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Abstract

We study a singularly perturbed PDE with quadratic nonlinearity depending on a complex perturbation
parameter ε. The problem involves an irregular singularity in time, as in a previous work of the author
and A. Lastra [20], but possess also, as a new feature, a turning point at the origin in C. We construct
a family of sectorial meromorphic solutions obtained as a small perturbation in ε of a slow curve of the
equation in some time scale. We show that the non singular part of these solutions share a common formal
power series (that generally diverge) in ε as Gevrey asymptotic expansion of some order depending on
data both arising from the turning point and from the irregular singular point of the main problem.
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1 Introduction

In this work, we consider a family of nonlinear singularly perturbed equations of the form

(1) Q(∂z)(P1(t, ε)u(t, z, ε) + P2(t, ε)u2(t, z, ε)) = f(t, z, ε) + P3(t, ε, ∂t, ∂z)u(t, z, ε)

where Q,P1, P2, P3 are polynomials with complex coefficients and f is an analytic function in
the vicinity of the origin w.r.t t and ε in C and holomorphic w.r.t z on an horizontal strip in C
of the form Hβ = {z ∈ C/|Im(z)| < β} for some β > 0.

Here we consider the case when P1(0, ε) vanishes identically near 0. The point t = 0 is know
to be called a turning point in that situation, see [27] and [9] for a more detailed description of
this terminology in the linear and nonlinear settings. Let us recall the definition of the valuation
valt(f) of an analytic function near t = 0 as the smallest integer k ≥ 0 with the factorization
f(t) = tkf̃(t) for an analytic function f̃ near t = 0 with f̃(0) 6= 0. The most interesting
case examined in this work is when the valuation valt(P1) of P1(t, ε) w.r.t t is larger than the
valuation valt(P2) or valt(f(t, z, ε)) since the problem cannot be reduced to the case P1(0, 0) 6= 0
by dividing the equation (1) by a suitable power of t and ε, see Remark 4.



2

In our previous study [20], we already have considered a similar problem which corresponds
to the situation when P1(0, 0) 6= 0 for our equation (1). Namely, we focused on the following
problem

(2) Q(∂z)∂ty(t, z, ε) = (Q1(∂z)y(t, z, ε))(Q2(∂z)y(t, z, ε)) +H(t, ε, ∂t, ∂z)y(t, z, ε) + f(t, z, ε)

for given vanishing initial data y(0, z, ε) ≡ 0, where Q,Q1, Q2, H are polynomials with complex
coefficients and f(t, z, ε) is a forcing term constructed as above. Under appropriate assumptions
on the shape of (2), we established the existence of a family of actual bounded holomorphic
solutions yp(t, z, ε), 0 ≤ p ≤ ς − 1, for some integer ς ≥ 2, defined on domains T ×Hβ × Ep, for
some fixed bounded sector T with vertex at 0 and E = {Ep}0≤p≤ς−1 a set of bounded sectors
whose union covers a full neighborhood of 0 in C∗. These solutions are obtained by means
of Laplace and inverse Fourier transforms. On each sector Ep, they share w.r.t ε a common
asymptotic expansion ŷ(t, z, ε) =

∑
n≥0 yn(t, z)εn which defines a formal series with bounded

holomorphic coefficients on T × Hβ. Moreover, this asymptotic expansion is shown to be of
Gevrey order (at most) 1/k that appears in the highest order term of the operator H which is
of irregular type in the sense of [23] outlined as ε(δD−1)kt(δD−1)(k+1)∂δDt RD(∂z), for some integer
δD ≥ 2 and a polynomial RD with complex coefficients. Conjointly, since the aperture of the
sectors Ep can be chosen slightly larger than π/k, the functions ε 7→ yp(t, z, ε) can be viewed as
k−sums of the formal series ŷ as defined in [2].

In this work, our goal is to achieve a similar statement namely the existence of sectorial
holomorphic solutions and asymptotic expansions as ε tends to 0. However, the main contrast
with the problem (2) is that, due to the presence of the turning point, our solutions are no longer
bounded in the vicinity of the origin, being meromorphic in both time variable t and parameter
ε. Namely, we build a set of actual meromorphic solutions udp(t, z, ε) to the problem (1) of the
form

udp(t, z, ε) = εβ
(
U0(εαt) + (εαt)γvdp(t, z, ε)

)
where α > 1, β are some rational numbers, γ is an integer and U0(T ) is a non identically vanishing
root of a second order algebraic equation with polynomial coefficients related to the polynomials
P1, P2, see (37) and where vdp(t, z, ε) is a bounded holomorphic function on products T ×Hβ×Ep
similar to the ones mentioned above, which can be expressed as a Laplace transform of some
order κ ≥ 1 and Fourier inverse transform

vdp(t, z, ε) =
κ

(2π)1/2

∫ +∞

−∞

∫
Ldp

ω
dp
κ (u,m, ε) exp(−(

u

εχ+αt
)κ)eizm

du

u
dm

along some halfline Ldp = R+e
idp , for some positive rational number χ > 0, where ω

dp
κ (u,m, ε)

represents a function with at most exponential growth of order κ on a sector containing Ldp w.r.t
u, with exponential decay w.r.t m on R and with analytic dependence on ε near 0 (see Theorem
1). Furthermore, we show that these functions vdp(t, z, ε) own w.r.t ε a common asymptotic
expansion v̂(t, z, ε) =

∑
n≥0 vn(t, z)εn which represents a formal series with bounded holomorphic

coefficients on T × Hβ. We specify also the nature of this asymptotic expansion which turns
out to be of Gevrey order (at most) 1

(χ+α)κ . Besides, since the aperture of the sectors Ep may

be selected slightly larger than π
(χ+α)κ , the functions vdp can be identified as (χ + α)κ−sums

of the formal series v̂ (Theorem 2). By construction, the integer κ shows up in the highest
order term of the operator P3 which is of irregular type of the form ε∆D tδD(κ+1)+k0∂δDt RD(∂z),
with k0 = valt(P1), for some integers ∆D ≥ 0, δD ≥ 2 and a polynomial RD with complex
coefficients. The rational number χ is built with the help of the integers ∆D, δD, k0, κ and
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the rational numbers α, β, see (52). According to the fact that α, β are mainly related to
constraints assumed on the polynomials P1 and P2 (see (34), (35)), we observe that the Gevrey
order 1

(χ+α)κ of the asymptotic expansion involves informations both coming from the highest
irregular term and from the two polynomials P1, P2 that shape the turning point at t = 0,
whereas in our previous contribution [20], the Gevrey order was exclusively stemming from the
irregular singularity at t = 0.

The kind of equations with quadratic nonlinearity we investigate in this work are strongly
related to singularly perturbed ODEs which are nonsingular at the origin of the form εσdy/dt =
F (t, y, a, ε) for some analytic functions F , small complex parameter ε and a complex addi-
tional parameter a, described in the seminal joint paper by M. Canalis-Durand, J.P. Ramis, R.
Schäfke, Y. Sibuya, see [4], where they study asymptotic properties of actual overstable solu-
tions near a slow curve φ0(t) (meaning that F (t, φ0(t), a, 0) ≡ 0) in the case when the Jacobian
∂yF (t, φ0(t), a, 0) is not invertible at t = 0. The main notable difference is that we assume the
origin to be at the same time a turning point and an irregular singularity. More precisely, with
the rescaling map (t, ε) 7→ (T = εt, ε) the transformed equation (32) possess a rational slow curve
U0(T ) and T = 0 remains a turning point and an irregular singularity for this new equation.

The construction of the distinguished solution performed in Section 4 and the parametric
Borel/Laplace summable character of these solutions shown in Section 7 are also intimately
linked to recent developments of exact WKB analysis of formal and analytic solutions to second
order linear ODEs of Schrödinger type. Namely, let

(3) ε2ψ′′(t, ε) = Q(t)ψ(t, ε)

be a singularly perturbed ODE where ε is a small complex parameter andQ(t) is some polynomial
with complex coefficients. WKB solutions of (3) are known as special solutions that are described
as an exponential ψ̂(t, ε) = exp(

∫ t
t0
Ŝ(s, ε)ds) where the expression Ŝ(t, ε) satisfies a so-called

Riccati equation
ε2Ŝ′(t, ε) + ε2Ŝ2(t, ε) = Q(t).

This last equation possess formal power series solutions Ŝ(t, ε) = S−1(t)/ε+
∑

n≥0 Sn(t)εn where

S−1(t) satisfies the quadratic equation S2
−1(t) = Q(t). Once S−1(t) = ±

√
Q(t) is fixed, we get

two formal solutions Ŝ±(t, ε) = S−1(t)/ε+ T̂±(t, ε), where T̂±(t, ε) ∈ C[[ε]] for any t ∈ U = {t ∈
C/Q(t) 6= 0}. Notice that T̂±(t, ε) solves the first order Riccati equation

εT̂ ′±(t, ε) + 2S−1(t)T̂±(t, ε) + εT̂ 2
±(t, ε) + S′−1(t) = 0

with turning points at the roots of Q(t). Our main PDE (1) resembles this last one provided
that S−1(t) is a polynomial and with the significant distinction that our equation only involves
differential operators with irregular singularity at t = 0. An essential feature of the theory is
that the formal series T̂±(t, ε) are 1−summable in suitable directions d ∈ R w.r.t ε (that are
related to the function

∫ t
t0
S−1(s)ds) for any fixed t ∈ U). Different proofs of this fact can be

found in [25], [10], [8], [5]. Our second main statement Theorem 2 can be considered as a similar
contribution for some higher order PDEs of this latter result. Furthermore, in our study we are
also able to described the behaviour of our specific solutions near (t, ε) = (0, 0).

For more recent and advanced works related to WKB analysis and local/global studies of solu-
tions to linear ODEs near turning points, we refer to contributions related to the 1D Schrödinger
equation with simple poles [18], with merging pairs of simple poles and turning points [15], with
merging triplet of poles and turning points [16], [17] and for analytic continuation properties
of the Borel transform (resurgence) of WKB expansions in the problem of confluence of two
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simple turning points we quote [6]. Concerning the structure of singular formal solutions to
singularly perturbed linear systems of ODEs with turning points we point out [24] solving an
old question of W. Wasow. We mention also preeminent studies on WKB analysis for higher
order differential equations which reveal new Stokes phenomena giving rise to so-called virtual
turning points, [12], [1].

In the framework of linear PDEs, normal forms for completely integrable systems near a
degenerate point where two turning points coalesce have been obtained in [11], which is a first
step toward the so-called Dubrovin conjecture which concerns the question of universal behaviour
of generic solutions near gradient catastrophe of singularly Hamiltonian perturbations of first
order hyperbolic equations, see [7]. We mention also that sectorial analytic transformations to
normal forms have been obtained for systems of singularly perturbed ODEs near a turning point
with multiplicity using the recent approach of composite asymptotic expansions developped in
[9], see [14].

The paper is organized as follows.

In Section 2, we recall the definition introduced in the work [20] of some weighted Banach spaces
of continuous functions with exponential growth on unbounded sectors in C and with exponential
decay on R. We analyze the continuity of specific multiplication and linear/nonlinear convolution
operators acting on these spaces.
In Section 3, we remind the reader basic statements concerning mk−Borel-Laplace transforms,
a version of the classical Borel-Laplace maps already used in previous works [19], [20], [21] and
Fourier transforms acting on exponentially flat functions.
In Section 4, we display our main problems and explain the leading strategy in order to solve
them. It consists in four operations. In a first step, we restrict our inquiry for the sets of
solutions to time rescaled function spaces, see (31). Then, we consider candidates for solutions
to the resulting auxiliary problem (32) that are small perturbations of a so-called slow curve
which solves a second order algebraic equation and which may be singular at the origin in C.
In a third step, we search again for time rescaled functions solutions for the associated problem
(50) solved by the small perturbation of the slow curve, see (51). In the last step, we write down
the convolution problem (58) solved by a suitable mκ−Borel transform of a formal solution to
the attached problem (53).
In Section 5, we solve the main convolution problem (58) within the Banach spaces described
in Section 2 using some fixed point theorem argument.
In Section 6, we provide a set of actual meromorphic solutions to our initial equation (29) by
executing backwards the operations described in Section 4. In particular, we show that our
singular functions actually solve the problem (120) which is a factorized part of equation (29)
with a more restrictive forcing term. Furthermore, the difference of any two neighboring solutions
tends to 0 as ε tends to 0 faster than a function with exponential decay of order (χ+ α)κ.
In Section 7, we show the existence of a common asymptotic expansion of Gevrey order 1

(χ+α)κ

for the non singular part of these solutions of (29), (120) based on the flatness estimates obtained
in Section 6 using a theorem by Ramis and Sibuya.

2 Banach spaces with exponential growth and exponential de-
cay

We denote D(0, ρ) the open disc centered at 0 with radius ρ > 0 in C and by D̄(0, ρ) its closure.
Let Sd be an open unbounded sector in direction d ∈ R and E be an open sector with finite
radius rE , both centered at 0 in C. By convention, these sectors do not contain the origin in C.
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We first give definitions of Banach spaces which already appear in our previous work [20].

Definition 1 Let β > 0 and µ > 1 be real numbers. We denote E(β,µ) the vector space of
functions h : R→ C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) endowed with the norm ||.||(β,µ) becomes a Banach space.

As a direct consequence of Proposition 5 from [20], we notice that

Proposition 1 The Banach space (E(β,µ), ||.||(β,µ)) is a Banach algebra for the convolution
product

(f ? g)(m) =

∫ +∞

−∞
f(m−m1)g(m1)dm1

Namely, there exists a constant C0 > 0 (depending on µ) such that

||(f ? g)(m)||(β,µ) ≤ C0||f(m)||(β,µ)||g(m)||(β,µ)

for all f, g ∈ E(β,µ).

Definition 2 Let ν, ρ > 0 and β > 0, µ > 1 be real numbers. Let κ ≥ 1 and χ, α ≥ 0 be integers.
Let ε ∈ E. We denote F d(ν,β,µ,χ,α,κ,ε) the vector space of continuous functions (τ,m) 7→ h(τ,m)

on (D̄(0, ρ) ∪ Sd)× R, which are holomorphic w.r.t τ on D(0, ρ) ∪ Sd and such that

||h(τ,m)||(ν,β,µ,χ,α,κ,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ exp(β|m|)
1 + | τ

εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|h(τ,m)|

is finite. One can check that the normed space (F d(ν,β,µ,χ,α,κ,ε), ||.||(ν,β,µ,χ,α,κ,ε)) is a Banach space.

Throughout the whole section, we keep the notations of Definitions 1 and 2.

In the next lemma, we check that some parameter depending functions with polynomial growth
w.r.t the variable τ and exponential decay w.r.t the variable m, that will appear later on in our
study (Section 5), belong to the Banach spaces described above.

Lemma 1 Let γ1 ≥ 0, γ2 ≥ 1 be integers. Let R̃(X) be a polynomial that belongs to C[X] such
that R̃(im) 6= 0 for all m ∈ R. We take a function B̃(m) located in E(β,µ) and we consider a
continuous function aγ1,κ(τ,m) on (D̄(0, ρ)∪ Sd)×R, holomorphic w.r.t τ on D(0, ρ)∪ Sd such
that

|aγ1,κ(τ,m)| ≤ 1

(1 + |τ |κ)γ1 |R̃(im)|
for all τ ∈ D̄(0, ρ) ∪ Sd, all m ∈ R.

