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Abstract. In this paper we consider the evolution of sets by a fractional mean curvature
flow. Our main result states that for any dimension n > 2, there exists an embedded
surface in Rn evolving by fractional mean curvature flow, which developes a singularity
before it can shrink to a point. When n > 3 this result generalizes the analogue result of
Grayson [18] for the classical mean curvature flow. Interestingly, when n = 2, our result
provides instead a counterexample in the nonlocal framework to the well known Grayson
Theorem [19], which states that any smooth embedded curve in the plane evolving by
(classical) MCF shrinks to a point.

1. Introduction

This paper is concerned with the study of a nonlocal mean curvature flow. More pre-
cisely, we want to study the evolution Et, for time t > 0 of an inital set E0, such that the
velocity of a point x ∈ ∂Et in the outer normal direction ν is given by the quantity −Hs

E,
where Hs

E denotes the fractional mean curvature of E, that is, for any x ∈ ∂Et we have

∂tx · ν = −Hs
Et . (1)

For a real parameter s ∈ (0, 1), we recall that the fractional mean curvature of a set E
at a point x ∈ ∂E is defined as follows

Hs
E(x) :=

∫
Rn

χCE(y)− χE(y)

|x− y|n+s
dy, (2)

where χA denotes the characteristic function of the set A, CA denotes the complement of
A, and the integral above has to be understood in the principal value sense.

This evolution is the natural analogue in the nonlocal setting of the classical mean
curvature flow, which has been widely studied in the last decades, see e.g. [15, 27].

While the classical mean curvature flow is the L2-gradient flow of the usual perimeter
functional, it can be proved that (1) is the L2-gradient flow of the fractional perimeter,
which was first introduced in [5], where suitable density estimates, a monotonicity formula,
and some regularity results for minimizers were established. The question of the regularity
for minimizers of the fractional perimeter was also addressed in several recent works (see [3,
14, 8, 29]). Further motivations for the study of (1) come from dislocation dynamics and
phasefield theory for fractional reaction-diffusion equations, see [26].
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The classical mean curvature flow is a quasilinear parabolic problem and a local exis-
tence result holds for smooth solutions starting from any compact regular initial surface,
see [17, 27]. As time evolves, solutions typically develop singularities in finite time due
to curvature blowup. Several notions of generalized solutions have been introduced to
study the flow after the onset of singularities. Particularly relevant for our purposes is
the definition by Chen, Giga, Goto [13] and by Evans and Spruck [16], based on the level
set approach and the notion of viscosity solutions.

For the fractional mean curvature flow, local smooth solutions are also expected to exist,
but no proof of this is available yet. There are existence results for viscosity solutions, first
obtained by Imbert [26], and later extended to more general nonlocal flows by Chambolle,
Morini, Ponsiglione in [10, 9] and by Chambolle, Novaga, Ruffini [12].

The analysis of the formation of singularities is an important topic in classical mean
curvature flow. A pioneering result in this framework was obtained in [17] and [20], where
it was shown that a closed convex surface remains convex along the evolution and shrinks
to a point in finite time. If convexity is dropped, then other kinds of singular behaviour
may occur. A standard example is the so called neckpinch. The idea is to consider a
surface which looks like two large balls connected by a cylindrical very thin neck, so that,
in dimension n > 2, the mean curvature in the neck is much larger than the one in the
balls, and hence the radius of the neck must go to zero faster than the radius of the balls.
The existence of this type of surfaces was first proved by Grayson [18] and later considered
with a simplified proof by Ecker [15], see also Angenent [2]. In the 2-dimensional case
a result by Grayson [19] ensures instead that any smooth embedded curve in the plane
evolving by mean curvature flow shrinks to a point.

In this paper we construct examples of neckpinch singularities for the fractional mean
curvature flow. More precisely, we obtain the following result

Theorem 1. Let n > 2. There exists an embedded surface M0 in Rn such that the
viscosity solution of the fractional mean curvature flow (1) starting from M0, developes
a singularity before it shrinks to a point.

