0,91/(01¢(b) + d2)) and € € Slfun N 52‘5}1

In a final step, we need to show estimates for

I =

u . du
/ Wi, (1, 2, €) exp(——2) 22
L

et’ u
hishg41

We notice that the vertical segment Ly, p, , crosses the strips Hy, Jg1 and Hyi1 and belongs
to the union Hy U Jgy1 U Hiqq. According to (77) and (78), we only have the rough upper
bounds

g
‘wHJn (7-7 2, 6)| < maX(CHk7 CJk+1 ) CHk+1)|T| €xp (;C(b)‘ﬂ + §2C(b) exp(§37'|)>

for all 7 € Hy, U Jpy1 U Hiy1, all z € D(0,861), all € € D(0,€). We deduce that

1
(92) I3 < maX(CHk’CJk+17CHk+1)/ |(1— s)hg + shit1]
0

01

exp (C(b)‘(l — 8)hi + ship1] + C(b) exp(ss|(1 — s)hg + Shk+1|)>

el

1—s)hi + sh
% exp (_\( )’Z‘ k1]

cos(arg((1 — s)hg + shiy1) — arg(e) — arg(t)))

|kt — I
|(1 — S)hk + Shk—f—l‘

Taking for granted that ¢y > 0 is chosen small enough, the quantity |Re((1 — s)hg + shi41)| =
oLog(1/|et|) turns out to be large and leads to the next variation of arguments

T T
arg((1 — s)hy + shy41) — arg(e) — arg(t) € (—5 F ekt 5~ =y

for some 7, 11 > 0 close to 0, as € € Elkﬂn N Sl]ff]i, for s € [0,1]. Therefore, one can find §; > 0
with

(93) cos(arg((1 — s)hy + shg+1) — arg(e) — arg(t)) > &1

forallte T and e € € I"; 7, N c‘:fﬁi, when s € [0, 1]. Besides, we can compute the modulus

1 1/2
|(1 = $)hy + shgs1] = ((gLog(kt‘))2 + 0% (arg(t) + arg(e) — (1 — s)xx — 3Xk+1)2>

1 (ang) el — (1— sh— sxas)? 1
= eLos(fg + (Log(2)? )

as long as |et| < 1, which occurs whenever 0 < ¢y < 1 and 0 < ry < 1. Then, when ¢ is taken
small enough, we obtain two constants my 41 > 0 and My, ;11 > 0 with

94 L
( ) OM k+1 Og( |€t|

1
) < (1 = s)hy + shppq] < QMk,k-HLOg(H)
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for all s € [0,1], when t € T and € € £, N Ellfﬁ]i Moreover, we remark that |hgi1 — hy| =
0|Xk+1 — xk|- Bearing in mind (93) together with (94), we deduce from (92) that the next
inequality holds

I3 < maX(CHka CJk+17CHk+1)Q’Xk+1 - Xk‘

o1 1
X exp < el ¢(b) oMy, j4+1Log(

)+l )exp(cgng,kHLog(,jp))

XeXP( kakJrl’ |€t‘ )
<
>

1.
0

for any t € T and € € 8’;Un N SZT]}L We choose 0 < ¢ < 1 in a way that ¢3oMj, 41
Let ¢(z) = c((b)a3eMrr+r — omy 11 612Log(z). Then, we can check that there exists B
(depending on ((b), 0, 2,53, M k41, Mk k41,01) such that

oMy k4101

V(@) <~

xzLog(z) + B

for all x > 1. We deduce that

I3 <max(Ch,,Cy, ., CHyy)olXes1 — Xkl

1
X exp <‘ ‘ ( )QMk,k-i-lLOg(‘et’)
whenever t € T and € € EII‘} 7, N EZT]}L We select 6o > 0 and take t € T with the constraint
|t| < dik+1 where

0 1
—my k+151 Log( )+ B)
2 let] et

0oy j+101/2
01¢(b)oMj 41 + 02

di 1 =

This last choice implies in particular that

1) 1
(95) I3 < maX(CHk7 CJk+17 CHk+1)Q‘Xk‘+1 - Xk| exp <_|€2|L0g(|6t’) + B)

09 1
< max(Ch,, Cliirs CHIH»I)Q‘Xk-Fl - Xk|€B exp <_|6|L0g( ’€|T7_)>

provided that € € SZJ N Ek'H
Finally, starting from the splitting (86) and gathering the upper bounds for the three pieces
of this decomposition (90), (91) and (95), we obtain the anticipated estimates (79). O

3.2 Construction of sectorial holomorphic solutions in the parameter ¢ with
the help of Banach spaces with exponential growth on sectors

In the next definition, we introduce the notion of ¢]—admissible set in a similar way as in
Definition 3.

Definition 4 We consider an unbounded sector Sg with bisecting direction d € R with Sq C Cy
and D(0,7) a disc centered at 0 with radius v > 0 with the property that no root of P(7) belongs
to SqUD(0,r). Let w(r,€) be a holomorphic function on (S; U D(0,7)) x D(0,€), continuous
on (Sq U D(0,7)) x D(0,e0). We assume that for all € € D(0,¢eg), the function T — w(r,e)
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belongs to the Banach space EG (o1 s,0D(0,r),c) JOT given o} > 0. Besides, the take for granted
that some constant I, > 0, independent of €, exists with the bounds

(96) 1w (T, )ll(0,67,5,uD(0,),) < Lw

for all € € D(0, o).

We denote Es, an open sector centered at 0 within the disc D(0, €y), and let T be a bounded
open sector centered at 0 with bisecting direction d = 0 suitably chosen in a way that for all
t €T, all € € Es,, there exists a direction v4 (depending on t,e) such that exp(v/—1v4) € Sq
with

(97) Y — arg(t) — arg(e) € (~5 1,5 1)

for some n > 0 close to 0.
The data (w(t,€),Es,,T) are said to be o] —admissible.

Forall0 <j <S—1,all 0 <p <t —1 for some integer ¢« > 2, we sort directions d, € R,
unbounded sectors Sg, and corresponding bounded sectors Eg iy T such that the next given
sets (w;(7,€),Eg, ,T) are o} —admissible for some o} > 0. We assume moreover that for each
0 <j < S—1, 7+ w;j(r,€) restricted to Sg, is an analytic continuation of a common holomorphic
function 7 — w;(7,€) on D(0,7), for all 0 < p <+ — 1. We adopt the convention that d, < d,11
and Sq, N Sa,,, = () for all 0 < p <. — 2. As initial data (65), we put

(98) Gies, 0= [ wilwexn(-5) T

u
Vdp
where the integration path L,, = Ry exp(v/—17g,) is a halfline in direction 74, defined in (97).

Lemma 9 For all0 < j < S—1,0<p<t—1, the Laplace integral Piks, (t,€) determines a
P
bounded holomorphic function on (T N D(0,ry)) x Esdp for some suitable radius r7 > 0.

Proof According to (96), each function w;(7, €) satisfies the upper bounds
o1
(99) (o) < 1o rlexp (T

e

for some constant I,; > 0, whenever 7 € S'dp U D(0,7), € € D(O,eo). Besides, due to (97), we
can grasp a constant 61 > 0 with

(100) cos(vq, — arg(t) — arg(e)) > o1

forany t € T, € € ngp’ We choose d3 > 0 and take ¢t € T with [¢t| < 62‘3:0,. Then, collecting
1
(99) and (100) allows us to write

oo oy p dp
(101) [pses, (001 [ Luypexp(Thp)expl(- 5 costry, - arg(t) - arg(e)
' g E et ;

X

+oo p
< ij/(; exp(ii(SZ)dp = Iu}jg

€]

which implies in particular that ¢j e (t,€) is holomorphic and bounded on (7 N D(0, (biﬁ)) X
P 1

sy, - O

In the next proposition, we construct actual holomorphic solutions of the problem (64), (65)
as Laplace transforms along halflines.
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Proposition 11 1) There exist two constants I,§ > 0 (independent of €) such that if one takes
for granted that

S—1—h 6‘7

(102) Z |[wjsn (T, E)H(O,U’l,SdeD(O,r),e)ﬁ <I
=0 '

forall0 <h < S—1, all e € D(0,€p), all 0 < p < v — 1, then the Cauchy problem (64), (65)
for initial conditions given by (98) possesses a solution ugg, (t,z, €) which represents a bounded
P

holomorphic function on a domain (T ND(0,r7)) x D(0,616) x Es, , for suitable radius r7 > 0
and with 0 < §1 < 1. Additionally, ugg, turns out to be a Laplace transform
P

u . du
(103) ugs, (t,76) = /L ws,, (1,2, €) exp(—2) 22

P et’ u
Ydp

where ws, (u,z,€) stands for a holomorphic function on (Sq, U D(0,7)) x D(0,5d1) x D(0, ),
continuous on (Sq, U D(0,7)) x D(0,61) x D(0, eg) which obeys the following restriction : for
any choice of o1 > o}, we can find a constant CSdp > 0 (independent of €) with

01

(104) ws, (7,26 < Cs, |7lexp( 22 (b))

€]
for all 7 € S3, UD(0,7), all z € D(0,061), whenever € € D(0, ).

2) Let 0 < p < 1t — 2. Provided that r+ > 0 is taken small enough, there exist two constants
Mp1, My >0 (independent of €) such that

M, o
105 t — t <M S
( ) |u55dp+1 ( 7276) ufsdp( 727€)| = Mp1 eXp( |6| )

for allt € TOD(0,77), alle € Es,  NEs,, # 0 and all z € D(0,66,).

Proof The first step follows the one performed in Proposition 10. Namely, we can check that
the problem (44) with initial data

(106) (w)(7,0,€) = wj(r,e) , 0<j<S5—1

given above in the o] —admissible sets appearing in the Laplace integrals (98), owns a unique
formal solution

B
(107) ws, (1.2,6) = Y ws(r,€)
B>0 Al

where wgs(7,€) define holomorphic functions on (S; U D(0,7)) x D(0, €), continuous on (Sz U
D(0,7)) x D(0, ). Namely, the formal expansion (107) solves (44) together with (106) if and
only if the recursion (82) holds. As a result, it implies that all the coefficients w,,(7,¢) for n > S
represent holomorphic functions on (Sg, U D(0,7)) x D(0,¢), continuous on (Sa, UD(0,7)) x
D(0, €0) since this property already holds for the initial data w;(T,€), 0 < j < S —1, under our
assumption (96).

The assumption (66) and the control on the norm range of the initial data (102), let us
figure out that the demands 3)a)b) in Proposition 9 are scored. In particular, the formal series
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ws,, (7,2, €) is located in the Banach space EG(U1,SdeD(O,r),e,5)7 for all € € D(0, ), for any real

number o > o}, with a constant Cg 4, > 0 (independent of €) for which

stdp (T’ Zs 6) | |(0'17Sdp UD(0,r),¢,8) < éSdp

holds for all € € D(0, y). With the help of Proposition 5 2), we notice that the formal expansion
ws, (7,2, €) turns out to be an actual holomorphic function on (Sa, U D(0,7)) x D(0,061) x
D(0, €y), continuous on (S’dp UD(0,7)) x D(0,881) x D(0, €0) for some 0 < 8; < 1, that conforms
to the bounds (104).

By proceeding with the same lines of arguments as in Lemma 9, one can see that the function
defined as Laplace transform

Ugsdp

du

u
uSSdp (t,Z,ﬁ) = /L dep (’LL, Z, 6) exp(_g)?
Vdy

represents a bounded holomorphic function on (7 N D(0,r7)) x D(0,601) x Es, i for suitably

small radius r+ > 0 and given 0 < §; < 1. Furthermore, by direct inspection, one can testify

that ug, (t,z,€) solves the problem (64), (65) for initial conditions (98) on (7 N D(0,77)) X
P

D(O, (5(51) X (‘:Sdp.

In the last part of the proof, we concentrate on the second point 2). Let 0 < p < ¢ — 2.
We depart from the observation that the maps u — ws,, (u, z,€) exp(—5)/u, for ¢ = p,p+ 1,
represent analytic continuations on the sectors Sy, of a common analytic function defined on
D(0,r) (since wg, (u,z,€) = ws, ., (u, z,€) for u € D(0,r)), for all fixed z € D(0,00;) and
ee€ s i NEs dpir Therefore, by carrying out a path deformation inside the domain Sgq, USg,,, U

D(0,r), we can recast the difference Ugg,  —Ugg, As asum of three paths integrals
p+1 »

(108) Ugsdp+1 (t,z,€) —ugg (t,2z,€) =

dp

u . du u . du

[ s, en a5 ws,, (1, ) exp(—2) 22

Loy /2 P €t u Crgy g, /2 P €’ u

P
u . du
+/ WS, ., (u,z,€) exp(—g);
By /2

where pr /2 = [1/2,+00) exp(v/—174,) are unbounded segments for ¢ = p, p+1, C%lp Ay iy 72

stands for the arc of circle with radius r/2 joining the points § exp(v/—1v4,) and § exp(v/'—174,, , )-
As an initial step, we provide estimates for

u . du
n=|[ ws,eaden-5%|.
L’de,r/2 € u

Due to the bounds (104), we check that

too o d
L< | s, pexp(TiC(b)p) exp(—Er cos(ya, —arg(t) — arg(e))
o e et p

forallt € T, e € &s, NEs dpir” Besides, the lower bounds (100) hold for some constant 6; > 0

)

whent € Tand e € &g, mngpH- Hence, if we select d5 > 0 and choose t € T with || < 53ToCh)



34

we get
+oo
P €] 709
109 L <C ——082)dp =Cg, — -
(109) 1< C, [ el s = Ci, el
for all e € 55(1?“ N Egdp. Now, let
u ., du
I, = ——)—].
? /L’Yd L107/2 dem—l(u’Z’E) exp( 67§) U
P

With a comparable approach, we can obtain two constants d1,do > 0 with

‘6‘ ?“(52

(110) I < Csdpﬂgexp(—m)
for ¢ S Tﬂ D(O, 52+2711C(b)) and € € SSde ﬂggdp.
In a closing step, we focus on
u . du
I3 = ws,, (U, z, €) eXp(—g); :
C7dp’7dp+1 /2

Again, according to (104), we guarantee that

Vd 2

< Gy, [ S exp TG exp(= T2 con(0 — arg(r) - are(e)) o
> ]

By construction, we also get a constant ¢; > 0 for which
cos( — arg(t) — arg(e)) > &1

when € € 5gdp+l N Sgdp, t €T and 0 € (V4,,7d,,,)- As a consequence, if one takes d2 > 0 and

. )
selects t € T with [t| < S5, Then,

r rd
(111) I3 < Csdp (Ydps — Vdp)*exp(—i)

2 2|e|
for all € € 5Sdp+1 NEs,,-

At last, departing from the decomposition (108) and clustering the bounds (109), (110) and
(111), we reach our expected estimates (105). O

3.3 Construction of a finite set of holomorphic solutions when the parameter
€ belongs to a good covering of the origin in C*

Let n > 1 and ¢+ > 2 be integers. We consider two collections of open bounded sectors
{51]3Jn}ke[[fn,n]]’ {€s,, Yo<p<,—1 and a bounded sector 7  with bisecting direction d = 0 to-
gether with a family of functions w;(7,¢), 0 < j < S — 1 for which the data (w;(r,€),Ef, ,T)
are (d’,¢’)—admissible in the sense of Definition 3 for some tuples o’ = (0},0%,0%) and ¢’ =
(01,63,53) (where o} > 0, o7,¢; > 0 for j = 2,3) for k € [-n,n] and (w;(r, e),SSdp,T) are
o} —admissible according to Definition 4 for 0 <p <. — 1.
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Figure 3: Example of good covering, n =1 and + = 2

We make the next additional assumptions:

1) For each 0 < j < S —1, the map 7 = w;(, €) restricted to Sy, for 0 <p <+ —1 and to HlJ,
is the analytic continuation of a common holomorphic function 7 — w;(,€) on D(0,7), for all
e € D(0,€y). Moreover, the radius r is taken small enough such that D(0,7) N {z € C/Re(z) <
0} C Jp.