Then, the function ε−χγ2τγ2B̃(m)aγ1,κ(τ,m) belongs to F d(ν,β,µ,χ,α,κ,ε). Moreover, there exists

a constant C1 > 0 (depending on κ and γ2) such that

(4) ||ε−χγ2τγ2B̃(m)aγ1,κ(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤ C1

||B̃(m)||(β,µ)

infm∈R|R̃(im)|
|ε|γ2α

for all ε ∈ E.
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Proof By definition of the norm and bearing in mind the constraint on the polynomial R̃(X),
we can write

||ε−χγ2τγ2B̃(m)aγ1,κ(τ,m)||(ν,β,µ,χ,α,κ,ε) = sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ exp(β|m|)|B̃(m)|

×
1 + | τ

εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|ε|−χγ2 | τ

εχ+α
|γ2 |ε|γ2(χ+α) 1

(1 + | τ
εχ+α
|κ|ε|κ(χ+α))γ1 |R̃(im)|

≤
||B̃(m)||(β,µ)

infm∈R|R̃(im)|
|ε|γ2α sup

x≥0

1 + x2κ

x
xγ2

e−νx
κ

(1 + xκ|ε|κ(χ+α))γ1

≤
||B̃(m)||(β,µ)

infm∈R|R̃(im)|
|ε|γ2α sup

x≥0

1 + x2κ

x
xγ2e−νx

κ

which yields the lemma since an exponential grows faster than any polynomial. 2

The next proposition provides norms estimates for some linear convolution operators acting on
the Banach spaces introduced above. These bounds are more accurate than the one supplied in
Proposition 2 from [20]. These new estimates will be essential in Section 5 in order to solve the
problem (58). The improvements are due to the use of thorough upper bounds estimates of a
generalized Mittag-Leffler function described in the proofs of Propositions 1 and 5 from [21].

Proposition 2 Let γj, 0 ≤ j ≤ 3, be real numbers with γ1 ≥ 0. Let R̃(X), R̃D(X) be polynomi-
als with complex coefficients such that deg(R̃) ≤ deg(R̃D) and with R̃D(im) 6= 0 for all m ∈ R.
We consider a continuous function aγ1,κ(τ,m) on (D̄(0, ρ) ∪ Sd) × R, holomorphic w.r.t τ on
D(0, ρ) ∪ Sd such that

|aγ1,κ(τ,m)| ≤ 1

(1 + |τ |κ)γ1 |R̃D(im)|

for all τ ∈ D̄(0, ρ) ∪ Sd, all m ∈ R. We make the next assumptions

(5)
1

κ
+ γ3 + 1 > 0 , γ2 + γ3 + 2 ≥ 0 , γ2 > −1.

1) If 1+γ3 ≤ 0, then there exists a constant C2 > 0 (depending on ν, κ, γ2, γ3 and R̃(X), R̃D(X))
such that

(6) ||ε−γ0aγ1,κ(τ,m)R̃(im)τκ
∫ τκ

0
(τκ − s)γ2sγ3f(s1/κ,m)ds||(ν,β,µ,χ,α,κ,ε)

≤ C2|ε|(χ+α)κ(γ2+γ3+2)−γ0 ||f(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all f(τ,m) ∈ F d(ν,β,µ,χ,α,κ,ε).
2) If 1+γ3 > 0 and γ1 ≥ 1+γ3, then there exists a constant C ′2 > 0 (depending on ν, κ, γ1, γ2, γ3

and R̃(X), R̃D(X)) such that

(7) ||ε−γ0aγ1,κ(τ,m)R̃(im)τκ
∫ τκ

0
(τκ − s)γ2sγ3f(s1/κ,m)ds||(ν,β,µ,χ,α,κ,ε)

≤ C ′2|ε|(χ+α)κ(γ2+γ3+2)−γ0−(χ+α)κγ1 ||f(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all f(τ,m) ∈ F d(ν,β,µ,χ,α,κ,ε).
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Proof By definition of the norm, we can write

(8) A = ||ε−γ0aγ1,κ(τ,m)R̃(im)τκ
∫ τκ

0
(τκ − s)γ2sγ3f(s1/κ,m)ds||(ν,β,µ,χ,α,κ,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ exp(β|m|)
1 + | τ

εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|ε|−γ0 1

(1 + |τ |κ)γ1
|R̃(im)|
|R̃D(im)|

× |τκ
∫ τκ

0
{(1 + |m|)µ exp(β|m|)

1 + |s|2
|ε|(χ+α)2κ

|s|1/κ
|ε|χ+α

exp(−ν |s|
|ε|(χ+α)κ

)f(s1/κ,m)}A(τ, s,m, ε)ds|

where

A(τ, s,m, ε) =
1

(1 + |m|)µ exp(β|m|)
exp(ν |s|

|ε|(χ+α)κ )

(1 + |s|2
|ε|(χ+α)2κ )

|s|1/κ

|ε|χ+α
(τκ − s)γ2sγ3 .

Again by the definition of the norm of f and by the constraints on the polynomials R,RD, we
deduce that

(9) A ≤ C2.1(ε) sup
m∈R
| R̃(im)

R̃D(im)
|||f(τ,m)||(ν,β,µ,χ,α,κ,ε)

where

C2.1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|ε|−γ0 1

(1 + |τ |κ)γ1

× |τ |κ
∫ |τ |κ

0

exp(ν h
|ε|(χ+α)κ )

1 + h2

|ε|(χ+α)2κ

h1/κ

|ε|χ+α
(|τ |κ − h)γ2hγ3dh.

We perform the change of variable h = |ε|(χ+α)κh′ inside the integral which is a part of C2.1(ε)
that yields

C2.1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|ε|−γ0 1

(1 + |τ |κ)γ1

× |τ |κ
∫ |τ |κ

|ε|(χ+α)κ

0

eνh
′

1 + (h′)2
(h′)1/κ(

|τ |κ

|ε|(χ+α)κ
− h′)γ2(h′)γ3dh′|ε|(χ+α)κ(γ2+γ3+1).

As a result, we obtain the bounds

(10) C2.1(ε) ≤ |ε|(χ+α)κ(γ2+γ3+1)−γ0+(χ+α)κ sup
x≥0

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G(x)

where

G(x) =

∫ x

0

eνh
′

1 + (h′)2
(h′)

1
κ

+γ3(x− h′)γ2dh′.

We now proceed as in Proposition 1 of [21]. We split the function G(x) into two pieces and
study them separately. Namely, we decompose G(x) = G1(x) +G2(x) where

G1(x) =

∫ x/2

0

eνh
′

1 + (h′)2
(h′)

1
κ

+γ3(x− h′)γ2dh′ , G2(x) =

∫ x

x/2

eνh
′

1 + (h′)2
(h′)

1
κ

+γ3(x− h′)γ2dh′.
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We first provide estimates for G1(x).
a) Assume that −1 < γ2 < 0. We see that (x− h′)γ2 ≤ (x/2)γ2 for all 0 ≤ h′ ≤ x/2, for x > 0.
Hence, from the first constraint of (5), we get

G1(x) ≤ (
x

2
)γ2eνx/2

∫ x/2

0
(h′)

1
κ

+γ3dh′ = (
x

2
)γ2eνx/2

(x/2)
1
κ

+γ3+1

1
κ + γ3 + 1

for all x ≥ 0. Subsequently, we obtain

(11) sup
x≥0

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G1(x) ≤ sup

x≥0

1 + x2

x1/κ
e−νxxG1(x)

which is finite due to the second assumption of (5).
b) Assume that γ2 > 0. We notice that (x − h′)γ2 ≤ xγ2 for all 0 ≤ h′ ≤ x/2, for x > 0.
Therefore, again from the first constraint of (5) we get

G1(x) ≤ xγ2eνx/2
∫ x/2

0
(h′)

1
κ

+γ3dh′ = xγ2eνx/2
(x/2)

1
κ

+γ3+1

1
κ + γ3 + 1

for all x ≥ 0. Consequently, we obtain

(12) sup
x≥0

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G1(x) ≤ sup

x≥0

1 + x2

x1/κ
e−νxxG1(x)

which is finite due to the second assumption of (5).

In a second step, we study G2(x).
We see that 1 + (h′)2 ≥ 1 + (x/2)2 for all x/2 ≤ h′ ≤ x. Hence,

(13) G2(x) ≤ 1

1 + (x2 )2

∫ x

x/2
eνh

′
(h′)

1
κ

+γ3(x− h′)γ2dh′ ≤ 1

1 + (x2 )2
G2.1(x)

where

G2.1(x) =

∫ x

0
eνh

′
(h′)

1
κ

+γ3(x− h′)γ2dh′

for all x ≥ 0. Taking account of the estimates (18) in [21] which are deduced from the asymptotic
behaviour for large x of the generalized Mittag-Leffler function Eα,β(x) =

∑
n≥0 x

n/Γ(β + nα),
for α, β > 0, we get a constant K2.1 > 0 (that depends on ν, κ, γ2, γ3) such that

(14) G2.1(x) ≤ K2.1x
1
κ

+γ3eνx

for all x ≥ 1, provided the first and last constraints of (5) hold.
1) We consider the first case when 1 + γ3 ≤ 0.
Bearing in mind (13) and (14), we deduce that

(15) sup
x≥1

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G2(x) ≤ sup

x≥1

1 + x2

1 + (x/2)2
K2.1x

1+γ3

which is finite. On the other hand, when 0 ≤ x < 1, we make the change of variable h′ = xu′

inside G2.1(x) and taking (13) into account, we get

(16) sup
0≤x<1

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G2(x) ≤ sup

0≤x<1

1 + x2

1 + (x/2)2
e−νx

x

x1/κ
x

1
κ

+γ3+γ2+1

×
∫ 1

0
eνxu

′
(u′)

1
κ

+γ3(1− u′)γ2du′
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which is finite provided that the constraints (5) are fulfilled.
2) We examine the second case when 1 + γ3 > 0 and γ1 ≥ γ3 + 1.
We use this time the fact that 1 + |ε|(χ+α)κx ≥ |ε|(χ+α)κx for all x ≥ 1 and the bounds (14) in
order to get

(17) sup
x≥1

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G2(x) ≤ |ε|−(χ+α)κγ1K2.1 sup

x≥1

1 + x2

1 + (x/2)2

xγ3+1

xγ1

On the other hand, the bounds on the domain 0 ≤ x < 1 have already been treated above owing
to (16).

Finally, gathering (9), (10), (11), (12), (15), (16) and (17) yields the statement of Proposition
2. 2

The forthcoming proposition present norms estimates for some bilinear convolution operators
acting on the aforementioned Banach spaces.

Proposition 3 There exists a constant C3 > 0 (depending on µ and κ) such that

(18) ||τκ−1

∫ τκ

0

∫ +∞

−∞
f((τκ − s′)1/κ,m−m1)g((s′)1/κ,m1)

1

(τκ − s′)s′
ds′dm1||(ν,β,µ,χ,α,κ,ε)

≤ C3

|ε|χ+α
||f(τ,m)||(ν,β,µ,χ,α,κ,ε)||g(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all f(τ), g(τ) ∈ F d(ν,β,µ,χ,α,κ,ε).

Proof We follow the same guidelines as in the proof of Proposition 3 from [20]. By definition
of the norm, we can write

(19)

B = ||τκ−1

∫ τκ

0

∫ +∞

−∞
f((τκ − s′)1/κ,m−m1)g((s′)1/κ,m1)

1

(τκ − s′)s′
ds′dm1||(ν,β,µ,χ,α,κ,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ exp(β|m|)
1 + | τ

εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)

× |τκ−1

∫ τκ

0

∫ +∞

−∞
{(1 + |m−m1|)µ exp(β|m−m1|)

×
1 + |τκ−s′|2

|ε|(χ+α)2κ

|τκ−s′|1/κ
|ε|χ+α

exp(−ν |τ
κ − s′|
|ε|(χ+α)κ

)f((τκ − s′)1/κ,m−m1)}

×{(1+|m1|)µ exp(β|m1|)
1 + |s′|2

|ε|(χ+α)2κ

|s′|1/κ
|ε|χ+α

exp(−ν |s′|
|ε|(χ+α)κ

)g((s′)1/κ,m1)}×B(τ, s,m,m1)ds′dm1|

where

B(τ, s,m,m1) =
exp(−β|m−m1|) exp(−β|m1|)

(1 + |m−m1|)µ(1 + |m1|)µ

|s′|1/κ|τκ−s′|1/κ
|ε|2(χ+α)

(1 + |τκ−s′|2
|ε|(χ+α)2κ )(1 + |s′|2

|ε|(χ+α)2κ )

× exp(ν
|τκ − s′|
|ε|(χ+α)κ

) exp(ν
|s′|

|ε|(χ+α)κ
)

1

(τκ − s′)s′
.
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By definition of the norms of f and g and according to the triangular inequality |m| ≤ |m −
m1|+ |m1| for all m,m1 ∈ R, we deduce that

(20) B ≤ C3(ε)||f(τ,m)||(ν,β,µ,χ,α,κ,ε)||g(τ,m)||(ν,β,µ,χ,α,κ,ε)

where

C3(ε) = sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τ

εχ+α
|2κ

| τ
εχ+α
|

exp(−ν| τ

εχ+α
|κ)|τ |κ−1

×
∫ |τ |κ

0

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ
(h′)1/κ(|τ |κ − h′)1/κ

|ε|2(χ+α)

1

(1 + (|τ |κ−h′)2
|ε|(χ+α)2κ )(1 + (h′)2

|ε|(χ+α)2κ )

× exp(ν
|τ |κ − h′

|ε|(χ+α)κ
) exp(ν

h′

|ε|(χ+α)κ
)

1

(|τ |κ − h′)h′
dh′dm1.

We provide upper bounds that can be split in two parts,

(21) C3(ε) ≤ C3.1C3.2(ε)

where

(22) C3.1 = sup
m∈R

(1 + |m|)µ
∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ
dm1

is finite under the condition that µ > 1 according to Lemma 4 of [22] and

C3.2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
εχ+α
|2κ

| τ
εχ+α
|
|τ |κ−1

×
∫ |τ |κ

0

(h′)1/κ(|τ |κ−h′)1/κ
|ε|2(χ+α)

(1 + (|τ |κ−h′)2
|ε|(χ+α)2κ )(1 + (h′)2

|ε|(χ+α)2κ )

1

(|τ |κ − h′)h′
dh′

We carry out the change of variable h′ = |ε|(χ+α)κh inside the integral piece of C3.2(ε) which
yields the bounds

(23) C3.2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
εχ+α
|2κ

| τ
εχ+α
|
|τ |κ−1

×
∫ |τ |κ

|ε|(χ+α)κ

0

h1/κ( |τ |κ
|ε|(χ+α)κ − h)1/κ

(1 + ( |τ |κ
|ε|(χ+α)κ − h)2)(1 + h2)

1

( |τ |κ
|ε|(χ+α)κ − h)h

1

|ε|(χ+α)κ
dh ≤ 1

|ε|χ+α
sup
x≥0

B(x)

where

B(x) =
1 + x2

x2/κ
x

∫ x

0

h1/κ(x− h)1/κ

(1 + (x− h)2)(1 + h2)

1

(x− h)h
dh.

A change of variable h = xu in this last expression followed by a partial fraction decomposition
allow us to write

(24) B(x) = (1 + x2)

∫ 1

0

1

(1 + x2(1− u)2)(1 + x2u2)

1

(1− u)1− 1
κu1− 1

κ

du

=
1 + x2

x2 + 4

∫ 1

0

3− 2u

1 + x2(1− u)2

1

(1− u)1− 1
κu1− 1

κ

du+
1 + x2

x2 + 4

∫ 1

0

2u+ 1

1 + x2u2

1

(1− u)1− 1
κu1− 1

κ

du
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which acquaints us that B(x) is finite provided that κ ≥ 1 and bounded on R+ w.r.t x.
At last, collecting (19), (20), (21), (22), (23) and (24) leads to the statement of Proposition

3.
2

3 Borel-Laplace and Fourier transforms

In this section, we review some basic statements concerning a k−Borel summability method of
formal power series which is a slightly modified version of the more classical procedure (see [2],
Section 3.2). This novel version has already been used in works such as [19] and [20] when
studying Cauchy problems under the presence of a small perturbation parameter. We remind
also the reader the definition of Fourier inverse transform acting on functions with exponential
decay.