We stress that, in contrast to the classical case, our construction can be made in any
dimension, in the particular for n = 2, showing that Grayson’s theorem fails in the
nonlocal case. It also shows that the distance comparison property for curves for the
classical flow proved by Huisken [22] no longer holds in the nonlocal case. Our result
has some analogies with the one of [4], where Delaunay-type periodic curves in the plane
with constant fractional mean curvature are constructed, while in the classical case such
objects exist only in dimension n > 3.

A crucial step in the proof of Theorem 1 is provided by the following result, of indepen-
dent interest: if a set E is contained in a strip and its boundary ∂E has sufficiently small
slope and small classical curvatures, then the fractional mean curvature of E is bounded
below by a positive universal constant, which depends only on s and on the dimension
n. This is the content of Proposition 5. In particular, a thin set can have all negative
classical principal curvature at some point, but positive fractional mean curvature.

Other recent contributions in the study of the fractional (and more general nonlocal)
mean curvature flows are the articles [6, 12, 28]. In [6], the convergence of a class of thresh-
old dynamics approximations to moving fronts was established. In particular, threshold
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dynamics associated to fractional powers of the Laplacian of order s ∈ (0, 2) were con-
sidered: interestingly, when s ∈ [1, 2) the resulting interface moves by a (weighted) mean
curvature flows, while when s ∈ (0, 1) it moves by a fractional mean curvature flow. In
[12], the results contained in [6] have been extended to the anisotropic case. Finally, in
[28] smooth solutions to the fractional mean curvature flow were studied and the evolution
equations for several geometric local and nonlocal quantities were computed. The partic-
ular cases of entire graphs and star-shaped surfaces were considered, obtaining striking
analogies with the properties of the classical case.

The paper is organized as follows:

• In Section 2 we describe the level set approach in the study of nonlocal mean
curvature flows, and we recall the notion of viscosity solutions and a classical
comparison principle;
• In Section 3 we establish some estimates on the nonlocal mean curvature of per-

turbed strips, which will be a crucial step in the proof of our main result;
• In Section 4, we prove our main result Theorem 1.

2. Viscosity solutions and comparison principles via the level set
approach

In this Section we recall the notion of viscosity solutions for the fractional mean curva-
ture flow, which is based on the level sets approach. The idea is the following: given an
inital surface M0 = ∂E0, we choose any continuous function u0 : Rn → Rn such that

M0 = {x ∈ Rn : u0(x) = 0}. (3)

The geometric equation satisfied by the evolution Mt of M0 can then be translated into
an equation satisfied by a function u(x, t), where u(x, 0) = u0(x) and at each time

Mt = {x ∈ Rn : u(·, t) = 0}. (4)

More precisely, the level set equation satisfied by u is

∂tu+Hs[x, u(·, t)]|Du(x, t)| = 0 in Rn × (0,+∞), (5)

where u satisfies the inital condition

u(x, t) = u0(x) in Rn.

Here and in the following we denote by Hs[x, u(·, t)] the fractional mean curvature of the
superlevel set of u(·, t) at the point x, i.e.

Hs[x, u(·, t)] = Hs
{y∈Rn :u(y,t)>u(x,t)}(x).

Of course the defintion of Mt is well posed if one shows that equation (5) has a unique
solution, and definition (3) does not depend on the inital choice of the function u0. These
basic properties were established in [16] for the classical mean curvature flow and in [26]
for the fractional one.

Since the nonlocal case is not so standard and for the sake of completeness, we recall
here below all the rigourous definitions and the basic results in [26] (see also [10]). Let
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M = {x ∈ Rn : u(x) = 0} = ∂{x ∈ Rn : u(x) > 0}. If u ∈ C1,1 and Du 6= 0, we can
define the following quantities

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)>u(x)}(z)− χ{u(x+z)<u(x)}(z)

|z|n+s
dz,

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)>u(x)}(z)− χ{u(x+z)6u(x)}(z)

|z|n+s
dz.

(6)

It is easy to see that if u ∈ C1,1 and its gradient Du does not vanish on {z ∈ Rn : u(z) =
u(x)}, then k∗ are finite and

k∗[x, u] = k∗[x, u] = −Hs[x, u].