2) We assume that d,, < dpy1 and Sg, NSy, =0 for 0 <p <1 —2.

3) We take for granted that

3.1) EﬁJnﬁgk"'l #Qfor —-n<k<n-1.

3.2) ngp+1 ﬂé’sdp #Pfor0<p<.—2.

3.3) Exy, NEs,, #Vand Ef; NEs, | #0.

4) We ask that

n

( U Efr,) U U Es,,) =U\{0}

where U stands for some neighborhood of 0 in (C.
5) Among the set of sectors £ = {E}CIJn}kE[[fn,n]] U{€s,, Yosp<i—1, every tuple of three sectors
has empty intersection.

In the literature, when the requirements 3),4) and 5) hold, the set £ is called a good covering
in C*, see for instance [1] or [8]. An example of a good covering for n = 1 and + = 2 is displayed
in Figure 3

We can state the first main result of our work.

Theorem 1 Under the claim that the control on the initial data (74) in Proposition 10 and
(102) in Proposition 11 holds together with the restrictions (66), (73), the next statements come
forth.

1) The Cauchy problem (64), (65) with initial data given by (69) has a bounded holomorphic
solution ugk (t,2,€) on a domain (T N D(0,r7)) x D(0,601) x EI'?U for some radius r > 0
taken small enough Furthermore, Ugk - can be written as a special Laplace transform (75)
of a function wp, (7,2,€) fulfilling the baunds (’77) (78). Besides, the logarithmic tameness
constraints (79) hold for all consecutive sectors EHJ , SkH for —.n <k <n-—1.



36

2) The Cauchy problem (64), (65) for initial conditions (98) owns a solution ugs, (t,2,€)
which is bounded and holomorphic on (T N D(0,r7)) x D(0,661) x Eg, ~ for some well chosen
radius v > 0. Moreover, ugs, —can be expressed through a Laplace transform (103) of a func-
tion ws, (1,2,€) that undergoes (104). Conjointly, the flatness estimates (105) occur for any
nezghbormg sectors Egdﬁ €4y 0SSP <1 —2.

3) Provided that r7 > 0 is close to 0, there exist constants My 1, My, 2 > 0 (independent of
€) with

M, 2
(112) |u5;}n (t,z,€) — ugs, (t,z,€)| < My 1exp(——27)

el

forallee &yl NEs, and

)

(113) |u51’§1n (t,z,€) —ugy  (t,z,€)| < My 1 exp(— n,2

a0 ’ K

foralle€ &y, NEs, | whenevert €T ND(0,ry) and z € D(0,861).

Proof The first two points 1) and 2) merely rephrase the statements already obtained in Propo-
sitions 10 and 11. It remains to show that the two exponential bounds (112) and (113) hold.
We aim our attention only at the first estimates (112), the second ones (113) being of the same
nature.

By construction, according to our additional assumption 1) described above, the functions
T — wpy, (T,2,€) on HJ, and 7 Wy, (T,2,€) on Sy, are the restrictions of an holomorphic

function denoted 7 — wp 4,5, (7, 2, €) on HJ,UD(0,7)USy,, for all z € D(0,861), e € D(0, €).

As a consequence, we can realize a path deformation within the domain HJ,U D(0,7) U Sg,
and break up the difference Ugn — Ug into a sum of four path integrals

Sdq
114 t t _ u  du
(114) ugﬁn( %€) —ugsdo( €)= = L ws, (U, 2, €) exp(_g);
’Ydo,r/2
du u . du
+/ WSy, (u, z E)GXP(_t)-i-/ wr g, (u, 2 e)exp(_ft)i
CWdO’an’l’T/Q e P_y1r/2 et’ u
u . du
+/P_n2wHJn<u,Z,e) exp(—a)z

where L., /2 = [1/2,+00) exp(v/—174,) is an unbounded segment, Chy,

arc of circle with radius r/2 joining the two points (r/2) exp(v/—1v4,) and
(r/2) exp(v/—larg(A_,)), P_, 1,2 stands for the segment linking (r/2) exp(y/—larg(A_,)) and
A_,, and finally as introduced earlier P_, o denotes the horizontal line {A_,, —s/s > 0}. An
illustrative example is shown in Figure 4.

Let

P_,,r/2 TEPresents an

u . du
J1 = / wsdo(u,z,e)exp(——)— .
L

S e’ u
In accordance with the bounds (109), we can select do > 0 and find §; > 0 with a constant
Cs,, > 0 (independent of €) for which

e \ 789

11 < " exp(——2
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P*”>2 an.l,r/Q

Figure 4: Deformation of the integration path

holds whenever t € T N D(0, 52+g711<(b)) and € € £ NEg, -
Now, consider

d
Jy = / ws,, (1, 2, €) exp(——) =2
C

et” u
VdgP—n,1:7/2

The function wg, (7,2, €) suffers both the bounds (104) since Coggo P2 C D(0,7) and also

(78) when 7 € C,

g Pomar/2 (1 Jo. We deduce a constant Cy,5,, > 0 (independent of €) such
that o
1

[ws,, (752, €)] < Cp 47| eXP(HC(b)’TD

for all T € Cwoyp_

war/20 2 € D(0,0601) and € € D(0, €). Hence,

JQ < CJO ’SdO

Tdo r o1 T r/2
Loy B ESPUCOI) sl con = ang() = ).

The sectors £x; and &g, —are suitably chosen in a way that cos(6 — arg(t) — arg(e)) > 61 for
some constant d; > 0, when € € £} NEs, , fort € T and 6 € (arg(A—p), Vd,)- As an issue,

r 709
(116) Ja < CJo,Sd0 Vdo — arg(A_n)\§ eXp(—m)
when € € £5 N Esdo, t €T nND(0, m), for some fixed do > 0.
We put
d
J3 = / wr g, (U, 2, €) exp(—ﬁ)—u )
an,l,v‘/2 €t u

Owing to the fact that the path P_, /o lies across the domains Hgy, J, for —n < ¢ < 0, the
bounds (77) and (78) entail that

(7.0 <o (Co, Colrlexw ( TCOIr| + () explalr)
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for 7 € P_, 1,2, all z € D(0,601), all € € D(0, €o). Therefore,

|A_pn]
< [ max (©n,Coppen ( CB)p +5a¢(B) exp<<3p>>
/2 g€[—n,0] | |

X exp(—é cos(arg(A_,) — arg(et)))dpp.

Besides, according to (70), there exists some ¢; > 0 with cos(arg(A_,) — arg(et)) > d; for

€ €&y NEs,, - Let 62 > 0 and take t € T with [¢| < 52%@. We obtain

|A—n]
(117) Js3 < max (CHq,CJq)/ exp(g“g{(b)exp(ggp))exp(—ﬁég)dp
q€[-n,0] r/2 €]

< max (Cg,,Cy,)exp(s2((b) exp(s3|A- n\)) exp(—L@)
q€l=n.0] ) 2|e|

provided that € € £, N &g, .
Ultimately, let

u . du
Jy = / w g, (U, 2, €) exp(——)—|.
P7n2

et” u

For the reason that the path P_, 2 belongs to the strip H_,, we can use the estimates (77) in
order to get

+oo

<[ on i, s|exp(,,<>\A_ |02(M—C(b))€XP(US|A—n—$|)>

0

X exp <|A"_S| cos(arg(A—n — 5) —arg(e) — arg(t))> |A(j8

|et] — s
From the controlled variation of arguments (72), we can pick up some constant §; > 0 for which
cos(arg(A_, — s) — arg(e) — arg(t)) > 1

fore € €4 NEs, andt € T. We take d> > 0 and restrict ¢ inside 7 in a way that [¢| <
Besides, we can find a constant K4 , > 0 (depending on A_,,) such that

01
d2+01¢(b) "

[An =8| = Ka_, (|A-n| + 5)

for all s > 0. Henceforth, we obtain

(118) J, <C /+OO —o9(M —¢(b A, — An =815y as
1< Chy | exp (—o2(M — ((b)) exp(os|A—p, — s|)) exp(— 2)

el
+o0 Ka 6 K 5 A,
<Cu, [ ew (— (14, +s>) ds = exp( = 2‘ ')
0
for all e € £ NEs, -

In conclusion, bearing in mind the splitting (114) and collecting the upper bounds (115),
(116), (117) and (118) yields the forseen estimates (112). O
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RH, . b
RH, .,

Figure 5: Examples of sets RH,p,, = H U Rgp.

4 A second auxiliary convolution Cauchy problem

4.1 Banach spaces of holomorphic functions with exponential growth on
L—shaped domains

We keep the same notations as in Section 3.1. We consider a closed horizontal strip H as defined
in (12) with a # 0 which belongs to the set of strips { Hy }ye[—n,n] described at the beginning of
the subsection 3.1 and we single out a closed rectangle R, , defined as follows:

If a > 0, then

(119) Ropo={2€C/u <Re(z) <0,0 <Im(z) <b}
and if a < 0
(120) Ropo={2€C/v<Re(z) <0,a <Im(z) <0}

for some negative real number v < 0. We denote RH, 4, the L—shaped domain H U R, .. See
Figure 5.

Definition 5 Let o1 > 0 be a positive real number and 3 > 0 be an integer. Lete € D((), €y). We

set EG (g o, RH,,.,c) @5 the vector space of holomorphic functions v() on the interior domain

RH 4, continuous on RHgy o, such that the norm

v\T g
o) (gor Rty ) = SUP '”'exp(—lmwr\)

A e
is finite. Let us take some positive real number 6 > 0. We define EG (4, rp, , ., .5) S the vector
space of all formal series v(T,2) = 355 vg(T)2P | BY with coefficients vg(T) inside EG (8,01, RH,4..¢)
for all B > 0 and for which the norm
58

HU(T7 Z)H(Ul,RHa’b’U,e,é) = Z ‘|U5(T)||(B,a1,RHa7b,U,e)E
B8>0

is finite. It turns out that EG (s, rm, , . .c.5) endowed with the latter norm defines a Banach space.

In the next proposition, we testify that the formal series belonging to the Banach space discussed
above represent holomorphic functions that are convergent in the vicinity of 0 w.r.t z and with
exponential growth on RH,y, regarding 7. Its proof follows the one of Proposition 1 in a
straightforward manner.
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Proposition 12 Let v(7,z) chosen in EG (4, rH, , .5 Loke some 0 <01 < 1. Then, one can
get a constant Cy > 0 (depending on ||v|| (s, rH, , ,.c,5) and 01) such that

(121) lo(r, 2)] < Cilr| exp (‘”qb)m)

€]
for all T € RHyy,, all z € D(0,610).

In the sequel, through the proposal of the next three propositions, we investigate the action of
linear maps built as convolution products and multiplication by bounded holomorphic functions
on the Banach spaces defined above.

Forall 7 € RH,p,,,, we denote Lo - the path formed by the union of the segments [0, cpy (7)]U
[cri (T), 7], where crp(7) is chosen in a way that

(122) Lor C RHypv, crH(T) € Rapo, |cru(T)] < |7
forall 7 € RHg .-

Proposition 13 Let 9,71 > 0 and v2 > 1 be integers. We take for granted that
(123) Y2 > (0 +m +2)

holds. Then, for any € given in D(0,¢q), the map v(T,z) — TfLOT(T — 8)10579; (s, 2)ds
is a bounded linear operator from EG s, rp,, s nto itself. Furthermore, we get a constant
C5 > 0 (depending on ~vo,v1,7Y2, 01 and b) independent of €, such that

(124) HT/L (7 — )00 20(s, 2)ds||(0y R, 0 06) < Csle 282 0(7, 2) |01, R, 0 c.6)
0,7
for all v(7,2) € EG (5, RH, . .c6) 0l €€ D(0, ).

Proof Take v(r,z) = 2520 vﬁ(T)Z'B/ﬁ! in EG,, ru

aped)- 10 view of Definition 5,

(125) ||7 / (7 — 8510 0(s, 2)ds (o1 it s )
LO,T ”

=3 | / (7 — )51 05, ()8l | (300 11, 1., 00 /B!

B>v2 Lo,r

Lemma 10 One can choose a constant Cs1 > 0 (depending on ~o,v1,7v2 and o1) such that

(126) ||7 /L (7 = $)°51 05y (5)dS | (5.0, 1 1)
0,7

< Oy le0tm+2(5 + 1)b(70+71+2)‘|%772 (T (8=r2.01,RHa p.0.6)

for all B > ~s.