Definition 3 Let k ≥ 1 be an integer. Let (mk(n))n≥1 be the sequence

mk(n) = Γ
(n
k

)
=

∫ ∞
0

t
n
k
−1e−tdt, n ≥ 1.

Let (E, ‖·‖E) be a complex Banach space. We say a formal power series

X̂(T ) =
∞∑
n=1

anT
n ∈ TE[[T ]]

is mk−summable with respect to T in the direction d ∈ [0, 2π) if the following assertions hold:

1. There exists ρ > 0 such that the mk−Borel transform of X̂, Bmk(X̂), is absolutely conver-
gent for |τ | < ρ, where

Bmk(X̂)(τ) =

∞∑
n=1

an

Γ
(
n
k

)τn ∈ τE[[τ ]].

2. The series Bmk(X̂) can be analytically continued in a sector S = {τ ∈ C? : |d−arg(τ)| < δ}
for some δ > 0. In addition to this, the extension is of exponential growth at most k in S,
meaning that there exist C,K > 0 such that∥∥∥Bmk(X̂)(τ)

∥∥∥
E
≤ CeK|τ |k , τ ∈ S.

Under these assumptions, the vector valued Laplace transform of Bmk(X̂) along direction d is
defined by

Ldmk
(
Bmk(X̂)

)
(T ) = k

∫
Lγ

Bmk(X̂)(u)e−(u/T )k du

u
,

where Lγ is the path parametrized by u ∈ [0,∞) 7→ ueiγ, for some appropriate direction γ
depending on T , such that Lγ ⊆ S and cos(k(γ − arg(T ))) ≥ ∆ > 0 for some ∆ > 0.

The function Ldmk(Bmk(X̂)) is well defined and turns out to be a holomorphic and bounded

function in any sector of the form Sd,θ,R1/k = {T ∈ C? : |T | < R1/k, |d − arg(T )| < θ/2}, for
some π

k < θ < π
k + 2δ and 0 < R < ∆/K. This function is known as the mk−sum of the formal

power series X̂(T ) in the direction d.
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The following are some elementary properties concerning the mk−sums of formal power
series which will be crucial in our procedure.

1) The function Ldmk(Bmk(X̂))(T ) admits X̂(T ) as its Gevrey asymptotic expansion of order
1/k with respect to T in Sd,θ,R1/k . More precisely, for every π

k < θ1 < θ, there exist C,M > 0
such that ∥∥∥∥∥∥Ldmk(Bmk(X̂))(T )−

n−1∑
p=1

apT
p

∥∥∥∥∥∥
E

≤ CMnΓ(1 +
n

k
)|T |n,

for every n ≥ 2 and T ∈ Sd,θ1,R1/k . Watson’s lemma (see Proposition 11 p.75 in [3]) allows us to

affirm that Ldmk(Bmk(X̂))(T ) is unique provided that the opening θ1 is larger than π
k .

2) Whenever E is a Banach algebra, the set of holomorphic functions having Gevrey asymp-
totic expansion of order 1/k on a sector with values in E turns out to be a differential algebra
(see Theorem 18, 19 and 20 in [3]). This, and the uniqueness provided by Watson’s lemma allow
us to obtain some properties on mk−summable formal power series in direction d.

By ? we denote the product in the Banach algebra and also the Cauchy product of formal
power series with coefficients in E. Let X̂1, X̂2 ∈ TE[[T ]] be mk−summable formal power series
in direction d. Let q1 ≥ q2 ≥ 1 be integers. Then X̂1 + X̂2, X̂1 ? X̂2 and T q1∂q2T X̂1, which are
elements of TE[[T ]], are mk−summable in direction d. Moreover, one has

Ldmk(Bmk(X̂1))(T ) + Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 + X̂2))(T ),

Ldmk(Bmk(X̂1))(T ) ? Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 ? X̂2))(T ),

T q1∂q2T L
d
mk

(Bmk(X̂1))(T ) = Ldmk(Bmk(T q1∂q2T X̂1))(T ),

for every T ∈ Sd,θ,R1/k .
The next proposition is written without proof for it can be found in [20], Proposition 6.

Proposition 4 Let f̂(t) =
∑

n≥1 fnt
n and ĝ(t) =

∑
n≥1 gnt

n that belong to E[[t]], where (E, ‖·‖E)
is a Banach algebra. Let k,m ≥ 1 be integers. The following formal identities hold.

Bmk(tk+1∂tf̂(t))(τ) = kτkBmk(f̂(t))(τ),

Bmk(tmf̂(t))(τ) =
τk

Γ
(
m
k

) ∫ τk

0
(τk − s)

m
k
−1Bmk(f̂(t))(s1/k)

ds

s

and

Bmk(f̂(t) ? ĝ(t))(τ) = τk
∫ τk

0
Bmk(f̂(t))((τk − s)1/k) ? Bmk(ĝ(t))(s1/k)

1

(τk − s)s
ds.

In the last part of the section, we recall without proofs some properties of the inverse Fourier
transform acting on continuous functions with exponential decay on R, see [20], Proposition 7
for more details.

Proposition 5 1) Let f : R → R be a continuous function with a constant C > 0 such that
|f(m)| ≤ C exp(−β|m|) for all m ∈ R, for some β > 0. The inverse Fourier transform of f is
defined by the integral representation

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm
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for all x ∈ R. It turns out that the function F−1(f) extends to an analytic function on the
horizontal strip

(25) Hβ = {z ∈ C/|Im(z)| < β}.

Let φ(m) = imf(m). Then, we have the commuting relation

(26) ∂zF−1(f)(z) = F−1(φ)(z)

for all z ∈ Hβ.
2) Let f, g ∈ E(β,µ) and let ψ(m) = 1

(2π)1/2
f ? g(m), the convolution product of f and g, for all

m ∈ R. From Proposition 1, we know that ψ ∈ E(β,µ). Moreover, the next formula

(27) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

holds for all z ∈ Hβ.

4 Layout of the main nonlinear PDE and related auxiliary prob-
lems

Let q,M,Q ≥ 0, D ≥ 2 be integers. For all 0 ≤ l ≤ q, let kl, ml be non negative integers and al
be complex numbers with a0 6= 0 such that kl < kl+1 for l ∈ {0, . . . , q − 1}. For all 0 ≤ l ≤ M ,
we consider non negative integers hl, µl and complex numbers cl with c0 6= 0 such that hl < hl+1

for l ∈ {0, . . . ,M − 1}. For all 0 ≤ l ≤ Q, we denote nl and bl non negative integers such that
bl < bl+1 for l ∈ {0, . . . , Q − 1}. For 1 ≤ l ≤ D, we set nonnegative integers ∆l, dl and δl such
that 1 ≤ δl < δl+1 for l ∈ {1, . . . , D − 1}.

Let Q(X), Rl(X) ∈ C[X], 1 ≤ l ≤ D, be polynomials which can be factorized as Q(X) =
XvQ̃(X), Rl(X) = XvR̃l(X) for some common integer v ≥ 1 where Q̃(X) and R̃l(X) are
polynomial that satisfy

(28) deg(Q̃) = deg(R̃D) ≥ deg(R̃l) , Q̃(im) 6= 0 , R̃D(im) 6= 0

for all m ∈ R, all 1 ≤ l ≤ D − 1.
We consider the following nonlinear singularly perturbed PDE

(29) Q(∂z)

(
(

q∑
l=0

alε
mltkl)u(t, z, ε) + (

M∑
l=0

clε
µlthl)u2(t, z, ε)

)

=

Q∑
j=0

bj(z)ε
nj tbj +

D∑
l=1

ε∆ltdl∂δlt Rl(∂z)u(t, z, ε)

The coefficients bj(z) are constructed as follows. For all 0 ≤ j ≤ Q, we consider functions
m 7→ B̃j(m) that belong to the Banach space E(β,µ) for some µ > 1 and β > 0. We define

Bj(m) = (im)vB̃j(m) where v is the integer introduced above, for 0 ≤ j ≤ Q. We set

(30) bj(z) = F−1(m 7→ Bj(m))(z) , 0 ≤ j ≤ Q,

where F−1 denotes the Fourier inverse transform defined in Proposition 5. From (26), it turns out
by construction that one can write bj(z) = ∂vz b̃j(z) where b̃j(z) is the inverse Fourier transform
of B̃j(m).
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Remark 1. The reason why we make these factorizations hypotheses on the polynomials
Q(X), Rl(X) and the functions Bj(m) will be explained later on in the remark 5 of next section
and is related to the construction of the Banach spaces in Section 2 and their Fourier inverse
transforms.

Within this work, we will search for time rescaled solutions of (29) of the form

(31) u(t, z, ε) = εβU(εαt, z, ε)

where α, β ∈ Q are two rational numbers and α > 0. Then, the expression U(T, z, ε) needs to
formally solve the next nonlinear PDE

(32) Q(∂z)

(
(

q∑
l=0

alε
ml+β−αklT kl)U(T, z, ε) + (

M∑
l=0

clε
µl+2β−αhlT hl)U2(T, z, ε)

)

=

Q∑
j=0

bj(z)ε
nj−αbjT bj +

D∑
l=1

ε∆l+α(δl−dl)+βT dlRl(∂z)∂
δl
T U(T, z, ε)

4.1 Construction of a distinguished solution

We make the additional assumption that α, β set above can be chosen in such a way that the
next inequalities

(33) ∆l + α(δl − dl) + β > 0 , nj − αbj > 0

for all 1 ≤ l ≤ D, 0 ≤ j ≤ Q and

(34) ml + β − αkl = 0 , mj + β − αkj > 0

for all 0 ≤ l ≤ s and all s+ 1 ≤ j ≤ q, for some integer 0 ≤ s ≤ q − 1, together with

(35) µl + 2β − αhl = 0 , µj + 2β − αhj > 0

for all 0 ≤ l ≤ s′ and all s′ + 1 ≤ j ≤M , for some integer 0 ≤ s′ ≤M − 1, hold.

Remark 2. In the case q = 1, k0, k1 ≥ 1, the roots of the polynomial (in t) P (t, ε) = a0ε
m0tk0 +

a1ε
m1tk1 all have modulus equal to

|a1/a0|
1

k0−k1 |ε|
m1−m0
k0−k1

except the trivial root 0. The constraints (34) imply in particular that m1 −m0 > α(k1 − k0).
As a result, all the nonvanishing roots of P (t, ε) tend to ∞ as ε tends to 0 and 0 is therefore the
only root (with order k0) of P (t, ε) in the vicinity of 0 as ε stays near the origin.

Let us assume that the expression U(T, z, ε) is allowed to be written as a perturbation series
w.r.t ε

(36) U(T, z, ε) = U0(T ) +
∑
n≥1

Un(T, z)εn.

where the constant term U0(T ) is taken independent of z and not identically equal to 0. The
coefficient U0(T ) is called the slow curve of the equation (32) in the terminology of [4].
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In the following, we make the assumption that U0(T ) solves the next second order algebraic
equation

(37) (
s∑
l=0

alT
kl)U0(T ) + (

s′∑
l=0

clT
hl)(U0(T ))2 = 0

As U0(T ) is not identically vanishing, it must be equal to −(
∑s

l=0 alT
kl)/(

∑s′

l=0 clT
hl). Bearing

in mind that a0, c0 6= 0, we get its asymptotic behaviour

(38) U0(T ) ∼ −a0

c0
T k0−h0

as T tends to 0.

Remark 3. Under the hypotheses (28) and (30), we observe by factoring out the operator ∂vz
from (32), that U(T, z, ε) must solve the related PDE

(39) Q̃(∂z)

(
(

q∑
l=0

alε
ml+β−αklT kl)U(T, z, ε) + (

M∑
l=0

clε
µl+2β−αhlT hl)U2(T, z, ε)

)

=

Q∑
j=0

b̃j(z)ε
nj−αbjT bj + F (T, z, ε) +

D∑
l=1

ε∆l+α(δl−dl)+βT dlR̃l(∂z)∂
δl
T U(T, z, ε)

where the forcing term F (T, z, ε) is a polynomial in z of degree less than v − 1. According to
the assumptions (33), (34), (35) and using the fact that Q̃(0) 6= 0, by taking ε = 0 into equation
(39) we see that the constraint (37) is equivalent to the fact that F (T, z, 0) ≡ 0. The precise
shape of the term F (T, z, ε) will be given later in Section 6, see (134).

In a first step, we express U(T, z, ε) as a small perturbation of U0(T ) that can be express in
the form

U0(T ) = −a0

c0
T k0−h0 − a0

c0
T k0−h0J(T )

where J(T ) =
∑

j≥1 JjT
j is a convergent series near T = 0, namely

(40) U(T, z, ε) = −a0

c0
T k0−h0 − a0

c0
T k0−h0J(T ) + T γV (T, z, ε)

for some integer γ ∈ Z and some expression V (T, x, ε). By plugging this last expansion inside
(32) and using the Leibniz rule, we get

(41) Q(∂z)

(
(
s∑
l=0

alT
kl +

q∑
l=s+1

alε
ml+β−αklT kl)(−a0

c0
T k0−h0 − a0

c0
T k0−h0J(T ) + T γV (T, z, ε))

+(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)(−a0

c0
T k0−h0 − a0

c0
T k0−h0J(T ) + T γV (T, z, ε))2

)

=

Q∑
j=0

bj(z)ε
nj−αbjT bj

+
D∑
l=1

ε∆l+α(δl−dl)+βT dlRl(∂z)

(
−a0

c0
Πδl−1
d=0 (k0 − h0 − d)T k0−h0−δl

−a0

c0

∑
q1+q2=δl

δl!

q1!q2!
∂q1T (T k0−h0)∂q2T J(T ) +

∑
q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)T γ−q1∂q2T V (T, z, ε)


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where we put Π−1
d=0(γ−d) = 1 by convention. At this level, we observe the important fact that the

coefficient in front ofQ(∂z)V (T, z, ε) contains the term a0T
k0+γ−2a0c0 T

k0−h0+γc0T
h0 = −a0T

k0+γ

that we want to set appart. As a result, we get the next equation satisfied by V (T, z, ε),

(42) Q(∂z)V (T, z, ε)

(
−a0T

k0+γ + (
s∑
l=1

alT
kl +

q∑
l=s+1

alε
ml+β−αklT kl)T γ

− 2(
a0

c0
)T k0−h0+γ(

s′∑
l=1

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)− 2(

a0

c0
)T k0−h0+γJ(T )

×(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

)

+Q(∂z)V
2(T, z, ε)T 2γ(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

=

Q∑
j=0

bj(z)ε
nj−αbjT bj

+

D∑
l=1

ε∆l+α(δl−dl)+β(
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)T dl+γ−q1Rl(∂z)∂

q2
T V (T, z, ε))

We now introduce some additional constraints on the integers γ, kl, hj , bh, for 0 ≤ l ≤ q,
0 ≤ j ≤ M , 0 ≤ h ≤ Q and dl, δl, for 1 ≤ l ≤ D. Namely, we impose that the next inequalities
hold

(43) k0 − hp ≤ γ

for 0 ≤ p ≤M , together with

(44) γ ≤ bj − k0

for all 0 ≤ j ≤ Q and finally

(45) k0 ≤ dl − δl
for all 1 ≤ l ≤ D.