We can now give the definition of viscosity solution for (5) (see [26], Sec. 3).

Definition 2. i) An upper semicontinuous function u : [0, T ] × Rn is a viscosity
subsolution of (5) if for every smooth test function φ such that u − φ admits a
global zero maximum at (t, x), we have

∂tφ 6 k∗[x, φ(·, t)]|Dφ|(x, t) (7)

if Dφ(x, t) 6= 0, and ∂tφ(x, t) 6 0 if not.
ii) A lower semicontinuous function u : [0, T ]×Rn is a viscosity supersolution of (5)

if for every smooth test function φ such that u− φ admits a global zero minimum
at (t, x), we have

∂tφ > k∗[x, φ(·, t)]|Dφ|(x, t) (8)

if Dφ(x, t) 6= 0, and ∂tφ(x, t) > 0 if not.
iii) A locally bounded function u is a viscosity solution of (5) if its upper semicontin-

uous envelope is a subsolution and its lower semicontinuous envelope is a super-
solution of (5).

Remark 3. It is easy to verify that any classical subsolution (respectively supersolution)
is in particular a viscosity subsolution (respectively supersolution).

We can now state the comparison principles, that we will use later on in Section 4.

Proposition 4 (Theorem 2 in [26]). Suppose that the initial datum u0 is a bounded and
Lipschitz continuous function. Let u (respectively v) be a bounded viscosity subsolution
(respectively supersolution) of (5).

If u(x, 0) 6 u0(x) 6 v(x, 0), then u 6 v on Rn × (0,+∞).

In Theorem 3 of [26] existence and uniqueness of viscosity solutions of (5) were proven.
The prove of existence uses the Perron’s method, while uniqueness relies on the comparison
principle stated in Proposition 4. Finally in [26], Theorem 6, the consistency of Definition
(4) is established, showing that if u and v are two viscosity solutions of (5) with two
different initial data u0 and v0 which have the same zero-level set, then for every time
t > 0 also u(·, t) and v(·, t) have the same zero level set.

The uniqueness and the consistency result allow to define the fractional mean curvature
flow for Mt by using the solution u(·, t) of (5).
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3. The nonlocal curvature of perturbed strips

The goal of this section is to give estimates on the nonlocal curvature of sets with small
slopes and small classical curvatures which are contained in a strip. The result is rather
general, but we focus on a particular case for the sake of concreteness:

Proposition 5. Let κ, η > 0. Let E−, E+ ⊂ Rn. Assume that E+ ∩ E− = ∅, that

E− ⊇ {xn 6 −1} and E+ ⊇ {xn > 1}. (9)

Suppose also that the boundaries of E− and E+ are of class C2, with classical directional
curvatures bounded by κ.

In addition, let ν− and ν+ be the exterior normals of E− and E+ respectively, and
assume that

|ν− · ei| 6 η and |ν+ · ei| 6 η for every i ∈ {1, . . . , n− 1}. (10)

Let E := Rn \ (E− ∪ E+). Then, there exist c0, κ0, η0 > 0, depending on n and s, such
that for any x ∈ ∂E

Hs
E(x) > c0,

provided that κ ∈ [0, κ0] and η ∈ [0, η0].

Before giving the proof of Proposition 5, we state the following Lemma that will be
useful later. Basically, it states that a set, whose boundary has small enough slopes
and classical curvatures bounded by κ, can be trapped between paraboloids of opening a
multilple of κ.

Lemma 6. Let κ, η > 0 and G ⊂ Rn, with boundary of class C2, with classical directional
curvatures bounded by κ and exterior normal ν such that |ν ·ei| 6 η for any i ∈ {1, . . . , n−
1}.

Suppose also that 0 ∈ ∂G. Then, fixed ρ > 0, there exist η0 > 0, depending on n,
and κ0(ρ), depending on n and ρ, such that, if κ ∈ [0, κ0(ρ)] and η ∈ [0, η0], then

R(G ∩Bρ

)
⊆ {xn 6 Cκ |x′|2},

for a suitable rotation R, which dists from the identity less than Cη, for a suitable C > 0,
depending on n.