Proof By construction of Ly -, we can split the integral in two parts

cru (1)
7'/ (T — 5)105T vg_q,(s)ds = T/ (1 —5)05Mvg_y,(s)ds
Lo, 0

+ T/ (1 —8)"°sMvg_,(5)ds

rH(T)
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We first provide estimates for

cru(T)
Ll = ”T/O (T - 8)70871’05_72 (S)dSH(Ble:RHa,b,vze)'

We carry out the next factorization

1 o1 cr (7)
L e (—rbww) ol [ = s )
0

7] el

— e (=2 )

[ ot e (< Znis -l vs(o)

el

L 72>\s|) ds|.

el

><|s]exp(

We deduce that

(127) Ly < C5.11(B, 8- () (812,01, RHo 0 )

where

1

a1

Cs511(8,€) = sup  exp <—7”b(5)|7|>/ |7 — cra (T)ullegp (7)1 U
TERH(L,b,’U ’6’ 0

01

<exp (T3 = allenn(r)ul ) du

el

As a consequence of the shape of Ly, through (122), according to the inequalities (21), (24) and
taking account of the rough estimates |7 — crp (7)u|" < 27|77 for 0 < u < 1, we get

(128) Cs511(B,€) <270 sup |7 2exp <—01(7“b(5) — (8 — 72))\T|>
TERH b0 €

o1 2
< 2% sup proty+2 exp (—l‘)
>0 le[ (B+1)°

+m+2
< 270 |¢[r0t 1t (’YO Tt 2>W0 "

exp(— (70 + 71 +2))(8 + 1)° 001+
0172

for all B > 9, all € € D(O, €0)-
In a second part, we seek bounds for

Ly =7 / (7= 8)7°8" 051, (8)dsll (8,01, RH, . 0)-
C

RrH(T)

As above, we achieve the factorization

1
e (—Emmw) 7

~exp (= Zn(6)le))

/ ( )(T —5)70sMvg_r,(s)ds
CRH\T

g

T 0gM iex - 17’ . 5 v 5
/CRH(T)(T_S)W ! {‘8| p< le] b(8 —2)| |> B2 (8)}

01

5] exp (rbw _ 72>|s|) as|

el




42

It follows that

(129) Ly < 05'1'2(5’6)””5_“/2 (T)H(B_’YQ)O'LRHa,b,U:E)
with
1
o
Cora = _sw exp(=Zn@)irl) [ I = cnn(r)PrHi -
TeRHa,b,U |6| 0

01

x |(1 = u)epp () +ur|" T exp ( ro(B = 72)|(1 — w)ernu(T) + uﬂ) du.

el

By construction of the path Lo, by means of (122), bearing in mind (21), (24) and owing to
the bounds |7 — cry(7)[0T < 2070+ with |(1 — w)cry (7)) + ur| < |7| for 0 < u < 1, we
obtain

(130) Cs12(B,€) <200t qup  |7[10F 1 2 exp (—Ul(T’b(ﬂ) —rp(B — 72))\T|>
TERHa’bw ’€|

>“/o+71 +2

2
e exp(—(0 + 71 + 2)(8 + 10071+

g172
for all > 79, all € € D(0,¢). The lemma 10 follows. O
Gathering the expansion (125) and the upper bounds (126), we get

(131) |7 /L (r — Y0510, 20(s, 2)ds]| oy, 5 e
0,7

B —72)! 57—
< Z C5.1|€‘70+71+2(5 + 1)b(%+71+2)¥|’”5*72 (7')"(B*'yz,m,RHa,b,,U,e)(Sw_7,
B> Al (B —72)!

Keeping in mind the guess (123), we obtain a constant C54 > 0 (depending on 7o, 71,72 and b)
for which

— |
(132) B+ 1)b(%+m+2)(65,’m)' < Cs2
holds for all 8 > 7. Piling up (131) and (132) grants the result (124). O

Proposition 14 Let vp,v1 > 0 be integers. Let o1,0] > 0 be real numbers such that o1 > o7.
Then, for all € € D(0,€p), the linear operator v(t,z) — TfLOT(T — )0 sMy(s, z)ds is bounded

from (EG (o1 RH, 40 e8)0 |0 RE b 0e8)) 1180 (EG (o RH, 4 e8)0 |-l (01 RH, 41 e8)) - N addition,
we can select a constant Cs > 0 (depending on ~o,v1,01 and o) with

(133) HT/L (7= )57 0(5, 2)d5l| (04, R, p,0c8) < Colel T 207, 2l (01 Ry 0ve0)
0,7
for all v(7,2) € EG (51 RH, . .c6) Jor all € € D(0, €).

Proof Pick up some v(7,2) =} 5 v(T)2? /B! in EG(y rH

a,b,vvevé) :

Owing to Definition 5,
(134) ||r /L (r — )57 0(s, 2)d8] [ H, 5 e
0,7

S ir / (7 — 87T 0s(3)ds]| 5,001, )07/ B!

B>0 LO,T



Lemma 11 One can assign a constant Cs > 0 (depending on o, v1,01 and o) such that

(135) |7 /L (1 — )78 0g(5)d5| (8,0 RH, y00) < Csle™ T2 |0(T)]| (8,04 RE 00
0,7

for all B > 0.

Proof As above, we first cut the integral into two pieces

cru (T) T
7'/ (1 —8)"°sMvg(s)ds = T/ (1 —5)"°sMvg(s)ds + 7'/ (1 —5)7°sMwvg(s)ds
Lo, 0 c

RrH(T)

We first request estimates for

. cru (T)
Ly = IT/ (1 —)7°s"vg(s)dsl|(8,01,RH, b 0 0)-
0

We do the next factorization

1 o1 cru (T)
1 e (—Hmﬁ)m) ol [ s
€ 0

7]

—exp (= Zn@ir) | [ = e exp (~Dra)al) waten)
|| : 1P\

/

X|s|exp <|U€1‘rb(ﬁ)|s|> ds|.

which leads to

(136) Ly < Cs.(8, v (Tll(,01, R 0.0
where
-~ 01 ! +2 +1
Cs1(B,€) = sup exp | ——7(B)|7] / |7 — cru (T)u|™ |cru ()| u™
TERH b v ‘6‘ 0
o}
X exp <‘€‘rb(ﬁ)|cRH(7')u|> du.

Due to the constraints (122) and keeping in view the bounds (30), we see that

(137) Coa(Bie) <20 sup |Trvo+71+2exp(“1 %(B)ITI)
TERHq b v e

/ —1\ Yot+tm+2
< 20 gup 2702 exp <_Ul — 91 rb(ﬁ)x> < 270|€|’Y0+71+2 <(’YO +7+ /2)3 )
z>0 el 01— 04

for all 8> 0, e € D(0, ).
Next in order, we point at

)
Lo=|r / (7 — 857 05(5)ds| | (3,001, 5 )
cru (1)

43
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As before, we accomplish a factorization

1
e (—Em(ﬁ)lﬂ) 7

/ ( )(T —5)0sMvg(s)ds

!
0

/CI:H(T)(T — 5)70571{|i| exp <—7«b(5)|5|> vs(s)}

el

lsfesp (Tora()l] ) s

el

which entails

(138) Ly < C52(8,)l[va(M)l(8.04, B, 0
with

g

1
17‘b(6)l7l> 1= crnmpria -

el

05_2(5, €)= sup exp <
TERHa,b,v
!
% |(1 = werm (7) + ur[*+ exp (ﬁm(ﬁ)yu — w)eru(T) + m|> du.
€

By reason of the restriction (122) and by taking a glance at the bounds (30), we deduce

_ /
(139) Cs2(B,6) <2071 sup |70t +2exp (—”1 f’lrb<ﬁ>|7|)
TERH, b el

-1
< 200 H [¢rotnt <(’70 + 71+ 2)e

Yo+y1+2
o1 — 0] )

provided that 8 > 0, € € D(0, ¢). Hence, Lemma 11 is verified. O

Finally, according to (134) we notice that Proposition 14 is just a byproduct of the lemma 11
above. O

The proof of the next proposition mirrors in a genuine way the one of Proposition 4.

Proposition 15 Let us consider some holomorphic function ¢(t,z,€) on ROHa,b,U x D(0,p) x
D(0,€p), continuous on RH,p, % D(0,p) x D(0,€), for a radius p > 0, bounded therein by a
constant M. > 0. Fiz some 0 < 0 < p. Then, the linear operator v(t,z) — (T, z,€)v(T, 2) s
bounded from (EG (o, rH, , .e.5): ||l|(01, R, 4. e.5)) int0 itself, provided that € € D(0, ). Addi-
tionally, a constant Cg > 0 (depending on M., 6, p) independent of € exists in a way that

(140) HC(Ta 2 G)U(Tv Z) | |(a1,RHa7b,U,e,5) < CG| ‘U(Tv Z) | ’(01,RHa7b,u,e,5)

fOT all S EG(O’l,RHa,b,vzeza)'

4.2 Banach spaces of holomorphic functions with super exponential growth
on L—shaped domains

We will refer to the notations of Sections 3.1 and 4.1 within this subsection. Namely, we set a
closed horizontal strip J as defined in (34) where c is chosen different from 0 among the family
of sectors {Jy }re[—n,n] built up at the onset of the subsection 3.1 and a closed rectangle R 4, as
displayed in (119) and (120) for some negative v > 0. The set RJ. 4, stands for the L—shaped
domain J U R, 4,. See Figure 6.
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Rledv d
RJeaw
C
| 1
-3 -2 v -1 0 ¢

Figure 6: Examples of sets RJ. 4, = J U R¢ 4.

Definition 6 Let ¢ = (01,%2,53) where 01,62,63 > 0 are assumed to be positive real numbers
and let > 0 be an integer. For all e € D(0,¢p), we define SEGg.¢.RJ as the vector space

c,d,v 76)

of holomorphic functions v(T) on ROJde, continuous on RJ.q, for which

|v(7)] o1

o(Dl(85,RIca00) =  SUP exp { —57(B)|7] — 2y () exp(ss|7])
” TERJ 4,0 7] €

is finite. Let 6 > 0 be some positive number. The set SEG( Ry, , .5 Sstands for the vec-

tor space of all formal series v(7,2) = 3 55 v(7)27 /B! with coefficients vs(T) belonging to

SEG (¢RI, .. and whose norm

58
10(7, )l (¢, R e) = D \|v5(7)ll<ﬁ,g,mc,d,v,e>ﬁ
>0

is finite. The space SEG Ry,

dvse,) €quipped with this norm is a Banach space.

The next statement can be checked exactly in the same manner as Proposition 5 1).

Proposition 16 Let v(7,2) € SEG( Ry, ;. .05)- Fiz some 0 < d <1. Then, we get a constant
C7 > 0 (depending on ||v|(¢,RJ. 4,.c6) and 01) fulfilling

01

(141) [o(r, 2)| < Crlr] exp ( O+ ¢ ) exp<c3|f|>)

€]
for all T € RJ. 4., all z € D(0,6,0).

In the upcoming propositions, we plan to analyze the same convolution maps and multi-
plication by bounded holomorphic functions as worked out in Propositions 13,14 and 15 but
operating on the Banach spaces disclosed in Definition 6. As in Section 4.1, Lo, stands for a
path defined as a union [0, crs(7)|U[crs(T), 7|, where cr(7) is selected with the next properties:

(142) Lor C RJcdw, cri(T) € Regw, |cri(T)| < 7|
whenever 7 € RJ q,.

Proposition 17 Let vy,71 > 0 and v2 > 1 be integers. We assume that

(143) Y2 = b0+ 7 +2)



46

holds. Then, for all € € D(0,€), the linear operator v(t, z) — TfLOT(T — 8)108M9;, (s, 2)ds
is bounded from SEG Ry, , . .cs) into itself. In addition, one gets a constant Cg > 0 (depending
on Yo0,Y1,7Y2,01 and b) independent of €, such that

(144) HT/L (17— 8)7°570; 2 0(s, 2)ds|| (¢, R, 40 e0) < C8lel T 2672 [[0(7, 2) || (¢, R er0)
0,7

for allv(7,2) € SEG( Ry, 4,c5) all €€ D(0, ).

Proof Only a brief outline of the proof will be presented hereafter since its content resembles
the one displayed in Proposition 13. Namely, it boils down to show the next lemma.

Lemma 12 Toke vg_-,(T) € SEG(5-ny,RIcqe) JOr all B> 2. One can sort a constant
Cs1 > 0 (depending on o, v1,72,01) for which

(145) |T/L (1 —8)sMvg_r, (s)dsH(ﬁ&Rvad’me)
0,7

b
< 08.1‘6‘70+71+2(ﬁ +1) (70+71+2)HUB—72 (T)H(,B*'YZ,SRJc,d,vve)

Proof As before, we depart from the break up of the convolution product in two pieces

cry(T)
7'/ (T — 5)10sT vg_q,(s)ds = T/ (1 —5)10sTvg_r,(s)ds
Lo, 0
+ 7'/ (1 —8)7°sMvg_,(5)ds
crJ ()

We demand estimates for the first part

cry(T)
LJ; = H’T/O (r— 8)7057105_72(5)d8||(ﬁ,S7RJ67d’U’E)-

We perform a factorization

cry(T)
/0 (1 —5)"05Mvg_r,(s)ds

e (—Erbww B exp<<3|7>) ]

cry(T)
= exp (—Ulrb(ﬁ)w — qrp(B) eXp(<3|T)> ‘/0 (T —s)0s™

el

x {i exp (-017“(;(5 —Y2)|s| — s2re(B —2) eXp(§3’3D> v (8)}

5] el

01

5] exp (rbw —)ls| + (B w)exp(cgsn) s

el

which induces

(146) LJy < C3.1.1(B, )l[0g—2 (T)l|(8=2.5, R 06)
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with

1
Cs11(B,e) = sup exp (—Ulrb([i’)\ﬂ — ¢arp(B) exp(§37'|)) /0 |7 — cry(T)ul

TERJI . 4. €]

01

X |egy (7)1 exp ( ro(8 — v2)|cry (T)u| + ry(8 — 72) eXp(<3CRJ(T)UD> du.

el

According to the properties (142), we observe in particular that

(147)  — corp(B) exp(ss|T]) + sorp(8 — 72) exp(s3|ery(T)|w)
< (rp(B —v2) — ro(8)) exp(ss|7]) <0

for all 7 € RJ; 44, all 0 <u < 1. In addition, taking into account the bounds (21), (24), we get
in a similar way as in (128) that

Cs11(B,e) <20 sup |r|0"+2exp (—01(%(5) — (B — 'Vz))T\)

TERJ 4, e
o1 2
< 27 sup protyi+2 exp (_ :U)
x>0 ‘6‘ (B + l)b

>“/0+71 +2

2
e exp(—(0 + 71 + )8+ 10071+

0172

for all B> 9, all € € D(0, ¢).
In the last part, we aim attention at

}
Ll ||r / (7 — 570 5M 05 (5)dsl (e )
C

RrJ(T)

As aforementioned, we achieve a factorization

1

m exp (—Erb(ﬁ)!ﬂ — rp(B) exp(§3|7')> 7]

/ ( )(T —5)70sMvg_,(s)ds
CRJ\T

/ (1 —s)70sM
cry(T)

exp <f;|rb<ﬂ —o)ls] = <ory(B — 1) exp(gsrsw) 05 a(5)}

= exp (—Ulrb(ﬂ)h” — srp(B) exp(<3|7])>

el

1
X E—
{ISI

X |s| exp (Erb(ﬁ —72)|s| + sarp (B — 72) eXp(C?,SD) ds

It follows that

(148) LJy < Cs.1.2(8, )l[0g—2 (T) | (8=r2.5, R 06)
with

1
Cora(Bie) = sup exp <—”lrb<ﬁ>|f|—Qrb(ﬁ)eXp(cgﬂ)) /0 7 — cra ()1 — )

TGRJc,d,U ’6’

% I(1 = wers(r) +ur P+ exp (jrbw — )I(1 = wery(r) + ur]

+62rp(B — 72) exp(ss|(1 — u)cry(7) + utl)) du.
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Taking a glance at the features (142) of the path Lg r, we notice that

(149)  — qrp(B) exp(s3|7]) + s27p(8 — 72) exp(s3| (1 — w)ery (1) + ur|)
< —6(rp(B) — (B — 72)) exp(ss|7|) <0

for all 7 € RJ; ., all 0 < u < 1. Keeping in mind (21), (24), we obtain as above

o1
Cs.1.2(B,€) < 21011 sup 7|0t 2 exp (—M(Tb(ﬁ) — (8 — 72))!T|>
TE c,d,v

< 270+1|€|70+71+2 (70 +7+2

Yo+vy1+2
0172 )

exp(~(0 + 71 + 2)(B + )P0+

for all 8> 9, all € € D(O, €9). Lemma 12 follows.