Remark 4.
1) For the case k0 > h0, from (43), we need that γ ≥ k0 − h0 > 0. As consequence of (44) , we
get that bj > k0, for 0 ≤ j ≤ Q. Let for instance q = 1, M = 1, Q = 0 and D = 2. We set
α = 2, β = 1, γ = 6, κ = 1 and we choose the powers of t and ε in the coefficients of (29) as
follows,

(46) m0 = 3, k0 = 2,m1 = 6, k1 = 3, µ0 = 0, h0 = 1, µ1 = 3, h1 = 2, n0 = 19, b0 = 9,

∆1 = 12, d1 = 5, δ1 = 1,∆2 = 20, d2 = 6, δ2 = 2.

For these data, we can check that the constraints (33), (34), (35), (43), (44), (45) above are
fulfilled. Moreover, all the forthcoming requirements (54), (67), (68), (69) and (135) stated in
Theorem 1 are also verified. In this special case, the main equation (29) writes

(47) Q(∂z)
(
(a0ε

3t2 + a1ε
6t3)u(t, z, ε) + (c0t+ c1ε

3t2)u2(t, z, ε)
)

= b0(z)ε19t9 + ε12t5∂tR1(∂z)u(t, z, ε) + ε20t6∂2
tR2(∂z)u(t, z, ε).
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We can divide this last equation by t, but not by ε, and the resulting equation still possess a
turning point and an irregular singularity at t = 0.

2) For the case h0 > k0, we may take γ < 0 and hence one can choose some bj < k0 for some
0 ≤ j ≤ Q. Let for instance q = 1, M = 1, Q = 0 and D = 2. We choose α = 2, β = −1,
γ = −2, κ = 1 and we select the powers of t and ε in the coefficients of (29) as follows,

(48) m0 = 5, k0 = 2,m1 = 10, k1 = 4, µ0 = 14, h0 = 6, µ1 = 19, h1 = 8, n0 = 3, b0 = 1,

∆1 = 10, d1 = 5, δ1 = 1,∆2 = 12, d2 = 6, δ2 = 2.

For these data, we can figure out that the constraints (33), (34), (35), (43), (44), (45) above are
satisfied. Moreover, all the forthcoming requirements (54), (67), (68), (69) and (135) stated in
Theorem 1 are also verified. In this particular case, the main equation (29) writes

(49) Q(∂z)
(
(a0ε

5t2 + a1ε
10t4)u(t, z, ε) + (c0ε

14t6 + c1ε
19t8)u2(t, z, ε)

)
= b0(z)ε3t+ ε10t5∂tR1(∂z)u(t, z, ε) + ε12t6∂2

tR2(∂z)u(t, z, ε).

We can divide this latter equation by ε3 and by t. The corresponding equation still suffers the
presence of a turning point and an irregular singularity at t = 0.

In a second step, we divide the left and right handside of (42) by the monomial T k0+γ . We
obtain the next equation

(50) Q(∂z)V (T, z, ε)

(
−a0 + (

s∑
l=1

alT
kl +

q∑
l=s+1

alε
ml+β−αklT kl)T−k0

− 2(
a0

c0
)T−h0(

s′∑
l=1

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)− 2(

a0

c0
)T−h0J(T )

×(
s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

)

+Q(∂z)V
2(T, z, ε)T−k0+γ(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

=

Q∑
j=0

bj(z)ε
nj−αbjT bj−k0−γ

+
D∑
l=1

ε∆l+α(δl−dl)+β(
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)T dl−k0−q1Rl(∂z)∂

q2
T V (T, z, ε))

Notice that the additional constraints (33), (34), (35) and (43), (44), (45) ensure that the
coefficients of the PDE (50) are analytic with respect to T and ε on a neighborhood of the origin
in C2. Moreover, the coefficient of Q(∂z)V (T, z, ε) is invertible at T = 0 since a0 6= 0. We will
see later that this fact is essential in order to solve this equation within some function space of
analytic functions.

We look for solutions which are rescaled in time of the form

(51) V (T, z, ε) = V(εχT, z, ε)
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where

(52) χ =
∆D + α(δD − dD) + β

dD − k0 − δD
.

As a result, the expression V(T, z, ε) is supposed to solve the next equation

(53) Q(∂z)V(T, z, ε)

(
−a0 +

s∑
l=1

alε
−χ(kl−k0)Tkl−k0 +

q∑
l=s+1

alε
ml+β−αkl−χ(kl−k0)Tkl−k0

− 2(
a0

c0
)(

s′∑
l=1

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)− 2(

a0

c0
)J(ε−χT)

×(

s′∑
l=0

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)

)

+Q(∂z)V2(T, z, ε)ε−χ(−k0+γ)T−k0+γ(

s′∑
l=0

clε
−χhlThl +

M∑
l=s′+1

clε
µl+2β−αhl−χhlThl)

=

Q∑
j=0

bj(z)ε
nj−αbj−χ(bj−k0−γ)Tbj−k0−γ

+
D−1∑
l=1

ε∆l+α(δl−dl)+β

×
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dl−k0−q1)Tdl−k0−q1Rl(∂z)εχq2∂q2T V(T, z, ε)

+ ε∆D+α(δD−dD)+β
∑

q1+q2=δD,q1≥1

δD!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dD−k0−q1)TdD−k0−q1

×RD(∂z)ε
χq2∂q2T V(T, z, ε) + TdD−k0RD(∂z)∂

δD
T V(T, z, ε)

We make further assumptions on the coefficients dl and δl for 1 ≤ l ≤ D which are stronger
than the constraint (45). Assume the existence of integers κ ≥ 1 and dl,0 ≥ 1 such that

(54) dD − k0 = δD(κ+ 1) , dl − k0 = δl(κ+ 1) + dl,0

for all 1 ≤ l ≤ D−1. Then, for all 1 ≤ l ≤ D, and all integers q1 ≥ 0, q2 ≥ 0 with q1 +q2 = δl we
deduce the existence of an nonnegative integer dl,q1,q2 which is larger than 1 except dD,0,δD = 0
such that

(55) dl − k0 − q1 = (κ+ 1)q2 + dl,q1,q2 .

Indeed, if one puts dD,0 = 0, from (54), we can write

dl,q1,q2 = dl − k0 − q1 − (κ+ 1)q2 = δl(κ+ 1) + dl,0 − q1 − (κ+ 1)q2

= (q1 + q2)(κ+ 1) + dl,0 − q1 − (κ+ 1)q2 = q1κ+ dl,0.

According to (54) and (55), with the help of the formula (8.7) from [26] p. 3630, we can expand
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the following pieces appearing in (53) satisfied by V(T, z, ε),

(56) TdD−k0∂δDT V(T, z, ε) =

(Tκ+1∂T)δD +
∑

1≤p≤δD−1

AδD,pT
κ(δD−p)(Tκ+1∂T)p

V(T, z, ε),

Tdl−k0−(δl−1)∂TV(T, z, ε) = Tdl,δl−1,1(Tκ+1∂T)V(T, z, ε),

Tdl−k0−q1∂q2T V(T, z, ε) = Tdl,q1,q2T(κ+1)q2∂q2T V(T, z, ε)

= Tdl,q1,q2

(Tκ+1∂T)q2 +
∑

1≤p≤q2−1

Aq2,pTκ(q2−p)(Tκ+1∂T)p

V(T, z, ε)

for all 1 ≤ l ≤ D, all integers q1 ≥ 0 and q2 ≥ 2 such that q1 + q2 = δl, for some real constants
AδD,p, 1 ≤ p ≤ δD − 1 and Aq2,p, 1 ≤ p ≤ q2 − 1.

In a third step, let us assume that the expression V(T, z, ε) has a formal power series expansion

(57) V(T, z, ε) =
∑
n≥1

Vn(z, ε)Tn

where each coefficient Vn(z, ε) is defined as an inverse Fourier transform

Vn(z, ε) = F−1(m 7→ ωn(m, ε))(z)

for some function m 7→ ωn(m, ε) belonging to the Banach space E(β,µ) and depending holomor-
phically on ε on some punctured disc D(0, ε0)\{0} centered at 0 with radius ε0 > 0. We consider
the formal power series

ωκ(τ,m, ε) =
∑
n≥1

ωn(m, ε)

Γ(nκ )
τn

obtained by formally applying a mκ−Borel transform w.r.t T and Fourier transform w.r.t z to
the power series (57). The constraints (54) are introduced in such a way that ωκ(τ,m, ε) satisfies
some integral equation by making use of the properties of the mκ−Borel transform of formal
series and Fourier inverse transforms described in Propositions 4 and 5 with the help of the
prepared expansions (56). Namely, after division by the power (im)v, which is by construction
a common factor of the functions Q(im), Rl(im) and Bj(m) for 1 ≤ l ≤ D, 0 ≤ j ≤ Q, we get
the new problem

(58) Lτ,m,ε(ωκ(τ,m, ε)) = Rτ,m,ε(ωκ(τ,m, ε))
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with vanishing initial data ωκ(0,m, ε) ≡ 0, where

(59) Lτ,m,ε(ωκ(τ,m, ε)) =

Q̃(im)

(
−a0ωκ(τ,m, ε) +

s∑
l=1

alε
−χ(kl−k0) τκ

Γ(kl−k0κ )

∫ τκ

0
(τκ − s)

kl−k0
κ
−1ωκ(s1/κ,m, ε)

ds

s

+

q∑
l=s+1

alε
ml+β−αkl−χ(kl−k0) τκ

Γ(kl−k0κ )

∫ τκ

0
(τκ − s)

kl−k0
κ
−1ωκ(s1/κ,m, ε)

ds

s

− 2(
a0

c0
)(

s′∑
l=1

clε
−χ(hl−h0) τκ

Γ(hl−h0κ )

∫ τκ

0
(τκ − s)

hl−h0
κ
−1ωκ(s1/κ,m, ε)

ds

s

+
M∑

l=s′+1

clε
µl+2β−αhlε−χ(hl−h0) τκ

Γ(hl−h0κ )

∫ τκ

0
(τκ − s)

hl−h0
κ
−1ωκ(s1/κ,m, ε)

ds

s
)

− 2(
a0

c0
)(

s′∑
l=0

cl
∑
j≥1

Jjε
−χ(hl−h0+j) τκ

Γ(hl−h0+j
κ )

∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1ωκ(s1/κ,m, ε)
ds

s

+

M∑
l=s′+1

cl
∑
j≥1

Jjε
µl+2β−αhlε−χ(hl−h0+j) τκ

Γ(hl−h0+j
κ )

∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1ωκ(s1/κ,m, ε)
ds

s


+ Q̃(im)

(
s′∑
l=0

clε
−χ(−k0+γ+hl)

τκ

Γ(−k0+γ+hl
κ )

∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1

× {s
∫ s

0

∫ +∞

−∞

1

(2π)1/2
ωκ((s− s′)1/κ,m−m1, ε)ωκ((s′)1/κ,m1, ε)

1

(s− s′)s′
ds′dm1}

ds

s

+
M∑

l=s′+1

clε
µl+2β−αhl−χ(hl−k0+γ) τκ

Γ(−k0+γ+hl
κ )

∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1

×{s
∫ s

0

∫ +∞

−∞

1

(2π)1/2
ωκ((s− s′)1/κ,m−m1, ε)ωκ((s′)1/κ,m1, ε)

1

(s− s′)s′
ds′dm1}

ds

s

)
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and

(60) Rτ,m,ε(ωκ(τ,m, ε)) =

=

Q∑
j=0

B̃j(m)εnj−αbj−χ(bj−k0−γ) τ bj−k0−γ

Γ(
bj−k0−γ

κ )
+

D−1∑
l=1

ε∆l+α(δl−dl)+β

×
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dl−k0−q1−q2)R̃l(im)

× { τκ

Γ(
dl,q1,q2
κ )

∫ τκ

0
(τκ − s)

dl,q1,q2
κ
−1κq2sq2ωκ(s1/κ,m, ε)

ds

s

+
∑

1≤p≤q2−1

Aq2,p
τκ

Γ(
dl,q1,q2+κ(q2−p)

κ )

∫ τκ

0
(τκ − s)

dl,q1,q2
+κ(q2−p)
κ

−1κpspωκ(s1/κ,m, ε)
ds

s
}

+ ε∆D+α(δD−dD)+β

×
∑

q1+q2=δD,q1≥1

δD!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dD−k0−q1−q2)R̃D(im)

× { τκ

Γ(
dD,q1,q2

κ )

∫ τκ

0
(τκ − s)

dD,q1,q2
κ

−1κq2sq2ωκ(s1/κ,m, ε)
ds

s

+
∑

1≤p≤q2−1

Aq2,p
τκ

Γ(
dD,q1,q2+κ(q2−p)

κ )

∫ τκ

0
(τκ − s)

dD,q1,q2
+κ(q2−p)
κ

−1κpspωκ(s1/κ,m, ε)
ds

s
}

+ R̃D(im){(κτκ)δDωκ(τ,m, ε) +
∑

1≤p≤δD−1

AδD,p
τκ

Γ(κ(δD−p)
κ )

×
∫ τκ

0
(τκ − s)

κ(δD−p)
κ

−1κpspωκ(s1/κ,m, ε)
ds

s
}.

By convention, the two sums
∑

1≤p≤q2−1[...] appearing in (60) are vanishing provided that q2 ∈
{0, 1}.
Remark 5. The hypotheses (28) and (30) ensure that the equation (53) does not contain terms
that involve isolated polynomials in T which are not inverse Fourier transformable.

5 Analytic solutions of a convolution problem with complex pa-
rameters

Our main goal in this section is the construction of a unique solution of the problem (58) within
the Banach spaces introduced in Section 2.

We make the following further assumptions. The conditions below are very similar to the ones
proposed in Section 4 of [20]. Namely, we demand that there exists an unbounded sector

SQ̃,R̃D = {z ∈ C/|z| ≥ rQ̃,R̃D , |arg(z)− dQ̃,R̃D | ≤ ηQ̃,R̃D}

with direction dQ̃,R̃D ∈ R, aperture ηQ̃,R̃D > 0 for some radius rQ̃,R̃D > 0 such that

(61)
Q̃(im)

R̃D(im)
∈ SQ̃,R̃D
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for all m ∈ R. The polynomial P̃m(τ) = −Q̃(im)a0 − R̃D(im)κδDτ δDκ can be factorized in the
form

(62) P̃m(τ) = −R̃D(im)κδDΠδDκ−1
l=0 (τ − ql(m))

where

(63) ql(m) = (
|a0Q̃(im)|
|R̃D(im)|κδD

)
1

δDκ exp(
√
−1(arg(

−a0Q̃(im)

R̃D(im)κδD
)

1

δDκ
+

2πl

δDκ
))

for all 0 ≤ l ≤ δDκ− 1, all m ∈ R.
We select an unbounded sector Sd centered at 0, a small closed disc D̄(0, ρ) and we require

the sector SQ̃,R̃D to fulfill the next conditions.

1) There exists a constant M1 > 0 such that

(64) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ δDκ − 1, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, from (61) and the explicit
expression (63) of ql(m), we first observe that |ql(m)| > 2ρ for everym ∈ R, all 0 ≤ l ≤ δDκ−1 for
an appropriate choice of rQ̃,R̃D and of ρ > 0. We also see that for all m ∈ R, all 0 ≤ l ≤ δDκ−1,
the roots ql(m) remain in a union U of unbounded sectors centered at 0 that do not cover a
full neighborhood of the origin in C∗ provided that ηQ̃,R̃D is small enough. Therefore, one can
choose an adequate sector Sd such that Sd∩U = ∅ with the property that for all 0 ≤ l ≤ δDκ−1
the quotients ql(m)/τ lay outside some small disc centered at 1 in C for all τ ∈ Sd, all m ∈ R.
This yields (64) for some small constant M1 > 0.