Proof. We notice that the result is true for some ρ0 universal, due to the Implicit Function
Theorem, and so for all ρ ∈ (0, ρ0].

Let now ρ > ρ0. Let

Gρ :=
ρ0
ρ
G = {y ∈ Rn s.t. ρ ρ−10 y ∈ G}.

Notice that the slope of the normal of Gρ is the same as the one of G, and so it is bounded
by η. On the other hand, the curvatures of Gρ are ρ ρ−10 times the curvatures of G, and
therefore are bounded by ρ ρ−10 κ.

Accordingly, if η ∈ [0, η0] and ρ ρ−10 κ ∈ [0, κ0(ρ)] (i.e. if κ ∈ [0, ρ0 ρ
−1 κ0(ρ0)]), we have

that the claim holds true for Gρ in Bρ0 , namely

R(Gρ ∩Bρ0

)
⊆ {yn 6 C ρρ−10 κ |y′|2},

where R is a rotation as in the statement of Lemma 6.
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Using the change of scale x := ρ ρ−10 y, this gives that

R(G ∩Bρ

)
=

ρ

ρ0
R(Gρ ∩Bρ0

)
⊆ ρ

ρ0
{yn 6 C ρρ−10 κ |y′|2} = {xn 6 Cκ |x′|2},

as desired. �

Proof of Proposition 5. We fix x ∈ ∂E. Without loss of generality, we may suppose
that x ∈ ∂E+. We use the notation ν := ν+(x). Also, we set χ := χE − χCE. For short,
we also denote by C a positive constant, depending on n and s, which we take the liberty
of modifying from line to line.

We consider the two slabs

S := {p ∈ Rn s.t. |(p− x) · ν| 6 4}
and S? := {p ∈ Rn s.t. |p · en| 6 1}.

Notice that, by (9),

E ⊆ S?. (11)

We also observe that

S? \ S ⊆ Rn \BC/η(x). (12)

Indeed, if p ∈ S? \ S, we have that |(p− x) · ν| > 4 and |p · en| 6 1. Thus, we recall (10)
and (11), we write ν = (ν · e1)e1 + · · ·+ (ν · en)en and we find that

4 <

∣∣∣∣∣(p− x) ·
n∑
i=1

(ν · ei)ei

∣∣∣∣∣
6 η

n−1∑
i=1

|(p− x) · ei|+ |(p− x) · en|

6 η (n− 1) |p− x|+ |p · en|+ |x · en|
6 η (n− 1) |p− x|+ 1 + 1,

which implies (12) as long as η is sufficiently small.
Then, in view of (11) and (12), we have that

E \ S ⊆ S? \ S ⊆ Rn \BC/η(x)

and therefore ∫
E\S

dy

|x− y|n+s
6
∫
Rn\BC/η(x)

dy

|x− y|n+s
6 Cηs. (13)

Now we set

G := {p ∈ B10(x) s.t. (p− x) · ν > 4}.
Notice that G is a circular sector, so, in particular, we have that

|G| > C. (14)

Also, by construction,

G ∩ S = ∅. (15)

We claim that

G ⊆ Rn \ E. (16)
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To check this, let p ∈ G. Then, by (10) and (11),

4 <
n∑
i=1

(ν · ei)(p− x) · ei

6 η (n− 1) |p− x|+ (p− x) · en
6 10η (n− 1) + p · en + 1,

and so, if η is sufficiently small, we deduce that p · en > 2. Hence, we have that p ∈ E+,
which in turn implies (16).

Now, from (15) and (16), we get that

(Rn \ E) \ S ⊇ G \ S = G.

Notice also that if y ∈ G then |x − y| 6 10. As a consequence of these observations
and (14), we infer that∫

(Rn\E)\S

dy

|x− y|n+s
>
∫
G

dy

|x− y|n+s
>
|G|

10n+s
> C.