Proposition 18 Take vy and v1 as non negative integers. Let us select ¢ = (01,%2,53) and
¢/ = (0],¢h,¢4) two tuples of positive real numbers in order that

(150) o1 >0, 2>, 3=k

Then, for all € € D(0,€), the map v(r,z) — TfLOT(T — §)0sMy(s, z)ds is a linear bounded

operator from SEG (¢ Ry, , ,.e6) to SEG Ry, , .5 Besides, one can choose a constant Cy >
0 (depending on ~o,71,01 and o) independent of €, such that

(151) IIT/ (T = 8)8M0(s, 2)dsl( R, 4. 0e0) < Cslel T2 [0(7, 2)|| ¢ R, 4. 0000)
LO,T

for allv(r,2) € SEG (¢ ry

c,d,v 7675

), all e € D(0, ).

Proof As above, we only concentrate on the main part of the proof since it is very close to the
one of Proposition 14. More precisely, we are scaled down to prove the next lemma.

Lemma 13 Let vg(7) belonging to SEG g ¢ gy One can sort a constant Cg > 0 (depend-

c,d,vae) :
ing on Yo,7,01 and o}) such that
(152) IIT/L (1 = 8)°5"05(5)d5| (5.6 R g0e) < Clel T 2 0p(T)]] (8.6 R, g0
0,7
for all B > 0.
Proof We first downsize the integral in two pieces
cry(T) T
7'/ (1 —5)"°sMvg(s)ds = T/ (1 —5)"sMvg(s)ds + T/ (1 —5)"sMvg(s)ds
Lo,r 0 cry(7)

We ask for bounds regarding

. cry(T)
LJ| = ||7'/0 (r— 5)70871215(8)ds|](B’E,RJQM,E).
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The next factorization holds

1 exp (%(ﬁ)m o) exp<<3|f>) ]

7] el

cry(T)
/ (1 —5)"sMvg(s)ds
0

el

cry(T)
= exp (Glrb(ﬂ)lﬂ — <arp(f) exp(calf)) ‘/0 (1 —s)70sT

x {‘;exp <_(\7e/1\7"b(5)|8| —<ro(P) eXp(%'S')) ()}

/

5] exp (Erbww T ml(B) exp(cgso) as|

which induces

(153) LJ1 < Csa (B, Ol[va(l(5.6' R g0

where

o 1
Cs1(B,€) = sup exp <—1rb(ﬁ)]ﬂ — sarp(B) exp((g\ﬂ)) /0 |7 — cry(T)ul

TERJc,d,U |6‘
O,/
X ey (7)1 P2 exp <‘€1‘7“b(,3)|CRJ(7')U| + rp(B) eXp(§3CRJ(T)UD> du.
In accordance with the construction of the path Lg , described in (142), we grant that

(154) —arp(B) exp(s3|7]) + () exp(ss|ers (1) u) < (s5 — 2)rp(B) exp(ss|T]) <0

forall 7 € RJ. g, all 0 <u < 1.
Besides, taking into account the bounds (30), we deduce

o
(155) Coa(Be) <2° sup |T\”°+'*l+2exp(—"1 ”lrbw)m)
TERJ a0 €]

/ —1\ Yot+v1i+2
< 2% sup 20T V+2 exp (_01 ! Tb(ﬁ)x> < 2“{0|6|’Yo+’y1+2 (('70 +tn+ /2)6 )
©>0 e 01— 0y

for all >0, e € D(0, ).

In a second part, we concentrate on

-
Lha=ir [ (7= s 0p(6)dsl s
cry(T)
Again we use a factorization

1

Lew (_Emw)m — on(8) exp(cgm) ]

/ (1 —5)"°sMvg(s)ds
cry(T)

/ (7- _ 3)"/0 s
cry(T)

e (—Erbw)!sr () exp@g\s‘)) os(6)}

= exp (—Glrb(ﬁ)w - §2Tb(ﬁ) exp(§3|7]))

/

«Is] exp (Emww T ml(B) exp(cgso) as|
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that induces

(156) LJy < Csa(B, s ()|l(.6 R o)

with

1
Cs2(B,€) = _Sup - exp (—Erb(ﬁ)lﬂ — () exp(gslTl)) /O |7 — cra ()L —u)™
% |(1 = w)ens(r) + ur 1+ exp (ﬁrbw(l — wens(r) +ur

+6yrp(B) exp(ss| (1 — w)ers (7) + url)) du.
The construction of Lo » through (142) entails
(157)  — qary(B) exp(ss|7) + o (B) exp(ss|(1 — w)ers (T) + ur])
< —(s2 — @)rp(B) exp(ss|7]) < 0

forall 7 € RJ. g, all 0 <u < 1.
According to the bounds (30), we get

_ /
(158) Cas(Bie) <2071 sup |¢\70+”1+2exp(—‘” “1rb<ﬁ>|f|>
TERJC,CZ,’U ’6’

-1
< 2“/0+1|€|70+W1+2 <(’YO + 71 +2)e )

for all 8> 0, e € D(0, €). Finally, Lemma 13 is justified. O
O

The proof of the next proposition is a straightforward adaptation of the one disclosed in
Proposition 4 and will therefore be overlooked.

Proposition 19 Let us consider some holomorphic function c(t,z,€) on ROJc,d,u x D(0, p) x
D(0,¢€p), continuous on RJ. 4, x D(0,p) x D(0,€p), for a radius p > 0, bounded therein by a
constant M. > 0. Fiz some 0 < § < p. Then, the linear operator v(t, z) — c(7,z, €)v(T, 2) is
bounded from SEG(&RJMME,(;) into itself, provided that € € D(O, €0). Additionally, a constant
Cy > 0 (depending on M., 0, p) independent of € exists in a way that

(159) l|c(T, 2z, €)v(T, 2)|

(SvRJc,d,vav(S) S 09| ‘U(T’ Z) | ’(SvRJc,d,Ua€76)

Jor allv € SEG Ry

c,d,vvevé) '

4.3 Continuity bounds for linear convolution operators acting on the Banach
spaces EG(al,SdUD(O,T),e,é)

We keep the notations of Section 3.2. By means of the statement of the next two propositions,
we inspect linear maps constructed as convolution products acting on the Banach spaces of
functions with exponential growth on sectors mentioned in Definition 2. In the sequel, a sector
Sq will denote one the sector Sg,, 0 < p < ¢ — 1 just introduced after Definition 4. For all
7€ S3UD(0,r), Lo, merely denotes the segment [0, 7] which obviously belong to Sq U D(0, 7).
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Proposition 20 Take v9,71 > 0 and 2 > 1 among the set of integers. Assume that
(160) Y2 = by +m +2)

holds. Then, for any given € in D(0,€q), the map v(T,z) — TfLO (1 — 8)708M9; 0(s, 2)ds
represents a bounded linear operator from EG ,, s,uD(0,r),e,5) tnto itself. Moreover, there exists
a constant C1g > 0 (depending on Yo,7v1,72, 01 and b) independent of €, for which

161) ir [ (= 9570 005 s 5,000,000
0,7
< Crole* 1262 [u(T, 2) | (0,5,0D(0,),6,0)
provided that v(7,z) € EG (4, 5,0D(0,r),c,5) and € € D(0, ).

Proof Since the proof mirrors the one presented for Proposition 13, we only focus attention at
the next lemma.

Lemma 14 Let vg_,(T) belonging to EG_r,.01,5,0D(0,r),c)- Then, one can select a constant
Cio1 > 0 (depending on ~yy,v1,72 and o1) such that

(162) ||r /L (7 — 885705 (8)d5]| 8.0, Su0D (O
0,7

< Cro.a|e T 2B + 1)PO0NFD | lug o (7)]](8-rm.00,800D(0)6)

for all B > 5.

Proof We first perform a factorization

Lo (= ) ir

7] el

—exp (- Tl

/0 (1 —5)05Mvg_r,(s)ds

/OT(T - 5)70571{|i| exp (Glrb(ﬁ - ’72)|5|> V3, (8)}

el

01

«Is] exp (rm - 72)|8|> s

el

We deduce that
(163) ‘|TA (T - S)’YO s VB—s (8)d8| ’(,3,0’1,54UD(0,7")75) < 010.1(67 6) ‘ |Uﬁ—’yz (7—)‘ |(ﬁ—y2,01,SdUD(O,r),e)

where C1g.1(0, €) fulfills the next bounds, with the help of (21), (24),

1
(164) Cion(B)= sup  exp (—”lrbw)rf) A (R
T€S4UD(0,r) |6| 0

X exp <Ulrb(6 - 72)|T|u> du

el

<  sup T[0T 2exp <—01(Tb(5) — (B — 72))|7'|>

T€S4UD(0,r) e

o1 72
< sup 20+ exp (—:c)
x>0 ‘6 (/8 + 1)b

) Yo+vy1+2

42
S (70 = exp(—(y0 + 7 +2))(8 + 1)° 00+ +2)

0172
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for all B > 9, all € € D(O, €o9). This yields the lemma 14.

Proposition 21 Let yy,71 = 0 chosen among the set of integers. Let o1,0] > 0 be real numbers
satisfying o1 > o}. Then, for alle € D(0,¢€p), the linear map v(7,z) — T fLo,T (T—s)0sMv(s, z)ds
is a bounded operator from EG ;1 5,0D(0,),e,6) 0 EG(5),5,0D(0,1),¢,8)- Furthermore, we can get
a constant Cig > 0 (depending on 0,71, 01 and o)) with

(165) ||TA (T - 8)705711)(57 z)dSH(JLSdUD(O,T),e,é) < Cv'10|6|wo+f71+2| ’U(T, Z)H(U’l,SdUD(O,T),e,(S)
0,7
for allv(7, 2) € EG (51 s,0D(0,r).c,5), for all € € D(0, €).

Proof The proof mimics the one of Proposition 14 and is based on the next lemma

Lemma 15 One can attach a constant Cig > 0 (depending on Yo, V1,01 and o1) such that

(166) HT/L (1 — 5)7°5"05(5)ds]|(5.01,5,0D(0).0) < Crole| T 2 s (7)|](8,015,00(0.1.0)
0,7
for all B > 0.

Proof We apply the next factorization

oo (Erbmm) 7

— e (=2 )

/OT(T — §) 05N yg(s)ds
/OT - ){|1| exp (—ﬁmwnsr) va(s)}

/

x|s|exp <01rb(ﬁ)\s\> ds|.

el

which entails
(167) |T/0 (1 — )5 vs(s)ds|| (3.01,5,0uD0),0) < Cr0(B, [va(T)l(8.07,5,0D(0,r),0)

for C1o(B, €) submitted to the next bounds, keeping in view (30),

. o 1
(168) C1o(B,€) = sup  exp <—1rb(ﬁ)\7'|> / |70 FH2(] — gy) 071+
0

T€S4UD(0,r) ’d

X exp (Tjrb(ﬁ)]ﬂu) du

o1 — o}

< sup |7[0THFZexp (—
TESZUD(0,r)

— 0 9 —1\ Yot+tm+2
< supa” T 2 exp <—Ul‘ ‘01 rb(ﬁ)a:> < |epotm+2 <(70 +71+2)e )
x>0 €

for all 8> 0, e € D(0, ¢p). Lemma 15 follows.
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4.4 An accessory convolution problem with rational coefficients

We set B as a finite subset of N3. For any I = (lo, l1,12) € B, we consider a bounded holomorphic
function d;(z, €) on a polydisc D(0, p) x D(0, €y) for some radii p, eg > 0. Let Sp > 1 be an integer
and Pg(7) be a polynomial (not identically equal to 0) with complex coefficients which is either
constant or whose roots that are located in the open right halfplane C4 = {z € C/Re(z) > 0}.
We introduce the following notations. When [ = (lo,l1,l2) € B, we put dj,;, = lo — 2{; and
assume that dj, ;, > 1, we also set A4;, ,, as real numbers for all 1 < p <l —1 when /; > 2. When
7 € C, the symbol Lo, stands for a path in C joining 0 and 7 as constructed in the previous
subsections.

We concentrate on the next convolution equation

di(z, hi—lo d
(169) 65%(7, z,€) = Z i(z€) ] < T / (r— s)dloh_lsh@?’u(s, z, e)j
LO,T B

1=(lo,l1,l2)€B Pi(7) | Dldi )
Ell_lOT .
’ A / T dlo’lﬁ(llip)ilspa?” S,2,6)— p +w(T,2,€
> "PT(dy 1, + (I — p)) LO’T( ) (5,2,6)% (r.2.6)

1<p<li—1

where w(T, 2, €) stands for solutions of the equation (44) that are constructed in Propositions 10
and 11. We use the convention that the sum 21§p§l171 is reduced to 0 when [; = 1.

In the next assertion, we build solutions to the convolution equation (169) within the three
families of Banach spaces described in Definitions 2, 5 and 6.

Proposition 22 1) We ask for the next constraints
a) There exists a real number b > 1 such that for all I = (lo,11,12) € B,

(170) SBZb(lo—ll)—FlQ , Sp>ls , 1 >1

holds.

b) For all 0 < j < Sgp—1, we set 7 — v;(T,€) as a function that belongs to the Banach space
EG(OJ/PRH&,M,G); for all e € D(0,€p), for a L—shaped domain RHgy,,, displayed at the onset of
Subsection 4.1 and some real number o} > 0. Furthermore, we assume the existence of positive
real numbers J,d > 0 for which

Sp—1—h 5]

(171) D RRIIAC E)H(o,a;,RHa,b,u,e)ﬁ <J
§=0 ‘

for any 0 < h < Sz — 1, for e € D(0, ).