2) There exists a constant M2 > 0 such that

(65) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , δDκ− 1}, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, for the sector Sd and the
disc D̄(0, ρ) chosen as above in 1), we notice that for any fixed 0 ≤ l0 ≤ δDκ − 1, the quotient
τ/ql0(m) stays outside a small disc centered at 1 in C for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R. Hence
(65) must hold for some small constant M2 > 0.

By construction of the roots (63) in the factorization (62) and using the lower bound estimates
(64), (65), we get a constant CP̃ > 0 such that

(66) |P̃m(τ)| ≥M δDκ−1
1 M2|R̃D(im)κδD |( |a0Q̃(im)|

|R̃D(im)|κδD
)

1
δDκ (1 + |τ |)δDκ−1

≥M δDκ−1
1 M2

κδD |a0|
1

δDκ

(κδD)
1

δDκ

(rQ̃,R̃D)
1

δDκ |R̃D(im)|

× (min
x≥0

(1 + x)δDκ−1

(1 + xκ)δD−
1
κ

)(1 + |τ |κ)δD−
1
κ

= CP̃ (rQ̃,R̃D)
1

δDκ |R̃D(im)|(1 + |τ |κ)δD−
1
κ

for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R.
In the next proposition, we provide sufficient conditions under which the main convolution

equation (58) possess solutions ωdκ(τ,m, ε) in the Banach space F d(ν,β,µ,χ,α,κ,ε) described in Section
2.
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Proposition 6 Under the additional assumptions

(67) δD ≥
2

κ
, −k0 + γ + hl > 0 , bj − k0 − γ ≥ 1,

(χ+ α)(−k0 + γ + hl − κδD + 1)− χ(−k0 + γ + hl) ≥ 0

for all 0 ≤ l ≤M , 0 ≤ j ≤ Q,

(68) δD ≥
1

κ
+ δl,

∆l + α(δl − dl) + β + (χ+ α)κ(
dl,q1,q2
κ

+ q2 − δD +
1

κ
)− χ(dl − k0 − δl) ≥ 0

for all q1 ≥ 0, q2 ≥ 1 such that q1 + q2 = δl, for 1 ≤ l ≤ D − 1 and

(69) ∆D + α(δD − dD) + β + (χ+ α)κ(
dD,q1,q2
κ

+ q2 − δD +
1

κ
)− χ(dD − k0 − δD) ≥ 0

for all q1 ≥ 1, q2 ≥ 1 such that q1 + q2 = δD, there exist a radius rQ̃,R̃D > 0, ε0 > 0 and a

constant $ > 0 such that the equation (58) has a unique solution ωdκ(τ,m, ε) in the Banach
space F d(ν,β,µ,χ,α,κ,ε) which suffers the bounds

||ωdκ(τ,m, ε)||(ν,β,µ,χ,α,κ,ε) ≤ $

for all ε ∈ D(0, ε0) \ {0}, where the direction d ∈ R can be chosen for any sector Sd that fulfills
the constraints (64) and (65) above.

Proof We undertake the proof with a lemma that studies some shrinking map on the Banach
spaces mentioned above and reduces the main convolution problem (58) to the existence of a
unique fixed point for this map.

Lemma 2 Taking for granted that the assumptions (67), (68) and (69) hold, one can select
the constant rQ̃,R̃D > 0 large enough and a constant $ > 0 small enough such that for all
ε ∈ D(0, ε0) \ {0}, the map Hε defined as

(70) Hε = H1
ε +H2

ε +H3
ε
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where

(71) H1
ε (w(τ,m)) :=

Q∑
j=0

B̃j(m)εnj−αbj−χ(bj−k0−γ) τ bj−k0−γ

P̃m(τ)Γ(
bj−k0−γ

κ )

− Q̃(im)

(
s∑
l=1

alε
−χ(kl−k0) τκ

P̃m(τ)Γ(kl−k0κ )

∫ τκ

0
(τκ − s)

kl−k0
κ
−1w(s1/κ,m)

ds

s

+

q∑
l=s+1

alε
ml+β−αkl−χ(kl−k0) τκ

P̃m(τ)Γ(kl−k0κ )

∫ τκ

0
(τκ − s)

kl−k0
κ
−1w(s1/κ,m)

ds

s

− 2(
a0

c0
)(

s′∑
l=1

clε
−χ(hl−h0) τκ

P̃m(τ)Γ(hl−h0κ )

∫ τκ

0
(τκ − s)

hl−h0
κ
−1w(s1/κ,m)

ds

s

+
M∑

l=s′+1

clε
µl+2β−αhlε−χ(hl−h0) τκ

P̃m(τ)Γ(hl−h0κ )

∫ τκ

0
(τκ − s)

hl−h0
κ
−1w(s1/κ,m)

ds

s
)

− 2(
a0

c0
)(

s′∑
l=0

cl
∑
j≥1

Jjε
−χ(hl−h0+j) τκ

P̃m(τ)Γ(hl−h0+j
κ )

∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1w(s1/κ,m)
ds

s

+
M∑

l=s′+1

cl
∑
j≥1

Jjε
µl+2β−αhlε−χ(hl−h0+j)

× τκ

P̃m(τ)Γ(hl−h0+j
κ )

∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1w(s1/κ,m)
ds

s
)

)

and

(72) H2
ε (w(τ,m)) := −Q̃(im)

(
s′∑
l=0

clε
−χ(−k0+γ+hl)

τκ

P̃m(τ)Γ(−k0+γ+hl
κ )

∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1

× {s
∫ s

0

∫ +∞

−∞

1

(2π)1/2
w((s− s′)1/κ,m−m1)w((s′)1/κ,m1)

1

(s− s′)s′
ds′dm1}

ds

s

+
M∑

l=s′+1

clε
µl+2β−αhl−χ(hl−k0+γ) τκ

P̃m(τ)Γ(−k0+γ+hl
κ )

∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1

×{s
∫ s

0

∫ +∞

−∞

1

(2π)1/2
w((s− s′)1/κ,m−m1)w((s′)1/κ,m1)

1

(s− s′)s′
ds′dm1}

ds

s

)
+

D−1∑
l=1

ε∆l+α(δl−dl)+β ×
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dl−k0−q1−q2)R̃l(im)

× { τκ

P̃m(τ)Γ(
dl,q1,q2
κ )

∫ τκ

0
(τκ − s)

dl,q1,q2
κ
−1κq2sq2w(s1/κ,m)

ds

s

+
∑

1≤p≤q2−1

Aq2,p
τκ

P̃m(τ)Γ(
dl,q1,q2+κ(q2−p)

κ )

∫ τκ

0
(τκ − s)

dl,q1,q2
+κ(q2−p)
κ

−1κpspw(s1/κ,m)
ds

s
}
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along with

(73) H3
ε (w(τ,m)) := ε∆D+α(δD−dD)+β

×
∑

q1+q2=δD,q1≥1

δD!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dD−k0−q1−q2)R̃D(im)

× { τκ

P̃m(τ)Γ(
dD,q1,q2

κ )

∫ τκ

0
(τκ − s)

dD,q1,q2
κ

−1κq2sq2w(s1/κ,m)
ds

s

+
∑

1≤p≤q2−1

Aq2,p
τκ

P̃m(τ)Γ(
dD,q1,q2+κ(q2−p)

κ )

∫ τκ

0
(τκ − s)

dD,q1,q2
+κ(q2−p)
κ

−1κpspw(s1/κ,m)
ds

s
}

+ R̃D(im){
∑

1≤p≤δD−1

AδD,p
τκ

P̃m(τ)Γ(κ(δD−p)
κ )

×
∫ τκ

0
(τκ − s)

κ(δD−p)
κ

−1κpspw(s1/κ,m)
ds

s
}

satisfies the next properties.
i) The following inclusion holds

(74) Hε(B̄(0, $)) ⊂ B̄(0, $)

where B̄(0, $) is the closed ball of radius $ > 0 centered at 0 in F d(ν,β,µ,χ,α,κ,ε), for all ε ∈
D(0, ε0) \ {0}.
ii) We have

(75) ||Hε(w1)−Hε(w2)||(ν,β,µ,χ,α,κ,ε) ≤
1

2
||w1 − w2||(ν,β,µ,χ,α,κ,ε)

for all w1, w2 ∈ B̄(0, $), for all ε ∈ D(0, ε0) \ {0}.

Proof We first deal with the property (74). Let ε ∈ D(0, ε0) \ {0} and consider w(τ,m) ∈
F d(ν,β,µ,χ,α,κ,ε). We take $ > 0 such that ||w(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤ $.

We start providing norms estimates for each piece of the map H1
ε .

From Lemma 1, we deduce the existence of a constant C1 > 0 depending on κ, γ, k0 and bj for
0 ≤ j ≤ Q such that

(76) ||B̃j(m)ε−χ(bj−k0−γ) τ
bj−k0−γ

P̃m(τ)
||(ν,β,µ,χ,α,κ,ε) ≤

C1

CP̃ (rQ̃,R̃D)
1

δDκ

||B̃j(m)||(β,µ)

infm∈R|R̃D(im)|
|ε|(bj−k0−γ)α

According to Proposition 2 1), we obtain a constant C2 > 0 depending on ν, κ, kl, for 0 ≤ l ≤ q,
hl, for 0 ≤ l ≤ M , Q̃(X), R̃D(X) and a constant C2(j) depending on ν, κ, hl for 0 ≤ l ≤ M ,



26

Q̃(X), R̃D(X) and j such that

(77) ||ε−χ(kl−k0) Q̃(im)τκ

P̃m(τ)

∫ τκ

0
(τκ − s)

kl−k0
κ
−1w(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(kl−k0)||w(τ,m)||(ν,β,µ,χ,α,κ,ε),

||ε−χ(hl−h0) Q̃(im)τκ

P̃m(τ)

∫ τκ

0
(τκ − s)

hl−h0
κ
−1w(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0)||w(τ,m)||(ν,β,µ,χ,α,κ,ε),

||ε−χ(hl−h0+j) Q̃(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1w(s1/κ,m)
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2(j)

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0+j)||w(τ,m)||(ν,β,µ,χ,α,κ,ε).

Moreover, it appears from the proof of Proposition 2 that the next bounds hold for C2(j) : there
exist a constant Ĉ2 > 0 depending on ν, κ, hl for 0 ≤ l ≤ M , Q̃, R̃D and a constant A2 > 0
depending on ν, κ, hl for 0 ≤ l ≤M such that

(78) C2(j) ≤ Ĉ2A
j
2Γ(

hl − h0 + j

κ
)

for all j ≥ 1. In the following, we will make use of the notations from the proof of Proposition
2. From the classical estimates

(79) sup
x≥0

xm1e−m2x = (
m1

m2
)m1e−m1

for any real numbers m1 ≥ 0, m2 > 0, we deduce that for all j ≥ 1 such that hl−h0+j
κ − 1 > 0

sup
x≥0

1 + x2

x1/κ
e−νxxG1(x) ≤ sup

x≥0
(1 + x2)x

hl−h0+j
κ e−

ν
2
x(

1

2
)1/κκ

≤
(

(
hl − h0 + j

κν/2
)
hl−h0+j

κ exp(−hl − h0 + j

κ
)

+(
hl−h0+j

κ + 2

ν/2
)
hl−h0+j

κ
+2 exp(−(

hl − h0 + j

κ
+ 2))

)
(
1

2
)1/κκ

Furthermore, according to the Stirling formula Γ(x) ∼
√

2πxx−
1
2 e−x as x → +∞ and bearing

in mind the functional relation Γ(x+ 1) = xΓ(x) for all x > 0, we get two constants Č2 > 0 and
A2 > 0 independent of j such that

(80) sup
x≥0

1 + x2

x1/κ
e−νxxG1(x) ≤ Č2A

j
2(Γ(

hl − h0 + j

κ
) + Γ(

hl − h0 + j

κ
+ 2))

≤ Č2A
j
2

(
Γ(
hl − h0 + j

κ
) + (

hl − h0 + j

κ
+ 1)(

hl − h0 + j

κ
)Γ(

hl − h0 + j

κ
)

)
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On the other hand, by direct inspection, we observe that there exists a constant Č2.1 > 0
(independent of j and ε) such that

(81) sup
0≤x<1

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G2(x) ≤ Č2.1

Furthermore, there exists a constant K2.1(j) depending on ν, κ, hl for 0 ≤ l ≤ M and j, such
that

(82) sup
x≥1

1 + x2

x1/κ
e−νx

x

(1 + |ε|(χ+α)κx)γ1
G2(x) ≤ sup

x≥1

1 + x2

1 + (x2 )2
K2.1(j)

Now, after a thorough examination of the proof of Proposition 1 out of [21], one can check that
there exists a constant Ǩ2.1 > 0 independent of j such that

(83) K2.1(j) ≤ Ǩ2.1Γ(
hl − h0 + j

κ
)

for all j ≥ 1. Finally, gathering (80), (81), (82) and (83) yields the estimates (78).
Besides, we choose the radius rQ̃,R̃D > 0 large enough and $ in such a manner that

(84)

Q∑
j=0

C1

CP̃ (rQ̃,R̃D)
1

δDκΓ(
bj−k0−γ

κ )

||B̃j(m)||(β,µ)

infm∈R|R̃D(im)|
|ε|nj−αbj+(bj−k0−γ)α

+
s∑
l=1

|al|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(kl−k0κ )
|ε|α(kl−k0)$

+

q∑
l=s+1

|al|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(kl−k0κ )
|ε|ml+β−αkl+α(kl−k0)$

+ 2|a0

c0
|

 s′∑
l=1

|cl|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(hl−h0κ )
|ε|α(hl−h0)$

+
M∑

l=s′+1

|cl|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(hl−h0κ )
|ε|µl+2β−αhl |ε|α(hl−h0)$


+ 2|a0

c0
|

 s′∑
l=0

|cl|
∑
j≥1

|Jj |
Ĉ2A

j
2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0+j)$

+
M∑

l=s′+1

|cl|
∑
j≥1

|Jj |
Ĉ2A

j
2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|µl+2β−αhl |ε|α(hl−h0+j)$

 ≤ $

3
.

Notice that the infinite sums over the integers j ≥ 0 are convergent in the left handside of the
above inequality (84), provided that ε0 > 0 is small enough, according to the fact that there
exist two constants J1, J2 > 0 such that |Jj | ≤ J1(J2)j for all j ≥ 1 since J(T ) =

∑
j≥1 JjT

j is
a convergent series near T = 0.

From the definition of H1
ε given by (71), we deduce the next inequality

(85) ||H1
ε (w(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤

$

3
.
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Hereafter, we focus on norms estimates for each part of the map H2
ε .

We set

h(τ,m) = τκ−1

∫ τκ

0

∫ +∞

−∞
w((τκ − s′)1/κ,m−m1)w((s′)1/κ,m1)

1

(τκ − s′)s′
ds′dm1.

Regarding Proposition 3, we get a constant C3 > 0 (depending on µ, κ) such that

(86) ||h(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤
C3

|ε|χ+α
||w(τ,m)||2(ν,β,µ,χ,α,κ,ε).

On the other hand, using Proposition 2, 2), we grab a constant C ′2 > 0 (depending on ν, κ, γ, δD, k0,
hl for 0 ≤ l ≤M and Q̃(X), R̃D(X)) such that

(87) ||ε−χ(−k0+γ+hl)
Q̃(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1s
1
κ
−1h(s1/κ,m)ds||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
−k0+γ+hl

κ
+ 1
κ

)−χ(−k0+γ+hl)−(χ+α)κ(δD− 1
κ

)||h(τ,m)||(ν,β,µ,χ,α,κ,ε).