Combining this with (13), we conclude that∫
Rn\S

χ(y) dy

|x− y|n+s
=

∫
Rn\S

χE(y)− χCE(y)

|x− y|n+s
dy 6 Cηs − C?. (17)

Here we denote by C? > 0 a “special” constant (to distinguish it from the “other” con-
stants just denoted by C): indeed, C? will produce the desired result after small pertur-
bations, as we will see in the sequel.

Now we analyze the contributions inside S. For this purpose, we take an additional
parameter

ρ ∈
(

0, min

{
| log κ|, 1

η

})
. (18)

Such ρ will be taken appropriately large (in dependence of C?): then κ and η have to
be chosen sufficiently small, in such a way that ρ belongs to the interval stated in (18).
That is, the parameter ρ is taken large with respect to the constants, then κ and η will
be taken to be small in dependence on the constants and on ρ.

Thanks to the cuvature assumption on ∂E+, we know that the boundary of E+ in-
side Bρ(x) is trapped between paraboloids of opening Cκ: more precisely, by Lemma 6
there exists a rigid motion R with R(x) = 0 and such that

R
(
E+ ∩Bρ(x)

)
⊇
{
p = (p′, pn) ∈ Bρ s.t. pn > Cκ |p′|2

}
=: P1,

R
(
(∂E+) ∩Bρ(x)

)
⊆
{
p = (p′, pn) ∈ Bρ s.t. |pn| 6 Cκ |p′|2

}
=: P2

and R
(
E+ ∩Bρ(x)

)
⊆ P1 ∪ P2.

(19)

Notice that R is the composition of a translation that sends x to 0 and then a rotation
which sets ν in the vertical direction. Therefore, we can write R(y) := R? (y − x),
where R? is a rotation which dists from the identity less than Cη, due to (10).
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Figure 1

We set

F := R
(
E ∩Bρ(x)

)
,

H := {p = (p′, pn) ∈ Bρ s.t. pn < −4} ,
K := {p = (p′, pn) ∈ Bρ s.t. pn > 4}

and P3 := Bρ \
(
P1 ∪ P2 ∪H

)
.

By construction, we see that

R(S ∩Bρ(x)) = Bρ \ (H ∪K) = {p = (p′, pn) ∈ Bρ s.t. |pn| 6 4} =: S. (20)

We also observe that

P3 ∩ S = −(P1 ∩ S), (21)

up to sets of null measure. To check this, let p ∈ P3 ∩ S and q := −p. Then we
have that |qn| = |pn| 6 4, thus q ∈ S. Furthermore, since p 6∈ P1 ∪ P2, we have
that pn < −Cκ |p′|2. Accordingly,

qn = −pn > Cκ |p′|2 = Cκ |q′|2,
and so q ∈ P1. This shows that q ∈ P1 ∩ S, and so

P3 ∩ S ⊆ −(P1 ∩ S). (22)

Now, let us take q ∈ (P1∩S) and set p := −q. We have that |pn| = |qn| 6 4, hence p ∈ S.
Moreover,

pn = −qn 6 −Cκ |q′|2 = −Cκ |p′|2.
Since we can remove the case in which pn = −Cκ |p′|2 (being this a set of null measure),
we can conclude that pn < −Cκ |p′|2 and so p 6∈ P1 ∪ P2. This says that

p ∈ S \
(
P1 ∪ P2

)
⊆
(
Bρ \ H

)
\
(
P1 ∪ P2

)
⊆ Bρ \

(
P1 ∪ P2 ∪H

)
= P3.
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Hence p ∈ P3 ∩ S, up to negligible sets. Thus, we have shown that

−(P1 ∩ S) ⊆ P3 ∩ S,

up to negligible sets. Combining this with (22), we conclude the proof of (21).
Also, we notice that

H ∩
(
P1 ∪ P2

)
= ∅ and K ⊆ P1. (23)

Indeed, if p ∈
(
P1 ∪ P2

)
, then

pn > −Cκ |p′|2 > −Cκρ2 > −1

if κ sufficiently small (possibly in dependence of ρ), hence p 6∈ H. Similarly, if p ∈ K then

pn − Cκ |p′|2 > 4− Cκρ2 > 0

and so p ∈ P1. These observations prove (23).
We also point out that

F = R
(
E ∩Bρ(x)