Then, for any given o1 > o}, for a suitable choice of constants A > 0 and 0 < § < p, the
equation (169) where the forcing term w(r, z,€) needs to be supplanted by wpy, (T,2,€) along
with the initial data

(172) (agv)(T,O,G) = Uj(’l', 6) , 0 S] < SB -1

has a unique solution v(T, z, €) in the space EG 4, py ), for all e € D(O, €0) and is submitted

to the bounds

a,b,vvaé

(173) HU(T7 2, €)||(01,RHa,b,v,e,§) < 5SBA +J



54

for all e € D(0, ).

2) We need the following restrictions to hold

a) There exists a real number b > 1 for which (170) occurs.

b) For all 0 < j < S — 1, we define 7 — vj(7,€) as a function that belongs to the Banach
space SEG(()’S/’RJC’dﬂ”e), for any € € D(O,eo), for some L—shaped domain RJ.q, described at
the beginning of Subsection 4.2 and for some tuple ' = (07,4, <) with o} > 0,65 > 0 and ¢§ > 0.
Moreover, we can select real numbers J,§ > 0 with

Sp—1—h 5

> osn(r Mos Ricanogy <7
7=0

for any 0 < h < Sz — 1, for e € D(0, ).

Then, for any given tuple s = (01, s2,3) with o1 > 0}, @ > ¢ and s3 = <3, for an appropriate
choice of constants A > 0 and 0 < 0 < p, the equation (169) where the forcing term w(t, z, €)
must be interchanged with wyy, (T, z,€) together with the initial data (172) possesses a unique
solution v(T, z,€) in the space SEG (¢ RJ. 4.0 Which suffers the bounds

(174) ||U(T7 2, 6)| |(5,RJc7d,v,e,6) < 5S8A +J

for all e € D(0, e).

3) We request the next assumptions

a) For a suitable real number b > 1, the inequalities (170) hold.

b) For each 0 < j < Sp— 1, we single out a function T +— v;(7,€) belonging to the Banach space
EG(OJ/l’SdLJD(Om),G), for all € € D(O, €0), where Sq is one of sectors Sq,, 0 < p <1 — 1 displayed
after Definition 4, for some real number o > 0. Furthermore, we assume that no root of Pp(T)
is located in Sy U D(0,7). We impose the existence of two real numbers J,§ > 0 in a way that

Sp—1—h 5]

Z ijJrh(Ta G)H(o,ag,sduD(o,r),e)ﬁ <J
Jj=0 '

holds for any 0 < h < Sz — 1, for e € D(0, ¢).

Then, for any given o1 > o}, for an adequate guess of constants A > 0 and 0 < 6 < p, the
equation (169) where the forcing term w(t, z,€) shall be replaced by ws, (7,2, €) accompanied by
the initial data (172) has a unique solution v(t, z, €) in the space EG (5,,5,0D(0,r),,6) Withstanding
the bounds

(175) (T, 2, )| (0, 500D(0.)..6) < O°BA+ T

for all € € D(0, €).

Proof The proof will only be concerned with a thorough inspection of the first point 1) since a
similar discourse holds for the second (resp. third) point by merely replacing Propositions 13,
14 and 15 by Propositions 17, 18 and 19 (resp. 20, 21 and 8).

We keep the notations of the subsection 3.1 and we depart from a lemma dealing with the
forcing term w(7, z, €) of the equation (169).

Lemma 16 1) The formal series w.y, (T, z,€) built in (81) belongs both to the spaces
EG(oy,RH, 4 pe.0) 1A SEG( Ry, , ,.e08) for the tuples o,< and 6 considered in Proposition 10, for
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any choice of v < 0, provided that the sector H from RH,y, belongs to the set {Hk}ke[[—n,n]]
and J out of RJ. 4, appertain to {Ji}pe[—nn)- Moreover, there exist constants éRHa,b,v >0
and éRJQd’U > 0 for which

(176) Nwr g, (7, 2, (1,8 b ve8) < CRHupor WHL (T2 2l R gve) < CRI g
for all e € D(0, ).
2) The formal series ws,, (1,2,€) defined in (107) is located in the space EG(UhSdeB(OW),Q(;).

Besides, there exists a constant C’Sdp > 0 with
(177) stdp (Ta 2, 6) ‘ ’(oq,Sdp UD(0,r),€,9) < CSdp
whenever € € D(0, ).

Proof We focus on the first point 1). According to (81), the formal series wg s, (7, 2, €) has the
following expansion wp, (7, 2,€) = > 550 wp(T, €)z” /B! where wg(7,€) stand for holomorphic
functions on H.J,, x D(O7 €o), continuous on H J,, X D(O, €o), for all 5 > 0. Besides, the estimates
(83) and (84) hold.

We first prove that wp j, (7, 2, €) belongs to EG (4, ru

wbs6,0)- We need upper bounds for the
quantity

Ruwas(Br6) = sup Wexp (—(”rbwm) .

’TERa,b,u ‘6‘

Since R po C HJn = Upe[—nn)Hi U Jk, we get in particular the coarse bounds

(178) Ruwep(Bic) < > sup Wexp(—mrb(ﬁ)h\)

ke[-n,n] TERG b,vNH ’7—‘ |6‘

b 3 s g (D).

keﬂ_nﬂﬂ] TERa,b,vak |7_’ ‘6‘

The sums above are taken over the integers & for which R, NHy and R, N Ji are not empty.
But, we observe that

(179) sup MGXP <—017’b(5)m>

’TERa,b,Ur‘IHk ‘T| |6
|wg (T, €)] o1
< sup 2 exp |~y (B)|7] + o9s(B) exp(os|7]) ) = |[ws (T, )l (5.0.11,.0

e, |7l el

and if one set

Capok = sup  exp(s2((b)exp(ss|T]))
’TERG"b,UﬂJ}C

we see that

aso) s P2 (Tnglr) = s e (<))

TERG p,oNJk |T‘ |€| TERG p,vNJk |T| |€|

x exp(—carp(B) exp(s3|7])) x exp(sars(B) exp(s3|7])) < Capok Sup |w’3’(:|’6)| exp (—Em(ﬁ)h)
TEJE

x exp(—sarp(8) exp(s3|7])) = Capokl[ws(T: )l (sc,1.0)-
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Hence, gathering (178) and (179), (180) yields

(181) Rwa,b(ﬁa 6) < Z ||wﬁ (Ta E) H(,B,Q,Hk,e) + Z Ca,b,v,k| |w,3 (T’ 6) | |(B,5,Jk,e)
ke[—n,n] ke[—n,n]

Now, we notice that

lwg (T, €)] o1
(182) [fws(m. s ety < 50 2 ey (T g1
. 7—elza,b,u ‘T‘ ’€|
wg(T, € o
- sup I ey (T 0)r] 4 o (8) exploalr) ) = Ruvaa(8,6) + 1w,
TE

Finally, clustering (181) and (182) yields that

(183) Nwis (7,2, (o1 Rt poes) < Y Cu+ Y, CapwiCi +Ca
ke[—n,n] ke[—n,n]

for all € € D(0, ¢), bearing in mind the notations within the bounds (83) and (84).
In a second step, we show that wy s, (7, 2, €) belongs to SEG ¢ g

cdonc,8)- We search for upper
bounds concerning

Riwea(Br) = sup 2T (—‘”rbwm ~an(B) exp(<3!T|)> |

TGRc,d,v |T| ’6’

According to the inclusion R, 4, C HJ, = Uke[—n,n] H;. U J;,, we observe that

180 Rivaps Y s e (o) () explale))

welomm EReannt || €]
wg(T, €) o1
+ Z sup M exp <—rb(ﬁ)\7| — qrp(f) exp(g3\7-|)> )
ke[—nn] "€ Red. 0Nk 7] el

As above, the sums belonging to the latter inequalities are performed over the integers k for
which R. 4, N Hy and R4, N Jj; are not empty. Furthermore, we see that

(185) sup Mexp <—017’b(ﬂ)‘7'| — rp(B) exp(§3\7'|)>

r€RequnH: 7] el

< p 1209 o (

o
_TL (B)r] + a2sul(B) exp<a3,T>> = 1lwp (7, (g1,
TEHY ’T‘

el

and

ase)  sup 12Ol (—“lrbw)ﬂ - exp(cgrﬂ))

TERC,d’UﬁJk |T| |6|

wg(T, € o
< sup Wp (—|;|rb<ﬁ>|f| — on(8) exp(ce,m)) = s Ol 5.
T k

As a result, collecting (184) and (185), (186) leads to

(187) Riwea(Be) < Y Nws(mllgamao+ Y lws(mellpemno
ke[—n,n] ke[—n,n]
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Besides, we remark that

wg(T, € o1
(188) fws(mO)llpemsang < sup 20N (—m(ﬁw—czrbw)exp(csm))
- w TeRc,d,’u ’T‘ ‘6‘

wg(T, €
+ sup '“,)‘ exp (—Erbww - exp(c?,m)) = Rwea(Bre) + |Jws(r, Ol 5,000

TeJ ’7_
At last, storing up (187) and (188) returns the bounds
(189) lwes (7,2, RIeamesy < Y. Cu+ Y. Cu+Cy
kE[[ n,n| ke[—n,n]

for all € € D(0, €p), in accordance with the bounds (83) and (84).
The second point 2) has already been checked in the proof of Proposition 11. O

Let us introduce the function
Vsg(T,2,€) = Z v (T, 6)?
=0

with v;(7, €) disclosed in 1)b) above. We set a map B described as follows

d l1—l0
B(H(rz) = Y W29 { < T /L (7 — s)fon—Lsh 958 F (s, z)‘is
0,7

I=(lo,l1,l2)€B Ps(r) | Tdior)
ei—lor .
+ l s / (’T — S)dl(),ll +(l17p) Sp8l2 SBH(S Z)
1<;;ll . 1 pI‘ (dig1, + (I1 —p)) Lo ;
il { G / i1y —1 1 g ds
’ Z z (17— 8)%0h ™ 102 Vs, 2,€)—
1=(lo,I1,l2)€B Pp(r) | Dldign) Jro .
ll*lg ;
T Z llapr dl . (;1- _p)) /L (7’ — s)dlo,ll'i‘(ll_p) Spal2VSB(8 2, 6) SS
0,41 0,7

1<p<li—1
+wgyg, (T,2,€)

In the next lemma, we explain why B, induces a Lipschitz shrinking map on the space
EG (5, RH, , . e05) for any given a1 > o}.

Lemma 17 We take for granted that the restriction (170) hold. Let us choose a positive real
number J and 6 > 0 with (171). Then, if § > 0 is close enough to 0,
a) We can select a constant A > 0 for which

(190) HBE(H(T7 Z))H(C"l;RHa,b,'Urezls) S A

for any H(t,z) € B(0,\), for all e € D(0,€), where B(0,A) stands for the closed ball centered
at 0 with radius A > 0 in EG (4, pu,

a,b,v7€76) :

b) The map B is shrinking in the sense that

(191)  [[Be(Hi(7,2)) = Be(Ha(T; 2))ll(01,RH, ,0.60) < *HHl(T,) Ha (7, 2)l(01,RHo,0,,0)

occurs whenever Hy, Hy belong to B(0, M), for all € € D(0, ).
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Proof According to the inequality r,(58) > r(0) for all 8 > 0, we observe that for all 0 < h <
Sp—1land 0<j < Sg—1-—h,

HU]'-HI(T’ 6)||(j,a’1,RHa,b,U,e) < ||Uj+h(7_7 6)| (0,01,RHg b1 »€)

holds. As a consequence, the function 02V, (7, z,¢€) is located in EG (! RH, .6 With the
upper estimates

Sp—1—h 6]

(192) 102 Vs (7, 2 )l (ot RHas6,6) < Z |vj4n(T, G)H(o,a;,RHa,b,U,e)ﬁ <J
i=0 ‘

We first concentrate our attention on the bounds (190). Let H(7,2) in EG (4, rp, , , e5) Submit-

ted to |[H (7, 2)|(o1,RH, 4 .e,6) < A Assume that 0 < 6 < p. We set
di(z, €

Mp; = sup 1z ¢)

TeRHa,b,v75€D(076)7Z6D(07p) PB(T)

for all [ € B. Under the oversight of (170) and due to Propositions 13 and 15, we get constants
Cs > 0 (depending on [, Sg,01,b) and Cs > 0 (depending on Mz, d, p) such that

dl(276) _ _ _ dS
(193) H ﬁB(T) e ZOT/L()’T(T_S)le'll 13[18? SBH(SvZ)?H(m,RHa,b,u,e,&)
S 0605558712 | ’H(T7 Z)|’(0'17RHa,b,ua6’6)
and
dl(276) _ ) _ dS
(194) H];T(T)Ell ZOT/LO’T(T—S)dlo’“Hh Plgpol SBH(87z)?”(@'l,RHa,b,vﬁﬁ)

< 0605556_12 ‘ ’H(Ta z) | ’(UhRH

for all 1 < p <I; — 1. Besides, keeping in mind Propositions 14 and 15 with the help of (192),
two constants Cs > 0 (depending on [, o1, 0%) and Cg > 0 (depending on Mg, d, p) are obtained
for which

di(z, € d
(199) B2 Deirtor [ (s 0V (5,20 2 et 0
0,7

a,b,vva‘s)

Pp(r)
< CoCs|02 Vi (1, 2,6l (0} RH, 4 e0) < CoC

together with
di(z,€)

(196) 11575

ds
ellilOT / <T - S)dlo'l1+(llip)713pa,lz2 VSB (87 2, 6)7‘ |(U1,RHa bvyE0)
LO,T s o

< CGCV'E)Hale VSB (T7 2y 6)‘|(c7’1,Fu’.Ha,b,v,e,cS) < CGO5J

forall 1 <p<lil; —1. 3
At last, from Lemma 16 1), one can select a constant Crp,,, > 0 for which the first
inequality of (176) holds. We choose § > 0 small enough and A > 0 sufficiently large such that

E : C’60555'57[2 C(,'C5(5537l2

197 — 2 A + E A

( ) I— F(leJl) | lhp‘ F(dlo,ll + (ll - p))
1=(lo,l1,l2)eB

CCs CsCs 5
+ Z J+ Z ’All,p| J—l_CRHa,b,U < A
oanes L Gon) o D(diy, + (I — p))
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holds. Finally, gathering (193), (194), (195), (196) and (197) implies (190).