Therefore, gathering (86) and (87) returns

(88) ||ε−χ(−k0+γ+hl)
Q̃(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

−k0+γ+hl
κ

−1

× {s
∫ s

0

∫ +∞

−∞
w((s− s′)1/κ,m−m1)w((s′)1/κ,m1)

1

(s− s′)s′
ds′dm1}

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)||w(τ,m)||2(ν,β,µ,χ,α,κ,ε).

Bearing in mind Proposition 2, 1), we get a constant C2 > 0 (depending on ν, κ, dl, δl and
R̃l(X), R̃D(X) for 1 ≤ l ≤ D − 1), such that

(89) ||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dl,δl,0

κ
−1w(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)dl,δl,0−χ(dl−k0−δl)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

=
C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(dl−k0−δl)||w(τ,m)||(ν,β,µ,χ,α,κ,ε).

Likewise, we can apply Proposition 2, 2) in order to exhibit a constant C ′2 > 0 (depending on
ν, κ, dl, δl, k0, δD and R̃l(X), R̃D(X) for 1 ≤ l ≤ D − 1) with

(90) ||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dl,q1,q2
κ
−1sq2w(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)
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for all q1 ≥ 0 and q2 ≥ 1 with q1 + q2 = δl. Besides,

(91) ||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dl,q1,q2
κ

+q2−p−1spw(s1/κ,m)
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

provided that q2 ≥ 2 and 1 ≤ p ≤ q2 − 1, with q1 + q2 = δl.

Now, we choose rQ̃,R̃D > 0 and $ in such a way that

(92)
s′∑
l=0

|cl|
C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκΓ(−k0+γ+hl
κ )(2π)1/2

|ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)$2

+

M∑
l=s′+1

|cl|
C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκΓ(−k0+γ+hl
κ )(2π)1/2

× |ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)|ε|µl+2β−αhl$2

+
D−1∑
l=1

|ε|∆l+α(δl−dl)+β

Πδl−1
d=0 |γ − d|

C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,δl,0
κ )
|ε|α(dl−k0−δl)$

+
∑

q1+q2=δl,q2≥1

δl!

q1!q2!
Πq1−1
d=0 |γ − d|

 C ′2κ
q2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,q1,q2
κ )

× |ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)$

+
∑

1≤p≤q2−1

|Aq2,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,q1,q2
κ + q2 − p)

×|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)$

)]
≤ $

3
.

With the help of the definition of H2
ε given by (72), we deduce that

(93) ||H2
ε (w(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤ $/3.

Ultimately, we attract our attention to norms estimates for H3
ε .

Taking notice of Proposition 2, 1), we get a constant C2 > 0 (depending on ν, κ, k0, δD, dD),
such that

(94) ||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dD,δD,0

κ
−1w(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)dD,δD,0−χ(dD−k0−δD)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

=
C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(dD−k0−δD)||w(τ,m)||(ν,β,µ,χ,α,κ,ε).
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Moreover, we can apply Proposition 2, 2) in order to exhibit a constant C ′2 > 0 (depending on
ν, κ, k0, dD, δD) with

(95) ||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dD,q1,q2
κ

−1sq2w(s1/κ,m)
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all q1 ≥ 1 and q2 ≥ 1 with q1 + q2 = δD. Besides,

(96) ||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dD,q1,q2
κ

+q2−p−1spw(s1/κ,m)
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

provided that q1 ≥ 1, q2 ≥ 2 and 1 ≤ p ≤ q2 − 1 with q1 + q2 = δD. Finally, we can select a
constant C ′2 > 0 (depending on ν, κ, δD) such that

(97) ||R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)δD−p−1spw(s1/κ,m)

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|χ+α||w(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all 1 ≤ p ≤ δD − 1. We make the choice for the size of radius rQ̃,R̃D and $ in such a manner
that

(98) |ε|∆D+α(δD−dD)+β

ΠδD−1
d=0 |γ − d|

C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,δD,0

κ )
|ε|α(dD−k0−δD)$

+
∑

q1+q2=δD,q1≥1,q2≥1

δD!

q1!q2!
Πq1−1
d=0 |γ − d|

 C ′2κ
q2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,q1,q2

κ )

× |ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)$ +

∑
1≤p≤q2−1

|Aq2,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,q1,q2

κ + q2 − p)

×|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)$

)]
+

∑
1≤p≤δD−1

|AδD,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(δD − p)
|ε|χ+α$ ≤ $

3

From the construction of the map H3
ε , it is now clear that

(99) ||H3
ε (w(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤ $/3.

Eventually, gathering (85), (93) and (99) yields the first claim (74).
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In the last part of the proof, we fix our attention to the affirmation (75). Let w1(τ,m), w2(τ,m) ∈
F d(ν,β,µ,χ,α,κ,ε) with

||w1(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤ $ , ||w2(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤ $.

We first prove that H1
ε is a shrinking map. According to the estimates (77) we obtain a constant

C2 > 0 (depending on ν, κ, kl, for 0 ≤ l ≤ q, hl, for 0 ≤ l ≤ M , Q̃(X), R̃D(X)) and a constant
C2(j) satisfying the estimates (78) such that

(100) ||ε−χ(kl−k0) Q̃(im)τκ

P̃m(τ)

∫ τκ

0
(τκ − s)

kl−k0
κ
−1(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(kl−k0)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε),

||ε−χ(hl−h0) Q̃(im)τκ

P̃m(τ)

∫ τκ

0
(τκ − s)

hl−h0
κ
−1(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε),

||ε−χ(hl−h0+j) Q̃(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

hl−h0+j
κ

−1(w1(s1/κ,m)− w2(s1/κ,m))
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2(j)

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0+j)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε).

Therefore, we choose the radius rQ̃,R̃D > 0 large enough in order that

(101)
s∑
l=1

|al|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(kl−k0κ )
|ε|α(kl−k0)

+

q∑
l=s+1

|al|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(kl−k0κ )
|ε|ml+β−αkl+α(kl−k0)

+ 2|a0

c0
|

 s′∑
l=1

|cl|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(hl−h0κ )
|ε|α(hl−h0)

+
M∑

l=s′+1

|cl|
C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(hl−h0κ )
|ε|µl+2β−αhl |ε|α(hl−h0)


+ 2|a0

c0
|

 s′∑
l=0

|cl|
∑
j≥1

|Jj |
Ĉ2A

j
2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(hl−h0+j)

+
M∑

l=s′+1

|cl|
∑
j≥1

|Jj |
Ĉ2A

j
2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|µl+2β−αhl |ε|α(hl−h0+j)

 ≤ 1

6
.

As a result, we can set down

(102) ||H1
ε (w1(τ,m))−H1

ε (w2(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤
1

6
||w1(τ,m)− w1(τ,m)||(ν,β,µ,χ,α,κ,ε).
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We turn to H2
ε and show that it is a shrinking map as well. As a preparation, we may first

rewrite

(103) w1((τκ − s′)1/κ,m−m1)w1((s′)1/κ,m1)− w2((τκ − s′)1/κ,m−m1)w2((s′)1/κ,m1) =(
w1((τκ − s′)1/κ,m−m1)− w2((τκ − s′)1/κ,m−m1)

)
w1((s′)1/κ,m1)

+ w2((τκ − s′)1/κ,m−m1)
(
w1((s′)1/κ,m1)− w2((s′)1/κ,m1)

)
.

For j = 1, 2, we set

hj(τ,m) = τκ−1

∫ τκ

0

∫ +∞

−∞
wj((τ

κ − s′)1/κ,m−m1)wj((s
′)1/κ,m1)

1

(τκ − s′)s′
ds′dm1.

Regarding both the factorisation (103) above and Proposition 3, we get a constant C3 > 0
(depending on µ, κ) such that

(104)

||h1(τ,m)− h2(τ,m)||(ν,β,µ,χ,α,κ,ε) ≤
C3

|ε|χ+α
(||w1(τ,m)||(ν,β,µ,χ,α,κ,ε) + ||w2(τ,m)||(ν,β,µ,χ,α,κ,ε))

× ||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε).

From (87) together with (104) we pick up a constant C ′2 > 0 (depending on ν, κ, γ, δD, k0, hl for
0 ≤ l ≤M and Q̃(X), R̃D(X)) such that

(105)

||ε−χ(−k0+γ+hl)
Q̃(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ−s)

−k0+γ+hl
κ

−1s
1
κ
−1(h1(s1/κ,m)−h2(s1/κ,m))ds||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
−k0+γ+hl

κ
+ 1
κ

)−χ(−k0+γ+hl)−(χ+α)κ(δD− 1
κ

)||h1(τ,m)−h2(τ,m)||(ν,β,µ,χ,α,κ,ε)

≤ C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)

× (||w1(τ,m)||(ν,β,µ,χ,α,κ,ε) + ||w2(τ,m)||(ν,β,µ,χ,α,κ,ε))||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε).

Bearing in mind (89), we get a constant C2 > 0 (depending on ν, κ, dl, δl and R̃l(X), R̃D(X) for
1 ≤ l ≤ D − 1), such that

(106) ||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dl,δl,0

κ
−1(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(dl−k0−δl)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε).

Likewise, we can apply (90) in order to exhibit a constant C ′2 > 0 (depending on ν, κ, dl, δl, k0, δD
and R̃l(X), R̃D(X) for 1 ≤ l ≤ D − 1) with

(107)

||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dl,q1,q2
κ
−1sq2(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε)
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for all q1 ≥ 0 and q2 ≥ 1 with q1 + q2 = δl. Furthermore, from (91) we deduce

(108)

||ε−χ(dl−k0−δl) R̃l(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ−s)

dl,q1,q2
κ

+q2−p−1sp(w1(s1/κ,m)−w2(s1/κ,m))
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε)

provided that q2 ≥ 2 and 1 ≤ p ≤ q2 − 1, with q1 + q2 = δl.

Now, we sort rQ̃,R̃D > 0 and $ in such a way that

(109)
s′∑
l=0

|cl|
C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκΓ(−k0+γ+hl
κ )(2π)1/2

|ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)

× (||w1(τ,m)||(ν,β,µ,χ,α,κ,ε) + ||w2(τ,m)||(ν,β,µ,χ,α,κ,ε))

+
M∑

l=s′+1

|cl|
C ′2C3

CP̃ (rQ̃,R̃D)
1

δDκΓ(−k0+γ+hl
κ )(2π)1/2

|ε|(χ+α)(−k0+γ+hl−κδD+1)−χ(−k0+γ+hl)

× |ε|µl+2β−αhl(||w1(τ,m)||(ν,β,µ,χ,α,κ,ε) + ||w2(τ,m)||(ν,β,µ,χ,α,κ,ε))

+

D−1∑
l=1

|ε|∆l+α(δl−dl)+β

Πδl−1
d=0 |γ − d|

C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,δl,0
κ )
|ε|α(dl−k0−δl)

+
∑

q1+q2=δl,q2≥1

δl!

q1!q2!
Πq1−1
d=0 |γ − d|

 C ′2κ
q2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,q1,q2
κ )

× |ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)

+
∑

1≤p≤q2−1

|Aq2,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dl,q1,q2
κ + q2 − p)

×|ε|(χ+α)κ(
dl,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dl−k0−δl)

)]
≤ 1

6
.

Subsequently, we obtain

(110) ||H2
ε (w1(τ,m))−H2

ε (w2(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤
1

6
||w1(τ,m)− w1(τ,m)||(ν,β,µ,χ,α,κ,ε).

The last operation will be devoted to the proof that H3
ε is a shrinking map.

Taking notice of (94), we get a constant C2 > 0 (depending on ν, κ, k0, δD, dD), such that

(111)

||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)

dD,δD,0

κ
−1(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|α(dD−k0−δD)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε).
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Moreover, we may have a look at (95) in order to exhibit a constant C ′2 > 0 (depending on
ν, κ, k0, dD, δD) with

(112) ||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ

×
∫ τκ

0
(τκ − s)

dD,q1,q2
κ

−1sq2(w1(s1/κ,m)− w2(s1κ,m))
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all q1 ≥ 1 and q2 ≥ 1 with q1 + q2 = δD. Besides, from (96) we see that

(113) ||ε−χ(dD−k0−δD) R̃D(im)

P̃m(τ)
τκ

×
∫ τκ

0
(τκ − s)

dD,q1,q2
κ

+q2−p−1sp(w1(s1/κ,m)− w2(s1/κ,m))
ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε)

provided that q1 ≥ 1, q2 ≥ 2 and 1 ≤ p ≤ q2 − 1 with q1 + q2 = δD. Finally, having a glance at
(97), we can select a constant C ′2 > 0 (depending on ν, κ, δD) such that

(114) ||R̃D(im)

P̃m(τ)
τκ
∫ τκ

0
(τκ − s)δD−p−1sp(w1(s1/κ,m)− w2(s1/κ,m))

ds

s
||(ν,β,µ,χ,α,κ,ε)

≤ C ′2

CP̃ (rQ̃,R̃D)
1

δDκ

|ε|χ+α||w1(τ,m)− w2(τ,m)||(ν,β,µ,χ,α,κ,ε)

for all 1 ≤ p ≤ δD − 1. In the meanwhile, we select the size of radius rQ̃,R̃D in such a manner
that

(115) |ε|∆D+α(δD−dD)+β

ΠδD−1
d=0 |γ − d|

C2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,δD,0

κ )
|ε|α(dD−k0−δD)

+
∑

q1+q2=δD,q1≥1,q2≥1

δD!

q1!q2!
Πq1−1
d=0 |γ − d|

 C ′2κ
q2

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,q1,q2

κ )

× |ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD) +

∑
1≤p≤q2−1

|Aq2,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(
dD,q1,q2

κ + q2 − p)

×|ε|(χ+α)κ(
dD,q1,q2

κ
+q2−δD+ 1

κ
)−χ(dD−k0−δD)

)]
+

∑
1≤p≤δD−1

|AδD,p|
C ′2κ

p

CP̃ (rQ̃,R̃D)
1

δDκΓ(δD − p)
|ε|χ+α ≤ 1

6
.

The next inequality must then hold

(116) ||H3
ε (w1(τ,m))−H3

ε (w2(τ,m))||(ν,β,µ,χ,α,κ,ε) ≤
1

6
||w1(τ,m)− w1(τ,m)||(ν,β,µ,χ,α,κ,ε).
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Gathering (102), (110) and (116) legitimates the estimates (75).

At the very end of the proof, we now take for granted that all conditions (84), (92), (98) and
(101), (109), (115) hold for the radii rQ̃,R̃D and $. Then both (74) and (75) hold at the same
time and the Lemma 2 is shown. 2

We consider the ball B̄(0, $) ⊂ F d(ν,β,µ,χ,α,κ,ε) just built above in Lemma 2 which is actually a

complete metric space for the norm ||.||(ν,β,µ,χ,α,κ,ε). From the lemma above, we get that Hε is
a contractive map from B̄(0, $) into itself. Due to the classical contractive mapping theorem,
we deduce that the map Hε has a unique fixed point denoted ωdκ(τ,m, ε) in the ball B̄(0, $),
meaning that

(117) Hε(ωdκ(τ,m, ε)) = ωdκ(τ,m, ε)

for a unique ωdκ(τ,m, ε) ∈ F d(ν,β,µ,χ,α,κ,ε) such that ||ωdκ(τ,m, ε)||(ν,β,µ,χ,α,κ,ε) ≤ $, for all ε ∈
D(0, ε0)\{0}. Moreover, the function ωdκ(τ,m, ε) depends holomorphically on ε in D(0, ε0)\{0}.