In a second phase, we show that B represents a shrinking map on the ball B(0, A). Namely,
let Hy, Hy be taken in the ball B(0,A). The bounds (193) and (194) just established above
entail

dl(zv 6) — — — ds
(198) H}}TT)EZI for /LO,T (1 — 5)Mon "1 92758 (H, (s, 2) — Hy(s, Z))?H(O’l,RHa,b,v,@(S)
< CeCs6°5 || Hy (7, 2) — Ha(7,2) |01, RH, . .c.6)
in a row with
dL(Z7 E)
P(7)

ds

(199) | -

EZIZOT/ (1 — s) o+ PP QLS8 (H (s, 2) — Ha(5,2) — (04, R,y 000)
LO,T o

S 06055587l2 | ‘Hl (T7 Z) - H2 (T7 Z) | ’(UlyRHa,b,’uaﬁ’é)
forall 1 <p <l —1. We take § > 0 small scaled in order that

CoCh gt CoCs Sp—1
(200) Z 6 B2 + Z ‘Alhp’ 6 sl S
=(lo,l1,l2)eB F(dion) 1<p<ti—1 [(dyy 1y + (I —p))

As a result, we obtain (191).

In conclusion, we set 6 > 0 and A > 0 in a way that (197) and (200) are concurrently fulfilled.
Lemma 17 follows. O
Assume the restriction (170) holds. Take the constants J, A and  as in Lemma 17. The initial
data v;(7,€), 0 < j < Sgp—1 and o} are chosen in a way that (171) occurs. In view of the points
a) and b) of Lemma 17 and according to the classical contractive mapping theorem on complete
metric spaces, we notice that the map B carries a unique fixed point named H(7,z,¢€) (that
relies analytically upon € € D(0,¢)) inside the closed ball B(0,A) C EG 5y RH, ; e.0) for all
€ € D(0, ). In other words, B.(H (T, z,€)) equates H(T, z, €) with || H (T, 2, Nor,RH, 4.0.e8) < A
As a consequence, the expression

v(T, 2,€) = 8;SBH(T, 2,€) 4+ Vg, (T, 2,€)

N

fufills the convolution equation (169) with initial data (172). In the last step, we explain the

reason why v(7, 2, €) shall belong to EG(ULRHG’bMﬁ@. Indeed, if one expands H(T, z,¢€) into a

formal series in 2, H(7,2,€) = 355 Hp(T, €)2% /!, one checks that
10,58 H (7, 2,€) | (01, RE, 4 .06) = Z 1 Hp—55(7: )| (801, R 10,000/ B!
B=Sg
From 74(8) > rp(8 — Si), we notice that

([Hp—55(T: )|[(8,01,RHq .000) < [Hp—55(T: E)ll(8—55,01, R4 1.0.0)
for all B > Sp. Hence,

(201) Haz_SBH(Tv 2, E) | ’(al,RHayb,u,e,(S)
(5~ S6)! g §h %
< Z <5|5 o ||H/3—SB (7, €)||(B—Ss,cf1,RHa,b,m€) (3 — Sg)!
B>Si
< 558 ‘ |H(T7 Z, 6) | ’(O’;[,RHa,byu,e,ﬁ)

Altogether, according to (192) and (201), it follows that v(7, 2,€) belongs to EG (s, rA, .5
with the upper bounds (173). O



60

5 Sectorial analytic solutions in a complex parameter for a sin-
gularly perturbed differential Cauchy problem

Let B be a finite set in N3. For all [ = (lo,l1,l2) € B, we set dj(z,¢€) as a bounded holomorphic
function on a polydisc D(0, p) x D(0, ) for given radii p, ey > 0. Let Sg > 1 be an integer and
let Pg(7) be a polynomial (not identically equal to 0) with complex coefficients which is either
constant or whose complex roots that are asked to lie in the open right halfplane C; and are
imposed to avoid all the closed sets Sdp U D(0,7), for 0 < p < ¢ — 1, where the sectors Sq, and
the disc D(0,r) are introduced just after Definition 4. We aim attention at the next partial
differential Cauchy problem

(202) Pg(et®0,)05y(t, z,0) = > di(z, 001 02y(t, 2, €) + ult, z,€)
!Z(ZQ,ILZQ)EB

for given initial data
(203) (92y)(t,0,€) = ¥;(t,€)

for 0 < j < Sp — 1, where u(t, 2, €) belongs to the sets of solutions to the Cauchy problem (64),
(65) constructed in Section 3.3 and displayed as {ugﬁw }ee[-nn] OF {Ugsdp Yo<p<i—1-

We require the forthcoming constraints on the set B to hold. There exists a real number
b > 1 such that

(204) Sg > b(lo — ll) 4+l , Sg>1l , 1 >1
holds for all [ = (ly,l1,l2) € B and we assume the existence of an integer dj,;, > 1 for which
(205) lO - 2l1 + dlo,ll)

for all [ = (lp,l1,l2) € B. With the help of (205), according to the formula (8.7) p. 3630 from
[19], one can expand the differential operators

(206) oot = thon (o) = thon | (29) + Y Ayt TP (20,
1<p<li—1

for suitable real numbers A;, ,,, with 1 < p <y —1 for {; > 1 (with the convention that the sum
> 1<p<iy—1 18 reduced to 0 when Iy = 1).

In the sequel, we explain how we build up the initial data v;(t,e), 0 < j < Sp—1. We
take for granted that all the constraints disclosed at the beginning of Subsection 3.3 hold. We
depart from a family of functions 7 — v;(7,€), 0 < j < Sg — 1, which are holomorphic on the
disc D(0,7), on each sector Sg,, 0 < p < ¢ — 1 and on the interior of the domain H.J,, defined
at the onset of the Section 3.1 for some integer n > 1 and relies analytically on € over D(O7 €0)-
Furthermore, we require the next additional properties.

a) For all 0 < j < Sg—1, all k € [—n,n], the function 7 — v;(7, €) belongs to the Banach spaces
EG(O,UQ,RH%,,,,C,%,E) and SEG(OaS/vRJck,dk,vk y for all € € D(0,¢), where o > 0 and the tuple
¢/ = (0}, ¢h, %) satisfies ¢ > 0,64 > 0, the real numbers ag, by, cx, di, are defined at the outstart

of Subsection 3.1 and vy, > 0 is a real number suitably chosen in a way that vy, < Re(Ay), where

s€



61

Ay, is a point inside the strip Hy defined through (69) and (70). Besides, for any 0 < j < S —1,
there exists a constant J,; > 0 (independent of €) such that

(207) 15 (7, M0t 8y ) S o o 10570 0y ) S o

for all k € [—n,n], all € € D(0, ).

b) Forall0 < j < Sg—1,all0 <p<:—1, themap 7 — v, (7, €) appertains to the Banach space
EG(O,a;,SdpuD(O,r),e) for all e € D(0, y), where o} > 0. Furthermore, for each 0 < j < Sp—1, we
have a constant .J,; > 0 (independent of €) for which

(208) H'Uj(’i', 6)”(0,0’1,SdpuD(0,r),e) < Jv]-

forall 0 < p<:—1,all e € D(0, e).

1) We construct a first set of initial data

u  du

(209) Uiy, (60 = [ v o)

et’ u

for all k € [—n,n], where the integration path is the same as the one involved in (69). The same
proof as the one presented in Lemma 8 justifies that

Lemma 18 The Laplace transform wjf}cu (t,€) represents a bounded holomorphic function on
(T ND(0,ry)) x 51’3]” for a suitable radius r+ > 0, where T and Ellfun are bounded open sectors
described in Definition 3.

2) For any 0 < j < Sg — 1, we set up a second family of initial data

u . du

(210) Bies, (60 = [ ulwe e

et’ u
Ydp

where the integration path is a halfline with direction 4, described in (97) and (98). Following
similar lines of arguments as in Lemma 9, we observe that

Lemma 19 The Laplace integral d)j,gsd (t,€) defines a bounded holomorphic function on (T N
P

D(0,ry)) x Sgdp for a convenient radius r+ > 0, where T and Esdp are bounded open sectors

displayed in Definition 4.

We are now in position to set forth the second main result of our work.

Theorem 2 Under all the restrictions assumed above till the unfolding of Section 5, provided
that the real number § > 0 is chosen close enough to 0, the following statements arise.

1) 1.1) The Cauchy problem (202) where u(t, z,€) stands for Ugk (t, z, €) with initial data (203)
given by (209) has a bounded holomorphic solution Yek (t,z,€) on a domain (T N D(0,r7)) x

D(0,861) x ‘SII?IJn for some radius r+ > 0 chosen close to 0 and 0 < §; < 1. Besides, Yer  can
be expressed through a special Laplace transform

u  du
(211) Yek (t,z,¢€) :/ vig, (u, z,€) exp(——)—

et’ u



62

where vy g, (T, 2, €) determines a holomorphic function on HJ, x D(0,001) x D(0, €0), continuous
on HJy, x D(0,861) x D(0,¢€p), submitted to the next restrictions. For any choice of o1 > 0 and
a tuple s = (01,<2,53) with

(212) o1>01 , @>¢ , =¢

one obtains constants Cy; >0 and C§ > 0 (independent of €) with

ZLe®)lrl)

(213) v, (7, 2, €)] < Cy, |7] exp( el

for all T € Hy, all z € D(0,661) and

01

(214) v, (7, 2, €)] < CF, [T] exp(7=C(0)[ 7] + <2((b) exp(cz| )

€]
for all T € Jy, all z € D(0,06,), whenever € € D(0,¢), for all k € [—n,n].

1.2) Let k € [—n,n] with k # n. Then, there exist constants My 1, M2 > 0 and M3 > 1
independent of €, such that

My 2 My, 3
(215) |ygl’fﬁ]711 (t,z,€) — yg’;”n(ta z,€)] < My eXP(*WLng)

for allt € TN D, r7), alle € EX, NEFEY £ 0 and all = € D(0,86).
HJ, HJy,

2) 2.1) The Cauchy problem (202) where u(t,z,€) must be replaced by ugs, (t,z,€) along with
P
initial data (203) given by (210) possesses a bounded holomorphic solution ygs, (t,z,€) on a
P

domain (T N D(0,r7)) x D(0,061) x &, for some radius rr > 0 chosen small enough and
0 < &1 < 1. Moreover, Yes, appears to be a Laplace transform
P

u . du
(216) Yes,, (t,z,€) :/ Vs, (U, 2, €) exp(—— ) —

et u
'de
where vs, (7, z,€) represents a holomorphic function on (Sq, U D(0,7)) x D(0,01) x D(0, ),
continuous on (Sq, U D(0,7)) x D(0,801) x D(0, o) that conforms the next demand: For any
choice of o1 > o, one can select a constant Cg, >0 (independent of €) with
D

g1

(217) [vsy, (75 2,6)| < C, || exp(=C(b)[7])

el

for all 7 € S3, UD(0,r), all z € D(0,061), all € € D(0, €p).
2.2) Let 0 < p <1 —2. We can find two constants My 1, My > 0 independent of €, such that

M, 2
_ < _ p7
(218) !yesdpﬂ (t.2,€) = yes, (t,2,€)] < Mpexp( el )

for allt € TN D(0,r7), all € € Esy ., NEsy, # (0 and all z € D(0,56).

3) The next additional bounds hold among the two families described above : There exist con-
stants My, 1, My 2 > 0 (independent of €) with

Mn2

)

(219) ’yglg’} (t, 2, 6) - ySsdD (tv Z, 6)’ < Mnl exp(—

)

el
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forallee &yl NEs, and

Mn,2
)

(220) lyep, (t2,€) — Yes,, (t,z,€)| < My 1exp(— "

foralle € &, NEs, | whenevert €T ND(0,ry) and z € D(0,561).

Proof We consider the convolution equation (169) with the forcing term w(r, z,€) = wg, (7, 2, €)
for given initial data

(221) (0v)(7,0,¢) = vj(r,¢) , 0<j<Sp—1.
We certify that the problem (169) along with (221) carries a unique formal solution

B
(222) v g, (T,2,€) = ng(v', e)@

820

where vg(7, €) are holomorphic on HJ, x D(0,€), continuous on HJ, x D(0,¢). Indeed, if
one develops di(z,€) = > 5 dy5(e)2? /B! as Taylor expansion at z = 0, the formal series (222)
solves (169), (221) if and only if the next recursion formula holds true

S i (0

€ T 1,81 \€

(223) vppos(re)= Y. e > L
imtoimyes T o) PB(T) o S5 Bl

_ d; N -1 l1vﬂ2+l2(57€)§ |
e s LD VD DL

1=(lo,l1,l2)eB1<p<ii—1
ei—lor

. I‘(dlo,ll + (ll - p))PB(T) Z

B1+B2=p

déﬂl(e) / (r — S)dzo,zlJr(ll*p)*lSp
Bl Jr.,

« UVBy+1s (57 6)

B!

for all 8 > 0, where wg(7,€) are the Taylor coefficients of the forcing term wg , (7, 2, €) in the
variable z which solve the recursion (82). Since the initial data v;(7,€), 0 < j < Sg — 1 and all
the functions wg(7,€), 8 > 0, define holomorphic functions on H Jn X D(O, €0), continuous on
HJ, x D(0,€), the recursion (223) is well defined provided that Ly, stands for any path joining
0 and 7 that remains inside the domain H.J,. Furthermore, all v, (7€) for n > Sp represent
holomorphic functions on H.J, x D(0, ), continuous on H.J, x D(0, €).

Bearing in mind all the assumptions set above since the beginning of Section 5, we observe in
particular that the conditions 1)a)b) and 2)a)b) asked in Proposition 22 are satisfied. Therefore,
the next features hold:

1) The formal series vg s, (T, 2, €) belongs to the Banach spaces EG(Ul,RHak,bk.,vk,e,é)? for all € €

D(0,¢0), all k € [-n,n], for any o1 > o and one can sort a constant Cp > 0 for which

d
?Sﬂ!—i-’wﬁ(T, €)

(224) HUHJn (T7 2y 6) H(Ul,RHa 3) < C}){k

Kok U 5€y

for all € € D(0, €p).

2) The formal series vy g, (T, 2, €) appertains to the Banach spaces SEG Ry, 5), whenever

kodp VL €y
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€€ D(O, €0) and k € [—n,n], provided that the tuple ¢ is chosen as in (212). Furthermore, one
can get a constant C'j > 0 with

(225) v, (1,2, )l (¢, R, e5) < CY,

kodEs Vg ©

for all € € D(O, €0). As a consequence of (224), (225), with the help of Proposition 12 and 16,
we deduce that v, (T, 2, €) represents a holomorphic function on H.J, x D(0,881) x D(0, ),
continuous on H.J, x D(0,561) x D(0,¢) for some 0 < & < 1, that withstands the bounds
(213) and (214). By application of a similar proof as in Lemma 8, one can show that for
each k € [—n,n], the function ves,, (t,z,€) defined as (211) represents a bounded holomorphic
function on (7 N D(0,r7)) x D(0,,9) x 51’5””, for some fixed radius 77 > 0 and 0 < 0; < 1.
In addition, following exactly the same reasoning as in Proposition 10 2), one can obtain the
estimates (215).