Now, if one sets apart the terms −a0Q̃(im)ωκ(τ,m, ε) in the left handside Lτ,m,ε and
R̃D(im)(κτκ)δDωκ(τ,m, ε) in the right handside Rτ,m,ε of equation (58), we observe by dividing
with the polynomial P̃m(τ) given in (62) that (58) can be exactly rewritten as the equation
(117) above. Therefore, the unique fixed point ωdκ(τ,m, ε) of Hε in B̄(0, $) precisely solves the
problem (58) with vanishing initial data ωκ(0,m, ε) ≡ 0. This yields the proposition. 2

6 Singular analytic solutions on sectors to the main problem

We go back to the sequence of formal constructions performed in Section 4 under the new light
shed in Section 5 on the problem (58).

We first recall the definitions of a good covering and associated sets of sectors as introduced
in [20].

Definition 4 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς − 1, we consider open sectors Ep
centered at 0, with radius ε0 > 0 and opening π

(χ+α)κ + ξp with ξp > 0 small enough such

that Ep ∩ Ep+1 6= ∅, for all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0). Moreover, we
assume that the intersection of any three different elements in {Ep}0≤p≤ς−1 is empty and that
∪ς−1
p=0Ep = U \ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {Ep}0≤p≤ς−1

is called a good covering in C∗.

Definition 5 Let {Ep}0≤p≤ς−1 be a good covering in C∗. Let T be an open bounded sector
centered at 0 with radius rT and consider a family of open sectors

Sdp,θ,ε0rT = {T ∈ C∗/|T | < ε0rT , |dp − arg(T )| < θ/2}

with aperture θ > π/κ and where dp ∈ R, for all 0 ≤ p ≤ ς − 1, are directions which satisfy the
following constraints: Let ql(m) be the roots of the polynomials (62) defined by (63) and Sdp,
0 ≤ p ≤ ς − 1 be unbounded sectors centered at 0 with directions dp and with small aperture. We
assume that
1) There exists a constant M1 > 0 such that

(118) |τ − ql(m)| ≥M1(1 + |τ |)
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for all 0 ≤ l ≤ δDκ− 1, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
2) There exists a constant M2 > 0 such that

(119) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , δDκ− 1}, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
3) For all 0 ≤ p ≤ ς − 1, for all t ∈ T , all ε ∈ Ep, we have that εα+χt ∈ Sdp,θ,εα+χ0 rT

.

We say that the family {(Sdp,θ,ε0rT )0≤p≤ς−1, T } is associated to the good covering {Ep}0≤p≤ς−1.

In the next main first outcome, we construct a family of actual holomorphic solutions to the
principal equation (29) which may be meromorphic at (ε, t) = (0, 0) and defined on the sectors
Ep w.r.t the complex parameter ε. Furthermore, we can also control the difference between any
two neighboring solutions on the intersections Ep ∩Ep+1 and state that it is exponentially flat of
order at most (χ+ α)κ w.r.t ε.

Theorem 1 We consider the nonlinear singularly perturbed PDE (29) and we take for granted
that all the assumptions (28), (30), (33), (34), (35), (43), (44), (45), (54), (61), (67), (68) and
(69) hold for some rational numbers α > 1, β ∈ Q and integers γ ∈ Z, κ ≥ 1. Let {Ep}0≤p≤ς−1

a good covering in C∗ be given, for which a family of open sectors {(Sdp,θ,ε0rT )0≤p≤ς−1, T } asso-
ciated to this good covering can be singled out.

Then, there exist a radius rQ̃,R̃D > 0 large enough, ε0 > 0 small enough, for which a family

{udp(t, z, ε)}0≤p≤ς−1 of actual solutions of (29) can be built up. More exactly, the functions
udp(t, z, ε) solve the next singularly perturbed PDE

(120) Q̃(∂z)

(
(

q∑
l=0

alε
mltkl)udp(t, z, ε) + (

M∑
l=0

clε
µlthl)(udp)2(t, z, ε)

)

=

Q∑
j=0

b̃j(z)ε
nj tbj + F (εαt, ε) +

D∑
l=1

ε∆ltdl∂δlt R̃l(∂z)u(t, z, ε)

with an additional part of forcing term F (εαt, ε) where F (T, ε) is given by the expression (134)
and defines a holomorphic bounded function provided that the additional constraints (135) are
fulfilled. Each function udp(t, z, ε) can be decomposed as

(121) udp(t, z, ε) = εβ
(
−a0

c0
(εαt)k0−h0 − a0

c0
(εαt)k0−h0J(εαt) + (εαt)γvdp(t, z, ε)

)
where J(T ) is holomorphic on some disc D(0, dJ), dJ > 0 and vdp(t, z, ε) defines a bounded
holomorphic function on T × Hβ′ × Ep for any given 0 < β′ < β, with vdp(0, z, ε) ≡ 0 on
Hβ′×Ep. Furthermore, there exist constants Kp,Mp > 0 and σ > 0 (independent of ε) such that

(122) sup
t∈T ∩D(0,σ),z∈Hβ′

|vdp+1(t, z, ε)− vdp(t, z, ε)| ≤ Kp exp(− Mp

|ε|(χ+α)κ
)

for all ε ∈ Ep+1 ∩ Ep, for all 0 ≤ p ≤ ς − 1 (where by convention vdς = vd0).

Proof We plan to construct actual solutions of the main equation (29) by performing backwards
the sequence of constructions described in Section 4 starting from problem (58) solved in Section
5.
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Let {Ep}0≤p≤ς−1 be a good covering in C∗ and let {(Sdp,θ,ε0rT )0≤p≤ς−1, T } be a family of
sectors associated to this good covering. From Proposition 6, we see that for each direction dp,

one can get a solution ω
dp
κ (τ,m, ε) of the convolution equation (58) that belongs to the space

F
dp
(ν,β,µ,χ,α,κ,ε) and thus satisfies the next bounds

(123) |ωdp
κ (τ,m, ε)| ≤ $(1 + |m|)−µe−β|m|

| τ
εχ+α
|

1 + | τ
εχ+α
|2κ

exp(ν| τ

εχ+α
|κ)

for all τ ∈ D̄(0, ρ) ∪ Sdp , all m ∈ R, all ε ∈ D(0, ε0) \ {0}, for some well chosen $ > 0. Besides,

these functions ω
dp
κ (τ,m, ε) are analytic continuations w.r.t τ of a common convergent series

ωκ(τ,m, ε) =
∑
n≥1

ωn(m, ε)

Γ(nκ )
τn

with coefficients in the Banach space E(β,µ) solution of (58) for all τ ∈ D(0, ρ). In particular,
we see that the formal power series

Ωκ(T,m, ε) =
∑
n≥1

ωn(m, ε)Tn

is mκ−summable in direction dp as a series with coefficients in the Banach space E(β,µ) for all
ε ∈ D(0, ε0) \ {0} in the sense of Definition 3. We denote

(124) Ω
dp
κ (T,m, ε) = κ

∫
Lγ

ω
dp
κ (u,m, ε) exp(−(

u

T
)κ)

du

u

it’s mκ−sum in direction dp, where Lγ = R+e
iγ ⊂ Sdp , which defines an E(β,µ)−valued analytic

function with respect to T on a sector

Sdp,θ,h′|ε|χ+α = {T ∈ C∗ : |T| < h′|ε|χ+α , |dp − arg(T)| < θ/2}

for π
κ < θ < π

κ +Ap(Sdp) (where Ap(Sdp) denotes the aperture of the sector Sdp) and some h′ > 0
(independent of ε), for all ε ∈ D(0, ε0) \ {0}.

Bearing in mind the identities of Proposition 4 and using the properties for the mκ−sum with
respect to derivatives and products (within the Banach algebra E = E(β,µ) equipped with the

convolution product ? as described in Proposition 1), we check that the functions Ω
dp
κ (T,m, ε)

must solve the next problem

(125) LT,m,ε(Ω
dp
κ (T,m, ε)) = RT,m,ε(Ω

dp
κ (T,m, ε))
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where

(126) LT,m,ε(Ω
dp
κ (T,m, ε)) =

Q̃(im)Ω
dp
κ (T,m, ε)

(
−a0 +

s∑
l=1

alε
−χ(kl−k0)Tkl−k0 +

q∑
l=s+1

alε
ml+β−αkl−χ(kl−k0)Tkl−k0

− 2(
a0

c0
)(

s′∑
l=1

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)

−2(
a0

c0
)J(ε−χT)(

s′∑
l=0

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)

)

+ Q̃(im)

(
1

(2π)1/2

∫ +∞

−∞
Ω
dp
κ (T,m−m1, ε)Ω

dp
κ (T,m1, ε)dm1

)
ε−χ(−k0+γ)T−k0+γ

× (

s′∑
l=0

clε
−χhlThl +

M∑
l=s′+1

clε
µl+2β−αhl−χhlThl)

and

(127) RT,m,ε(Ω
dp
κ (T,m, ε)) =

Q∑
j=0

B̃j(m)εnj−αbj−χ(bj−k0−γ)Tbj−k0−γ

+

D−1∑
l=1

ε∆l+α(δl−dl)+β ×
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dl−k0−q1−q2)R̃l(im)

× Tdl,q1,q2{(Tκ+1∂T)q2 +
∑

1≤p≤q2−1

Aq2,pTκ(q2−p)(Tκ+1∂T)p}Ωdp
κ (T,m, ε)

+ ε∆D+α(δD−dD)+β ×
∑

q1+q2=δD,q1≥1

δD!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dD−k0−q1−q2)R̃D(im)

× TdD,q1,q2{(Tκ+1∂T)q2 +
∑

1≤p≤q2−1

Aq2,pTκ(q2−p)(Tκ+1∂T)p}Ωdp
κ (T,m, ε)

+ R̃D(im){(Tκ+1∂T)δD +
∑

1≤p≤δD−1

AδD,pT
κ(δD−p)(Tκ+1∂T)p}Ωdp

κ (T,m, ε)

We examine now the function

(128) Vdp(T, z, ε) = F−1(m 7→ Ω
dp
κ (T,m, ε))(z)

which defines a bounded holomorphic function w.r.t T on Sdp,θ,h′|ε|χ+α , w.r.t z on Hβ′ for any
0 < β′ < β and for all ε on D(0, ε0) \ {0}. Using the properties of the Fourier inverse transform
described in Proposition 5 and watching out the expansions (56), we extract from the equality
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(125) the next equation satisfied by Vdp(T, z, ε), namely

(129) Q̃(∂z)Vdp(T, z, ε)

(
−a0 +

s∑
l=1

alε
−χ(kl−k0)Tkl−k0 +

q∑
l=s+1

alε
ml+β−αkl−χ(kl−k0)Tkl−k0

− 2(
a0

c0
)(

s′∑
l=1

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)

−2(
a0

c0
)J(ε−χT)(

s′∑
l=0

clε
−χ(hl−h0)Thl−h0 +

M∑
l=s′+1

clε
µl+2β−αhl−χ(hl−h0)Thl−h0)

)

+ Q̃(∂z)(Vdp)2(T, z, ε)ε−χ(−k0+γ)T−k0+γ(
s′∑
l=0

clε
−χhlThl +

M∑
l=s′+1

clε
µl+2β−αhl−χhlThl)

=

Q∑
j=0

b̃j(z)ε
nj−αbj−χ(bj−k0−γ)Tbj−k0−γ

+

D−1∑
l=1

ε∆l+α(δl−dl)+β

×
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dl−k0−q1)Tdl−k0−q1R̃l(∂z)εχq2∂q2T Vdp(T, z, ε)

+ ε∆D+α(δD−dD)+β
∑

q1+q2=δD,q1≥1

δD!

q1!q2!
Πq1−1
d=0 (γ − d)ε−χ(dD−k0−q1)TdD−k0−q1

× R̃D(∂z)ε
χq2∂q2T Vdp(T, z, ε) + TdD−k0R̃D(∂z)∂

δD
T Vdp(T, z, ε)

We focus on the function

(130) V dp(T, z, ε) = Vdp(εχT, z, ε)

which defines a bounded holomorphic function w.r.t T such that T ∈ ε−χSdp,θ,h′|ε|χ+α and w.r.t
z on Hβ′ for any 0 < β′ < β, for all ε ∈ D(0, ε0) \ {0}. Having a quick look at (129), we observe
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that V dp(T, z, ε) solves a related equation which after multiplication by T k0+γ yields

(131) Q̃(∂z)V
dp(T, z, ε)

(
−a0T

k0+γ + (
s∑
l=1

alT
kl +

q∑
l=s+1

alε
ml+β−αklT kl)T γ

− 2(
a0

c0
)T k0−h0+γ(

s′∑
l=1

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

−2(
a0

c0
)T k0−h0+γJ(T )(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

)

+ Q̃(∂z)(V
dp)2(T, z, ε)T 2γ(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

=

Q∑
j=0

b̃j(z)ε
nj−αbjT bj

+
D∑
l=1

ε∆l+α(δl−dl)+β(
∑

q1+q2=δl

δl!

q1!q2!
Πq1−1
d=0 (γ − d)T dl+γ−q1R̃l(∂z)∂

q2
T V

dp(T, z, ε))

In the next step, we introduce the function

(132) Udp(T, z, ε) = −a0

c0
T k0−h0 − a0

c0
T k0−h0J(T ) + T γV dp(T, z, ε)

which defines a holomorphic function w.r.t T such that T ∈ ε−χSdp,θ,h′|ε|χ+α and w.r.t z on Hβ′

for any 0 < β′ < β, for all ε ∈ D(0, ε0) \ {0}. Notice that this function may be meromorphic
at T = 0, provided that h0 > k0. Taking (131) into consideration, we see that the function
Udp(T, z, ε) solves the next PDE with forcing term

(133) Q̃(∂z)

(
(

q∑
l=0

alε
ml+β−αklT kl)Udp(T, z, ε) + (

M∑
l=0

clε
µl+2β−αhlT hl)(Udp)2(T, z, ε)

)

=

Q∑
j=0

b̃j(z)ε
nj−αbjT bj + F (T, ε) +

D∑
l=1

ε∆l+α(δl−dl)+βT dlR̃l(∂z)∂
δl
T U

dp(T, z, ε)

which is exaclty the equation (39) announced in Remark 3 of Section 4.1, where F (T, ε) is a
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contribution to the forcing term equal to

F (T, ε) = −Q̃(0)(
a0

c0
T k0−h0 +

a0

c0
T k0−h0J(T ))

×

(
−a0T

k0 + (

s∑
l=1

alT
kl +

q∑
l=s+1

alε
ml+β−αklT kl)− 2(

a0

c0
)T k0−h0(

s′∑
l=1

clT
hl

+
M∑

l=s′+1

clε
µl+2β−αhlT hl)− 2(

a0

c0
)T k0−h0J(T )(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

)

− Q̃(0)(
a0

c0
T k0−h0 +

a0

c0
T k0−h0J(T ))2(

s′∑
l=0

clT
hl +

M∑
l=s′+1

clε
µl+2β−αhlT hl)

+

D∑
l=1

ε∆l+α(δl−dl)+βT dlR̃l(0)∂δlT (
a0

c0
T k0−h0 +

a0

c0
T k0−h0J(T )).