It remains to show that yer . (t, z,€) actually solves the problem (202), (203). In accordance

with the expansion (206), we are scaled down to prove that

Lemma 20 The next identity

d l
o1y (£29,)h e onth) — dlo n—lgh
(226) t (t°0) yer  (t,z,€) = (u—s)
Hn dlo,ll Pk LOu

ds u . du
X v, (8, z,€)— . exp(—g)—
holds for allt € T N D(0,7r1), € € 5II}J”, all given positive integers dy, 1,01 > 1. We recall that
the path Py is the union of a segment Py 1 joining 0 and a prescribed point Ay, € Hj and of
a horizontal halfline Py o = {Ar — s/s > 0} and here Lo, stands for the union [0,crp(u)] U
[cri (u),u] where crp(u) is chosen in a way that

Lﬂyu - RHakabka'Uk ) CRH(U) € Rakvbkvvk ’ |CRH(U)‘ < ’u|

for alluw € P, C RHg, p, v, (Notice that this last inclusion stems from the assumption vy <
Re(Ayg)).

Proof We first specify an appropriate choice for the points crp(u) that will simplify the com-
putations, namely
1) When u belongs to Pr1 C Rg, b, v,, then we select cry(u) somewhere inside the segment
[0, u], in that case Lo, = [0, u].
2) For u € Py 9, we choose cpp(u) = Ag. Hence Lo, becomes the union of the segments [0, A]
and [Ag, u].

As a result, the right handside of the equality (226) can be written

—(dig 1y 1) d
R~ / (/ (u— s)ot Vs (5,2,6) =) exp(——=) du
P4 [0 u} S et

P(dloll)
+ / / (u — 8) %o ~Lshypy 5 (s,2,€)— ds
P2 \/[0,A] s

d
+ / (u— s)dlo h= 1sllvHJn(s z,€)— 5 exp(—g)du
[Ag ] s €t
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for all t € T N D(0,r7), € € EI’f”n. Now, with the help of the Fubini theorem and a path
deformation argument, we can express each piece of R as some truncated Laplace transforms of
vi g, (T, 2z,€). Namely,

€t

:/ / (u — 5)%0:1 1 exp(—g)du sy (s,z,e)ds
0.4) \/ls.4,] ct ' s

! ds
= Yo exp(— )i | st g, (s, 2, €) exp(——) —
I ( [, p(-2) .5, 2. exp( - 2)

d
/ ( / (u— s)lon sty (s, 2,6) =) exp(— = )du
Pk,l [O,U} S

and

d
/ / (u—s)dloJlflsllvHJn(s,z,e)—s exp(—g)du
Pk),2 [07Ak} & 6t
d
:/ / (u—s)dlo’ll_lexp(—g)du sllvHJn(s,z,e)—S
[0.4x) \/ P,z et §

! s . ds
:/ / (u')dlo’ll_l exp(——)du’ SllvHJn(S,Z,G) exp(——)—
[O,Ak] Pk,Q—S et et’ s

where Py, o — s denotes the path {A; — h — s/h > 0}, together with

d
/ / (U B S)dloyllilsllvHJ (37 2, e)j exp(—g)du
Py \V/[Aku] " s €t
d
:/ / (u — s)%o0—1 exp(—g)du sllvHJn(s,z,e)—S
Pk,2 PS;2 et S

/
= /1;, </R (U,)dloyll—l exp(zbt)du,> sllvHJn(S7 Z,E) eXp(fi)ﬁ
k,2 _

et’ s

where Pso = {s — h/h > 0} and R_ stands for the path {—h/h > 0}, for all t € 7 N D(0,r7),
€ € EI’“{ 7,- On the other hand, a path deformation argument and the very definition of the
Gamma function yields

/

!/
/ (u’)dlo’ll -1 exp(—i)du’ + / (u’)dlo’ll_1 exp(—g)du'
[O,Ak—s] et t

Pyo—s €
/

= / (ul)dlo,h*l exp(—%)du’ _ F(dlo,ll)(et)dlo’ll

€

for all s € [0, Ag], all t € TN D(0,ry), € € SIIEUn. By clustering the above estimates, we can
rewrite the quantity R as

d
(227) R=thohe ™ / g, (5,2 €) exp(—— ) = = 1ot (20) 1 yer (1, z,¢)
P, et” s HJn

forallt € TND(0,ry), € € SI’fUn. Lemma 20 follows. O
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In order to discuss the second point 2) of the statement, let us concentrate on the equation (169)
equipped with the forcing term w(r, z,€) = wg, (7,2, €) for given initial data (221). We must
check that the problem (169), (221) has a unique formal series solution

B

(228) US4, (1,2,€) = Zvﬂ(ﬂ 6)@

820

where vg(7,€) are holomorphic on (Sg, U D(0,r)) x D(0, ), continuous on (Sa, UD(0,7)) x
D(0,€). Indeed, the formal expansion (228) solves (169), (221) if and only if vg(T, €) fulfills the
recursion (223) for all 3 > 0, where wg(7, €) represent the Taylor coefficients of the forcing term
ws, (7,€) which are implemented by the recursion (82). As a consequence, all the coefficients
vn(7,€) for n > Sp define holomorphic functions on (S, U D(0,7)) x D(0, &), continuous on
(Sa, UD(0,7)) x D(0,¢p) in view of the fact that it is already the case for wg(7,€), § > 0 and
the initial conditions (221).

In accordance with the whole set of requirements made since the onset of Section 5, we can
see that the constraints 3)a)b) imposed in Proposition 22 are obeyed. Hence, the formal series
VS, (7, z, €) belongs to the Banach spaces EG(al,SdpuD(o,r),e,a) for all € € D(0, ¢g), for any o > o}
and a constant C’gdp > 0 is given for which

||U5dp (7_7 2, E) | ’(al,SdeD(O,r),e,é) < ngp

for all € € D(O7 €9). As a byproduct, bearing in mind Proposition 5 2), Usy, (1,2,€) defines a
holomorphic function on (Sg, U D(0,7)) x D(0,601) x D(0, €0), continuous on (Sg, U D(0,7)) x
D(0,661) x D(0,¢€), for some 0 < §; < 1 that suffers the bounds (217). By application of the
same arguments as in Lemma 9, one can prove that the function Yes,, (t,z,€) defined as (216)
induces a bounded holomorphic function on (7 N D(0,77)) x D(0,861) x &g, . Moreover, an
analogous reasoning as the one in Proposition 11 2) leads to the bounds (218).

Lastly, we notice that Yes,, (t, z, €) shall solve the problem (202), (203). Bearing in mind the

operators unfoldings (206), this follows from the observation that the next identity holds

e (digi, +11)
(229) 10,14 (tQ@t)llygS (t,z,€) = / / dlo ~1gh
K dlo,h L'vd

ds u ., du
>< E— _ ) —
Vs, (s,2,€) . exp( et) "
for all t € TN D(0,r7), € € €Sdp, all given positive integers d, ;,,l1 > 1. Its proof remains a
straightforward adaptation of the one of Lemma 20 and is therefore omitted.
Ultimately, we are left to testify the estimates (219) and (220). Again, this follows from paths
deformations methods which mirrors the lines of arguments detailed in the proof of Theorem 1
3). O

Since the forcing term u(t, z, €) in the equation (202) in particular solves the Cauchy problem
(64), (65), we deduce that the functions Yer (t,z,¢) and Yes, (t, z, €) themselves solve a Cauchy
n P

problem with holomorphic coefficients in the vicinity of the origin in C3. Namely,
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Corollary 1 Let us introduce the next differential and linear fractional operators

Pi(t, 2,6 M pcther, 0, 02) = P(et?0)05 — > (2, €)mpy 1. (201008,
EZ(ko,kl,kQ)G.A
Palt,2,€,0,,0.) = Pa(et’0)00% — Y dy(z,e)t°0; 0%
1=(lo,l1,l2)eB

where My, ¢ stands for the Moebius operator my, ; (u(t, z,€)) = u( +k26t,z €).
Then, the functions Yer (t,z,€), for k € [-n,n] and ye,, (t €) for 0 < p <.:—1 are

actual holomorphic solutzons “to the next Cauchy problem
Pl (t7 Z, €, {mk,tﬁ}kEpr ata 8Z)P2(t7 Z,€ at: 8Z)y(t, 2, 6) =0

whose coefficients are holomorphic w.r.t z and € near on a neighborhood of the origin and poly-
nomial in t, under the constraints

(&y)(t,0,€) = j(t,e) , 0<j<Sp—1
(0UPs(t, 2,€,04,0,)y)(t,0,€) = pj(t,e) , 0<j<S—1.

6 Parametric Gevrey asymptotic expansions with two levels 1
and 17 for the analytic solutions to the Cauchy problems dis-
played in Sections 3 and 5

6.1 A version of the Ramis-Sibuya Theorem involving two levels

Within this section we state a version of a variant of a classical cohomological criterion in the
framework of Gevrey asymptotics known as the Ramis-Sibuya Theorem (see [8], Theorem XI-
2-3) obtained by the first author in the work [17]. Besides, in view of the recent results on
so-called M—summability for strongly regular sequences M = (My,),>0 obtained by the authors
and J. Sanz, we can provide sufficient conditions which gives rise to the special situation that
involves both 1 and 17 summability.

We depart from the definitions of Gevrey 1 and 1T asymptotics.
Let (F,||.||r) be a Banach space over C. The set F[[e]] stands for the space of all formal series
Zkgo ap€e® with coefficients aj, belonging to F for all integers k > 0. We consider f : F — F be a

holomorphic function on a bounded open sector F centered at 0 and f(e) = > k>0 are® € F[[e]]
be a formal series.

Definition 7 The function f is said to possess the formal series f as 1—Gevrey asymptotic
expansion if, for any closed proper subsector W C F centered at 0, there exist C, M > 0 such
that

=z

(230) 1/(€) = > ane®|ls < CMN(N/e)N|e[Y
0

B
Il

for all N > 1, alle € W. When the aperture of F is slightly larger than m, then according to the
Watson’s lemma (see [2], Proposition 11), f is the unique holomorphic function on F satisfying
(230). The function f is then called the 1—sum off on F and can be reconstructed from f using
Borel/Laplace transforms as detailed in Chapter 3 of [1].
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Definition 8 We say that f has the formal series f as 17— Gevrey asymptotic expansion if, for
any closed proper subsector W C F centered at 0, there exist C, M > 0 such that

N-1
(231) 1£(e) = > are®[[x < CMN(N/LogN)" e[

k=0

for all N > 2, alle € W. In particular, the formal series f is itself of 17— Gevrey type, meaning
that there exist two constants C', M’ > 0 such that |lag||[r < C'M'*(k/Logk)* for all k > 2.
Provided that the aperture of F is slightly larger than w, Theorem 3.1 in [13] ensures the unicity
of the analytic function f fulfilling the estimates (231) on F (see the next remark underneath).
In that case, f is named M—summable on F for the strqngly regular sequence M = (My,)n>0

where M, = (m)" and f denotes the M—sum of f on F. For brevity of notation, we

will call it also 1T —sum. As explained in [13], the 1T —sum f can be recovered from the formal
eTpansions f with the help of an analog of a Borel/Laplace procedure. It is worthwhile noting
that this notion of 1T —summability has to be distinguished from the notion of 17 —summability
introduced in the papers of G. Immink whose sums are defined on domains which are not sectors,

see [9],[10],[11].

Remark : The strongly regular sequence M stated above is equivalent, in the sense that
the functional spaces associated to them coincide, to My g = (n!“]]) _, log?(e + m))n>0, for
a =1, = —1. In this case, one has w(M) = 1, meaning that unicity of the sum f in (231)
is guaranteed, for a prescribed asymptotic expansion, when departing from a sector of opening
larger than 7. The criteria leans on the divergence of a series of positive real numbers, see [12].

We consider the set of sectors £ = {€};; }re[—nn] U {€s,, to<p<i—1 constructed in Section
3.3 that fufills the constraints 3),4) and 5). The set £ forms a so-called good covering in C* as
given in Definition 3 of [17].

We rephrase the version of the Ramis-Sibuya which entails both 1—Gevrey and 1T —Gevrey
asymptotics displayed in [17] for the specific covering £ with additional informations concerning
1 and 17 summability.

Proposition 23 Let (F,||.||[r) be a Banach space over C. For allk € [-n,n] and 0 <p <.—1,
let Gy be a holomorphic function from £}, into (F,||.||lr) and G, be a holomorphic function
Jrom &g, into (F, ||.|[r).

We consider a cocycle A(e) defined as the set of functions A, = Gpy1(€) —Gple) for 0 < p < 1—2
when € € Egde N Egdp, Ag(e) = Gr(e) — Gryi(e) for —n < k < n—1 and € € Sfun N Eflf]i

9

together with A_, o(€) = Go(e) — G_n(€) on €84y NExY, and A1 p(€) = Gr(e) — Gi—1(€) on
5}}Jn N 55%71 .

We make the next assumptions:

1) The functions Gy, and ép are bounded as € tends to 0 on their domains of definition.

2) For all0 <p<.:—2, Ap(e) and both A_;, o(€), A,—1n(€) are exponentially flat. This means
that one can sort constants Iv(p, Mp >0 and K_p 0, M_p0 >0 with K,_1,, M,—1,, > 0 such that

v

1% ~ M
(232) [|Ap(0)le < Kpexp(~T2) forc€&s,  NEs, .

lef
A <K Mo En NE
A —no(e)llr < K_poexp(————) foree g, N Sdy

el

HAL—LTL(G) ‘ |IF < KL—l,n exp(—

—1n

el

) foree &y, NEs, .
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3) For —n < k <n — 1, Ag(e) are super-exponentially flat on Ellfﬁ]i N SI]fUn. This signifies that
one can pick up constants Ky, M > 0 and Ly > 1 such that

M, L
(233) 1AK(e)][r < Ky exp(—ﬁLogﬁ)

for all e € 5[]3—5711 N EIIEIJn'
Then, there exist a convergent power series a(e) € F{e} near ¢ = 0 and two formal series
G(€), G*(€) € F[[e]] with the property that Gi(€) and Gp(€) admit the next decomposition

(234) Grle) = a(e) + Gi(e) + Gi(e) , Gyle) = ale) + Gy(e) + G(e)

for k € [-n,n], 0 < p < .- 1, where Gi(€) (resp. G2(€)) are holomorphic on Ellfun and have
G(€) (resp. G*(€)) as 1—Gevrey (resp. 17— Geuvrey) asymptotic expansion on EI’}JH and where
Cv?;? (resp. (V;I%(e)) are holomorphic on s, ~and possesses G(€) (resp. G*(€)) as 1—Geuvrey (resp.
17— Gevrey) asymptotic expansion on Es,,- Besides, the functions G2, (€),G2(¢) and Gu,%(e) for
0 < h <t—1 turn out to be the restriction of a common holomorphic function denoted G*(¢)
on the large sector Egs = E'y U UZ_:I() Es,, U Expy, which determines the 1t —sum of G2(¢) on

Ens. Moreover, G},(e) represents the 1—sum of G'(€) on &s,, whenever the aperture of &g, is
strictly larger than .

Proof Since the notations used here are rather different from the ones within the result enounced
in [17] and in order to explain the part of the proposition concerning 1 and 1+ summability which
is not mentioned in our previous work [17], we have decided to present a sketch of proof of the
statement.

We consider a first cocycle Al(e) defined by the next family of functions

(235) Al(e) =Ap(e) for 0<p<i—2on €4y N Esyy
Al_n’o(e) =A_p0(e) on Esdo N Eﬁf}n, A}_Ln(e) =A,_1,(e) on Exy, N ngL_N

Ai(e) =0 for -n <k <n—1on 6'1]}';711 NEL
and a second cocycle A%(¢) described by the forthcoming set of functions

(236) Ag(e) =0 for0<p<:—2on Egdp+1 NEs,,,
Az—n,o(f) =0 on &, NELY A% =0, on Efr, NEsy s

t—1n

Ai(€) = Ap(e) for —n <k <n—1on Eflf]i N EZJn'
The next lemma restate Lemma 14 from [17].
Lemma 21 For all {C € [-n,n], all 0 < p <1 —1, there exist bounded holomorphic functions
Gj : EZJH — C and G}D : ESdp — C that satisfy the property
(237) AY(e) = Gloy(e) — Gle) for0<p<i—2 ons,  NEs,,
AL, o(0) = Gole) = GLy(€) on Es, NELG . ALy u(€) = Ghle) = Gl_y(e) on &y NEs,

AL(€) = Gi(€) — Ghypq(e) for —n<k<n—1on Eff;i ﬂé}’fUn.
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Furthermore, one can get coefficients o}, € F, for m > 0 such that
1) For allk € [—n,n], any closed proper subsector W C SI"}JH, centered at 0, there exist constants
K, My, > 0 with

N-1
N
(238) 1GH(©) = > eme™llr < Kk(Mk)N(;)NIEIN
m=0

foralle e W, all N > 1.
2) For 0 < p <1—1, any closed proper subsector W C Esdp, centered at 0, one can grab constants
Ky, M, > 0 with

N-1
3 . N
(239) 1GH(€) = D pe™|lr < Kp(Mp)N(;)N!dN
m=0

foralle e W, all N > 1.
Likewise, the next lemma recapitulates Lemma 15 from [17].

Lemma 22 For all k € [—n,n], all 0 < p <1 —1, one can find bounded holomorphic functions
Gi : Ef”n — C and GIQ, : Egdp — C that obey to the next demand

(240) AZ(e) = G2,1(€) — GE(e) for0<p<i:—2on Esa N E4ys
A2, () = Gi(e) = G2 (e) on Es, NELG . AL 1,(e) = Grle) = Gii(e) on &y NEs, |,

A7(€) = Gi(e) — Giypie) for —mn<k<n-—1on S}CIT]}L ﬁé’[lf”n.

Moreover, one can obtain coefficients p2, € F, for m > 0 such that
1) For all k € [—n,n], any closed proper subsector W C Eﬁun, centered at 0, one can find
constants Ky, My > 0 with

N-—1
N
241 2 _ 2 m < Ki(M N/ *Y NN N
2a) 1610 = 3 el < KoM e i

foralle e W, all N > 2.
2) For 0 < p <1t —1, any closed proper subsector W C Egdp, centered at 0, one can grasp
constants K,, M, > 0 with

=z

v N
2 2 m N N N
(242) 1Go(e) = D eme™llr < Kp(Mp) (LogN) €]

3
]
o

foralle e W, all N > 2.

We introduce the bounded holomorphic functions
ax(e) = Gr(e) — Gie) — Gile) for e € &fy; . dp(e) = Gple) — Gj(e) — Gi(e) for e € Es, .
for k € [-n,n] and 0 < p < — 1. By construction, we notice that

G(€) — Gile) = Grya(e) + Ghyy(€) + Giyy(€)

ak(€) — apt1(€) = Gile) —
= Gi(€) — Grar(e) — Ap(e) — Af(e) = Grle) — Grra(e) — Ax(e) =0
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for -n<k<n-—1on SI"_}T]}L N 6'['?[]” together with

v v ¥ 92

dp+1(€) = ap(e) = Gpra(e) = Gpaile) = Ay(e) = Ad(e) = Gpra(e) = Gpar(e) — Ay(e) = 0

for0<p<:—2on ngp+1 N Egdp. Furthermore,

Go(€) — a_n(€) = Gole) — Gi(e) — G2(e) — G_n(e) + G, (e) + G2, (¢)
= Goe) — G_n(e) — AL, o(e) — A%, o(€) = Go(€) — G_n(€) — A_pp(e) =0

for e € &y N&g, and

an(€) = Gu-1(6) = Gnle) — GL(€) — G2(6) — Gmale) + GLy () + G2y (¢)
= Gn(e) — éb—l(e) - ALl—l,n(E) - A?—l,n(e) = Gy(e) — éL—l(e) —A_10(€) =0

whenever € € £, N gsdhf

As a result, the functions ay(e) on & J, and ay(€) on &g, are the restriction of a com-
mon holomorphic bounded function a(e) on D(0,¢€p) \ {0}. The origin is therefore a removable
singularity and a(e) defines a convergent power series on D(0, €p).

As a consequence, one can write

Gi(e) = ale) + Gi(e) + Gi(e) on &f; . Gple) = ale) + Gple) + Ga(e) on Es,

for all k € [-n,n], 0 < p < ¢ — 1. Moreover, GL(e) (resp. G7(¢)) have G'(e) = > omz0 Pime™”
(resp. G2%(e) = Ym0 @2,e™) as 1—Gevrey (resp. 1T —Gevrey) asymptotic expansion on &},
and é}, (resp. ég(e)) possesses G () (resp. G2(¢)) as 1—Gevrey (resp. 1T —Gevrey) asymptotic
expansion on g iy

By the very definition of the cocycles A'(e) and A?(e) given by (235) and (236), in accordance
with the constraints (237) and (240), we get in particular that

G2(e) =G? (e) on Es, [ NER, . G2 (e) = G2(e) on Es4y NERT

é§+1(e) = ég(e) on Egdp+1 N Esdp

for all 0 < p < :—2. For that reason, we see that G2, (¢),G? (¢) and Cvig(e) are the restrictions of a
common holomorphic function denoted G2(¢) on the large sector Exg = Exly U Uﬁl_:lo s, YEG S,
with aperture larger than 7. In addition, from the expansions (241) and (242) we deduce that
G2(¢) defines the 1t —sum of G2(¢) on Exg. Finally, when the aperture of Es,, is strictly larger

than 7, in view of the expansion (247) it turns out that G’}D! defines the 1—sum of Gl(e) on 5Sdp-
O

6.2 Existence of multiscale parametric Gevrey asymptotic expansions for the
analytic solutions to the problems (64), (65) and (202), (203)

We are now ready to enounce the third main result of this work, which reveals a fine structure of
two Gevrey orders 1 and 17 for the solutions Ugk and ugg, (resp. Yer and yeg ) regarding
n P n P

the parameter e.
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Theorem 3 Let us assume that all the requirements asked in Theorem 1 (resp. Theorem 2) are
fulfilled. Then, there exist

- An holomorphic function a(t, z,€) (resp. b(t, z,€)) on the domain (T N D(0,r7)) x D(0,d1) X
D(0,€y) for some 0 < € < €,

- Two formal series

I(t,z,€) Zuktze eFlle] , j=1,2
k>0

(resp.
I(t, 2, €) Zyktze eFlle]] , j=1,2)

k>0
whose coefficients ui(t,z) (resp. yi(t,z)) belong to the Banach space F = O((T N D(0,r7)) X
D(0,661)) of bounded holomorphic functions on the set (T N D(0,r7)) x D(0,601) endowed with
the supremum norm,
which are submitted to the next features:
A) For each k € [—n,n], the function ugh (t,z,€) (resp. Yel,, (t,z,€)) admits a decomposition

Ugh (t,z,€) = a(t,z,€) + ué,;” (t,z,€) + ng (t,z,€)

HJpn

(resp.
Vel (t,z,€) =b(t,z,€) + yé,;” (t,z,€) + ygl,:” (t,z,€))

1

where ug, (. z2,€) (resp. yék (t,z,€)) is bounded holomorphic on (T N D(0,771)) x D(0,d1) x
HJn HJn

gIan and possesses U'(t,z,€) (resp. §'(t,z,€)) as 1—Gevrey asymptotic expansion on Sllfun,
meaning that for any closed subsector YW C SllfUn, there exist two constants C, M > 0 with

N-1

N
sup |u1;c (t,z,€) up(t, 2)e*| < CMN(—=)N e/
teTND(0,r7),z€D(0,661) n k=0 ‘
(resp.
N-1 N
teTND(0,r7),2€D(0,061) HJ" k=0 ‘

forall N > 1, alle e W and u?k (t,z,€) (resp. ygk (t,z,€)) is bounded holomorphic on (T N
Hip HJ

n

D(0,77)) x D(0,661) x Ef;  and carries 42(t, z,€) (resp. §3(t,z,€)) as 17— Gevrey asymptotic
erpansion on Ellfun, in other words, for any closed subsector W C SI’fUn, one can get two constants
C,M > 0 with

N-1
2 k N NN
sup g (tz,0) = Y ui(t,2)e| < OMMN (——)"]¢|
teTND(0,r7),2€D(0,551) Ettm o LogN
(resp.
N-1
2 k N N| N
sup s (tz,6) = >yt 2)e’| < CMN (=—=)"|e|V)
teTAD(0,r7),2€D(0,861)  CHn — LogN

forall N > 2, alle € W.
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B) For each 0 < p < ¢ — 1, the function ugs, (t,z,€) (resp. Yes, (t,z,€)) can be split into
P P
three pieces
ugs, (t,z,€) = a(t,z,€) + uésdp (t,z,€) + u?sdp (t,z,¢€)

(resp.
Yes, (t,2,€) =b(t,2,€) +ygg (t,2,€) +y, (t,2,€))
P dp dp
where u};sd (t,z,€) (resp. yésd (t,2,€)) is bounded holomorphic on (T N D(0,r7)) x D(0,d61) x
P P
Es
(resp. ygsd (t, 2,€)) is bounded holomorphic on (T N D(0,r7)) x D(0,661) x Es, ~and possesses
D

4y and has al(t, z, €) (resp. §L(t, 2, €)) as 1— Gevrey asymptotic expansion on Egdp and u?gsdp (t,z,€)

02(t, z,€) (resp. §%(t, z,¢€)) as 17 —Gevrey asymptotic expansion on Sgd .
Furthermore, the functions ug n (t,z,€) (resp. y‘g n (t z,€)), ugn (t,z,e) (resp. yggj (t,z,€))
and all ug (t,z,€) (resp. yg (t z,€)) for 0 < h < t— 1, are the restrictions of a common
dp,

holomorphic function u?(t, z e) (Tesp y2(t, z,€)) defined on the large domain (T N D(0,77)) x
D(0,661) x Ens, where Eys = E') U;LZIO 8Sdh U &Ly which represents the 1T —sum of 42(t, 2, €)
(resp. §%(t,z,€)) on Egs w.r.t €. Beside, ués (t,z,€) (resp. yés (t,z,€)) is the 1—sum of
dp dp

al(t,z,€) (resp. §1(t,z,€)) on each Es,, w.r.t € whenever its aperture is strictly larger than .

Proof
For all k € [—n,n], we set forth a holomorphic function Gy, described as Gi(€) := (t,2) —
uek, (t,z,€) (resp. Gi(e) = (t,2) — Yel,, (t,z,€)) which defines, by construction, a bounded

and holomorphic function from SI]fUn into the Banach space F = O((7T N D(0,r7)) x D(0,3d1)
equipped with the supremum norm. For all 0 < p < ¢ — 1, we set up a holomorphic func-
tion G, given by G,(e) := (t,2) — ugs, (t,z,€) (resp. Gp(e) := (t,2) — Yes,, (t,z,€)) which
yields a bounded holomorphic function from Eg i into F. We deduce that the assumption 1) of
Proposition 23 is satisfied.

Furthermore, according to the bounds (105) together with (112) and (113) concerning the
functions ugs, ,0<p<:—2and Ugpn 5 Ugy, s Ues, (resp. to the bounds (218) in a row with

(219) and (220) dealing with the functions Yes,, ,0<p<.:—2and Yegn + Yehy, Yes, | ), we

observe that the bounds (232) are fulfilled for the functions A, (€) = Gpy1(e ) Gp(e),0<p S 1—2
and A_,o(e) = Go(€) — G_n(€), A,_1.(€) = Gnle) — G,_1(€). As a result, Assumption 2) of
Proposition 23 holds.

At last, keeping in mind the estimates (79) for the maps gk k € [-n,n], k # n (resp.
the estimates (215) for the maps Yek , k€ [-n,n], k # n), we conclude that the upper

bounds (233) are justified for the functlons Ak(€) = Gi(e) — Ggy1(e), —n < k < n — 1. Hence,
Assumption 3) of Proposition 23 holds true.

Accordingly, the proposition 23 gives rise to the existence of
- A convergent series (t,z) — a(t,z,€) := a(e) (resp. (t,z) — b(t,z,€) := a(e)) belonging to
Fie,
- Two formal series (t,2) — @7 (t, z,€) := GI(e) (vesp. (t,2) — §(t,z,€) := GI(e)) in F[e]],
J=12,

- F—valued holomorphic functions (¢, z) ujg,;” (t,z,€) := Gp.(€) (vesp. (t,z) ygku (t,z,€) :=

G{C(e)) on E}CIJ”, for all k € [-n,n], 7 =1,2,
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valued holomorphic functions (¢, z) u]és (t, z,€) := Gp(e) (resp. (t,z) ygs (t,z,€) =
dp dp

G (€)) on Es,, forall 0<p<i—1,j=1,2,

that accomplish the statement of Theorem 3. O
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