Using the fact that U0(T ) solves the second order algebraic equation (37) and noticing the next
identity

−a0T
k0 +

s∑
l=1

alT
kl − 2(

a0

c0
)T k0−h0(

s′∑
l=1

clT
hl) = (

s∑
l=0

alT
kl)− 2(

a0

c0
)T k0−h0(

s′∑
l=0

clT
hl)

we can abridge the latter expression of F (T, ε) as

(134) F (T, ε) = Q̃(0)U0(T )

(
(

q∑
l=s+1

alε
ml+β−αklT kl)

−2(
a0

c0
)T k0−h0(

M∑
l=s′+1

clε
µl+2β−αhlT hl)− 2(

a0

c0
)T k0−h0J(T )(

M∑
l=s′+1

clε
µl+2β−αhlT hl)

)

− Q̃(0)U2
0 (T )(

M∑
l=s′+1

clε
µl+2β−αhlT hl)

+

D∑
l=1

ε∆l+α(δl−dl)+βT dlR̃l(0)∂δlT (
a0

c0
T k0−h0 +

a0

c0
T k0−h0J(T )).

Observe that F (T, ε) is bounded holomorphic w.r.t ε and is analytic in T near 0 provided that
the next additional conditions hold

(135) kl + k0 − h0 ≥ 0 , hp + 2(k0 − h0) ≥ 0 , dm + k0 − h0 − δm ≥ 0

for all s+ 1 ≤ l ≤ q, s′ + 1 ≤ p ≤M and 1 ≤ m ≤ D.

Finally, we put

(136) udp(t, z, ε) = εβUdp(εαt, z, ε) = εβ
(
U0(εαt) + (εαt)γVdp(εχ+αt, z, ε)

)
which defines a holomorphic function w.r.t t on T , w.r.t z ∈ Hβ′ for any 0 < β′ < β, w.r.t
ε ∈ Ep, where T and Ep are sectors described in Definition 5. As a result, udp(t, z, ε) admits the
decomposition (121) with vdp(t, z, ε) = Vdp(εχ+αt, z, ε) which determines a bounded holomorphic
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function on T × Hβ′ × Ep for any given 0 < β′ < β with the property vdp(0, z, ε) ≡ 0 for all
(z, ε) ∈ Hβ′ × Ep. Again, the function udp(t, z, ε) may be meromorphic in both t and ε in the
vicinity of the origin. From (133) and (134) we deduce that udp(t, z, ε) solves the next main
problem

Q̃(∂z)

(
(

q∑
l=0

alε
mltkl)udp(t, z, ε) + (

M∑
l=0

clε
µlthl)(udp)2(t, z, ε)

)

=

Q∑
j=0

b̃j(z)ε
nj tbj + F (εαt, ε) +

D∑
l=1

ε∆ltdl∂δlt R̃l(∂z)u
dp(t, z, ε)

with additional forcing term F (εαt, ε). As a spin-off, by applying the operator ∂vz on the left
and right handside of this last equation, we see that udp(t, z, ε) is also an actual solution of the
problem (29) disclosed at the beginning of Section 4.

In the last part of the proof, we proceed to justify the estimates (122). The steps of the
verification are similar to the arguments displayed in Theorem 1 of [20], but we choose to present
them for the sake of completeness. Let p ∈ {0, . . . , ς − 1}. By the sequence of constructions
performed above, we see that the function vdp(t, z, ε) can be written as a mκ−Laplace and
Fourier transform

(137) vdp(t, z, ε) =
κ

(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
κ (u,m, ε) exp(−(

u

εχ+αt
)κ)eizm

du

u
dm

where Lγp = R+e
iγp ⊂ Sdp . Using the fact that the function u 7→ ωκ(u,m, ε) exp(−( u

εχ+αt
)κ)/u

is holomorphic on D(0, ρ) for all (m, ε) ∈ R × (D(0, ε0) \ {0}), its integral along the union of a
segment starting from 0 to (ρ/2)eiγp+1 , an arc of circle with radius ρ/2 which connects (ρ/2)eiγp+1

and (ρ/2)eiγp and a segment starting from (ρ/2)eiγp to 0, is vanishing. Therefore, we can write
the difference vdp+1 − vdp as a sum of three integrals,

(138) vdp+1(t, z, ε)− vdp(t, z, ε) =
κ

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1
κ (u,m, ε)e−( u

εχ+αt
)κeizm

du

u
dm

− κ

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
κ (u,m, ε)e−( u

εχ+αt
)κeizm

du

u
dm

+
κ

(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωκ(u,m, ε)e−( u
εχ+αt

)κeizm
du

u
dm

where Lρ/2,γp+1
= [ρ/2,+∞)eiγp+1 , Lρ/2,γp = [ρ/2,+∞)eiγp and Cρ/2,γp,γp+1

is an arc of circle

with radius connecting (ρ/2)eiγp and (ρ/2)eiγp+1 with a well chosen orientation.

We give estimates for the quantity

I1 =

∣∣∣∣∣ κ

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1
κ (u,m, ε)e−( u

εχ+αt
)κeizm

du

u
dm

∣∣∣∣∣ .
By construction, the direction γp+1 (which depends on εχ+αt) is chosen in such a way that
cos(κ(γp+1 − arg(εχ+αt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T , for some fixed δ1 > 0. From the
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estimates (123), we get that

(139) I1 ≤
κ

(2π)1/2

∫ +∞

−∞

∫ +∞

ρ/2
$(1 + |m|)−µe−β|m|

r
|ε|χ+α

1 + ( r
|ε|χ+α )2κ

× exp(ν(
r

|ε|χ+α
)κ) exp(−cos(κ(γp+1 − arg(εχ+αt)))

|εχ+αt|κ
rκ)e−mIm(z)dr

r
dm

≤ κ$

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm

∫ +∞

ρ/2

1

|ε|χ+α
exp(−(

δ1

|t|κ
− ν)(

r

|ε|χ+α
)κ)dr

≤ 2κ$

(2π)1/2

∫ +∞

0
e−(β−β′)mdm

∫ +∞

ρ/2

|ε|(χ+α)(κ−1)

( δ1
|t|κ − ν)κ(ρ2)κ−1

×
( δ1
|t|κ − ν)κrκ−1

|ε|(χ+α)κ
exp(−(

δ1

|t|κ
−ν)(

r

|ε|χ+α
)κ)dr

≤ 2κ$

(2π)1/2

|ε|(χ+α)(κ−1)

(β − β′)( δ1
|t|κ − ν)κ(ρ2)κ−1

exp(−(
δ1

|t|κ
− ν)

(ρ/2)κ

|ε|(χ+α)κ
)

≤ 2κ$

(2π)1/2

|ε|(χ+α)(κ−1)

(β − β′)δ2κ(ρ2)κ−1
exp(−δ2

(ρ/2)κ

|ε|(χ+α)κ
)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/κ, for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

In the same way, we also give estimates for the integral

I2 =

∣∣∣∣∣ κ

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
κ (u,m, ε)e−( u

εχ+αt
)κeizm

du

u
dm

∣∣∣∣∣ .
Namely, the direction γp (which depends on εχ+αt) is chosen in such a way that cos(κ(γp −
arg(εχ+αt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T , for some fixed δ1 > 0. Again from the
estimates (123) and following the same steps as in (139), we deduce that

(140) I2 ≤
2κ$

(2π)1/2

|ε|(χ+α)(κ−1)

(β − β′)δ2κ(ρ2)κ−1
exp(−δ2

(ρ/2)κ

|ε|(χ+α)κ
)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/κ, for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Finally, we give upper bound estimates for the integral

I3 =

∣∣∣∣∣ κ

(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωκ(u,m, ε)e−( u
εχ+αt

)κeizm
du

u
dm

∣∣∣∣∣ .
By construction, the arc of circle Cρ/2,γp,γp+1

is chosen in such a way that cos(κ(θ−arg(εχ+αt))) ≥
δ1, for all θ ∈ [γp, γp+1] (if γp < γp+1), θ ∈ [γp+1, γp] (if γp+1 < γp), for all t ∈ T , all ε ∈ Ep∩Ep+1,
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for some fixed δ1 > 0. Bearing in mind (123) and (79), we get that

(141) I3 ≤
κ

(2π)1/2

∫ +∞

−∞

∣∣∣∣∣
∫ γp+1

γp

$(1 + |m|)−µe−β|m|
ρ/2
|ε|χ+α

1 + ( ρ/2
|ε|χ+α )2κ

× exp(ν(
ρ/2

|ε|χ+α
)κ) exp(−cos(κ(θ − arg(εχ+αt)))

|εχ+αt|κ
(
ρ

2
)κ) e−mIm(z)dθ

∣∣∣ dm
≤ κ$

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm× |γp − γp+1|

ρ/2

|ε|χ+α
exp(−

( δ1
|t|κ − ν)

2
(
ρ/2

|ε|χ+α
)κ)

× exp(−
( δ1
|t|κ − ν)

2
(
ρ/2

|ε|χ+α
)κ)

≤ 2κ$|γp − γp+1|
(2π)1/2(β − β′)

sup
x≥0

x1/κe
−(

δ1
|t|κ−ν)x × exp(−

( δ1
|t|κ − ν)

2
(
ρ/2

|ε|χ+α
)κ)

≤ 2κ$|γp − γp+1|
(2π)1/2(β − β′)

(
1/κ

δ2
)1/κe−1/κ exp(−δ2

2
(
ρ/2

|ε|χ+α
)κ)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/κ, for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Finally, gathering the three above inequalities (139), (140) and (141), we deduce from the
decomposition (138) that

|vdp+1(t, z, ε)− vdp(t, z, ε)| ≤ 4κ$

(2π)1/2

|ε|(χ+α)(κ−1)

(β − β′)δ2κ(ρ2)κ−1
exp(−δ2

(ρ/2)κ

|ε|(χ+α)κ
)

+
2κ$|γp − γp+1|
(2π)1/2(β − β′)

(
1/κ

δ2
)1/κe−1/κ exp(−δ2

2
(
ρ/2

|ε|χ+α
)κ)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/k, for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Therefore, the inequality (122) holds. 2

7 Parametric Gevrey asymptotic expansions of the solutions

7.1 k−Summable formal series and Ramis-Sibuya Theorem

We remind the definition of k−Borel summability of formal series with coefficients in a Banach
space as introduced in [2].

Definition 6 Let k ≥ 1 be an integer. A formal series

X̂(ε) =

∞∑
j=0

ajε
j ∈ F[[ε]]

with coefficients in a Banach space (F, ||.||F) is said to be k−summable with respect to ε in the
direction d ∈ R if

i) the existence of ρ ∈ R+ is ensured such that the following formal series, called formal
Borel transform of X̂ of order k

Bk(X̂)(τ) =
∞∑
j=0

ajτ
j

Γ(1 + j
k )
∈ F[[τ ]],
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is absolutely convergent for |τ | < ρ,

ii) one can select a δ > 0 such that the series Bk(X̂)(τ) can be analytically continued with
respect to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and
K > 0 such that

||B(X̂)(τ)||F ≤ CeK|τ |
k

for all τ ∈ Sd,δ.

If the definition above is fulfilled, the vector valued Laplace transform of order k of Bk(X̂)(τ)
in the direction d is set as

Ldk(Bk(X̂))(ε) = ε−k
∫
Lγ

Bk(X̂)(u)e−(u/ε)kkuk−1du,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a way

that cos(k(γ − arg(ε))) ≥ δ1 > 0, for some fixed δ1, for all ε in a sector

Sd,θ,R1/k = {ε ∈ C∗ : |ε| < R1/k , |d− arg(ε)| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. The function Ldk(Bk(X̂))(ε) is called the k−sum of

the formal series X̂(t) in the direction d. It is bounded and holomorphic on the sector Sd,θ,R1/k

and has the formal series X̂(ε) as Gevrey asymptotic expansion of order 1/k with respect to ε
on Sd,θ,R1/k . This means that for all π

k < θ1 < θ, there exist C,M > 0 such that

||Ldk(Bk(X̂))(ε)−
n−1∑
p=0

apε
p||F ≤ CMnΓ(1 +

n

k
)|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R1/k .

Now, we state a cohomological criterion for k−summability of formal series with coefficients
in Banach spaces (see [3], p. 121 or [13], Lemma XI-2-6) which is known as the Ramis-Sibuya
theorem in the literature.

Theorem (RS) Let (F, ||.||F) be a Banach space over C and {Ep}0≤p≤ς−1 be a good covering
in C∗. For all 0 ≤ p ≤ ς − 1, let Gp be a holomorphic function from Ep into the Banach space
(F, ||.||F) and let the cocycle Θp(ε) = Gp+1(ε)−Gp(ε) be a holomorphic function from the sector
Zp = Ep+1 ∩ Ep into E (with the convention that Eς = E0 and Gς = G0). We make the following
assumptions.

1) The functions Gp(ε) are bounded as ε ∈ Ep tends to the origin in C, for all 0 ≤ p ≤ ς − 1.

2) The functions Θp(ε) are exponentially flat of order k on Zp, for all 0 ≤ p ≤ ς − 1. This
means that there exist constants Cp, Ap > 0 such that

||Θp(ε)||F ≤ Cpe−Ap/|ε|
k

for all ε ∈ Zp, all 0 ≤ p ≤ ς − 1.

Then, for all 0 ≤ p ≤ ς − 1, the functions Gp(ε) are the k−sums on Ep of a common
k−summable formal series Ĝ(ε) ∈ F[[ε]].
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7.2 Parametric Gevrey asymptotic expansions of the solutions and construc-
tion of (χ+ α)κ−sums

In this subsection, we state the second main result of our work, namely the existence of a formal
power series in the parameter ε whose coefficients are bounded holomorphic functions on the
product of a sector with small radius centered at 0 and a strip in C2 which is the common Gevrey
asymptotic expansion of order 1

(χ+α)κ of the functions vdp(t, z, ε) appearing in the expansion (121)

of the solutions udp(t, z, ε) to the main equations (29) and (120) established in Theorem 1.

Theorem 2 Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal
power series

v̂(t, z, ε) =
∑
m≥0

vm(t, z)εm

whose coefficients vm(t, z) belong to the Banach space F of bounded holomorphic functions on
(T ∩D(0, σ)) ×Hβ′ equipped with supremum norm, where σ > 0 is defined in Theorem 1, and
such that the functions vdp(t, z, ε) from the decomposition (121), are its (χ+ α)κ−sums on the
sectors Ep, for all 0 ≤ p ≤ ς − 1, viewed as holomorphic functions from Ep into F. In other
words, for all 0 ≤ p ≤ ς − 1, there exist two constants Cp,Mp > 0 such that

(142) sup
t∈T ∩D(0,σ),z∈Hβ′

|vdp(t, z, ε)−
n−1∑
m=0

vm(t, z)εm| ≤ CpMn
p Γ(1 +

n

(χ+ α)κ
)|ε|n

for all n ≥ 1, all ε ∈ Ep.

Proof We consider the family of functions vdp(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theorem
1. For all 0 ≤ p ≤ ς − 1, we define Gp(ε) := (t, z) 7→ vdp(t, z, ε), which is by construction a
holomorphic and bounded function from Ep into the Banach space F of bounded holomorphic
functions on (T ∩ D(0, σ)) × Hβ′ equipped with the supremum norm, where T is introduced
in Definition 5, σ > 0 is set in Theorem 1 and β′ > 0 is the width of the strip Hβ′ on which
the coefficients bj(z) are defined with respect to z (see (30)). Bearing in mind the estimates
(122), we see that the cocycle Θp(ε) = Gp+1(ε) − Gp(ε) is exponentially flat of order (χ + α)κ
on Zp = Ep ∩ Ep+1, for any 0 ≤ p ≤ ς − 1. Therefore, according to Theorem (RS) stated above,
we obtain a formal power series

Ĝ(ε) =
∑
m≥0

vm(t, z)εm =: v̂(t, z, ε) ∈ F[[ε]]

such that the functions Gp(ε) are the (χ+ α)κ−sums on Ep of Ĝ(ε) as F−valued functions, for
all 0 ≤ p ≤ ς − 1. The result follows. 2
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