)
⊆ R

(
(Rn \ E+) ∩Bρ(x)

)
= Rn \

(
R
(
E+ ∩Bρ(x)

))
⊆ Rn \ P1, (24)

thanks to (19), and therefore

Bρ \ F ⊇ P1. (25)

In addition, we claim that

F ⊆ P2 ∪ P3. (26)

Indeed, if p ∈ F , then p = R(y) = R? (y−x) for some y ∈ E. Therefore, if In ∈ Mat(n×n)
denotes the identity matrix, recalling (11) we have that

pn =
(
R? (y − x)

)
· en

> (y − x) · en −
∣∣∣((R? − In) (y − x)

)
· en
∣∣∣

> −2− ηρ
> −4,

provided that η is sufficiently small (possibly in dependence of ρ). This shows that p 6∈ H.
As a consequence, we see that

p ∈ P1 ∪ P2 ∪ P3.

This and (24) establish the validity of (26).
Now, we use the change of variable z = R(y) and formulas (20), (25) and (26) to see

that ∫
S∩Bρ(x)

χ(y) dy

|x− y|n+s
=

∫
S

χF (z)− χBρ\F (z) dz

|z|n+s

6
∫
P2

dz

|z|n+s
+

∫
P3∩S

dz

|z|n+s
−
∫
P1∩S

dz

|z|n+s
.

(27)

Moreover, from (21) and a reflection in the vertical variable, we have that∫
P3∩S

dz

|z|n+s
=

∫
P1∩S

dz

|z|n+s
.
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Accordingly, (27) becomes∫
S∩Bρ(x)

χ(y) dy

|x− y|n+s
6
∫
P2

dz

|z|n+s

6
∫
|z′|6ρ

dz′
∫
|zn|6Cκ |z′|2

dzn |z′|−n−s = Cκ

∫
|z′|6ρ

dz′ |z′|2−n−s

= Cκρ2−s.

(28)

On the other hand, we have that∫
S\Bρ(x)

χ(y) dy

|x− y|n+s
6
∫
Rn\Bρ(x)

dy

|x− y|n+s
=
C

ρs
.

This and (28) yield ∫
S

χ(y) dy

|x− y|n+s
6 C

(
κρ2−s +

1

ρs

)
.

Combining this with (17), we see that

−Hs
E(x) =

∫
Rn\S

χ(y) dy

|x− y|n+s
6 C

(
ηs + κρ2−s +

1

ρs

)
− C? 6 C

(
ηs + κρ2−s

)
− C?

2
,

provided that ρ is sufficiently large.
Hence, if η and κ are small enough, we obtain that −Hs

E(x) 6 −C?/4, as desired. �

Corollary 7. Let ε, δ > 0 and

E :=

{
x = (x′, xn) ∈ Rn s.t. |xn| < ε+

2

π
arctan

(
δ |x′|2

)}
.

Then, if ε and δ are sufficiently small, we have that

inf
x∈∂E

Hs
E(x) > c0 > 0,

for some c0 depending only on s and n.

Proof. We define

E− :=

{
x = (x′, xn) ∈ Rn s.t. xn 6 −ε−

2

π
arctan

(
δ |x′|2

)}
and E+ :=

{
x = (x′, xn) ∈ Rn s.t. xn > ε+

2

π
arctan

(
δ |x′|2

)}
.

Notice that the horizontal component of the normal to ∂E is of size O(δ) and the cur-
vatures are of size O(δ2). Thus, we are in the position of exploiting Proposition 5, from
which we obtain the desired result. �
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4. Neckpinch

In this section we prove our main result, that is Theorem 1. More precisely, we provide
an example of surface evolving by fractional mean curvature flow, which developes a
singularity before it can shrink to a point. For the classical mean curvature flow, this
phenomenon appears in dimensions n > 3 (that is, for at least 2-dimensional surfaces)
and a standard example is a set made by the union of two large balls, connected with a
very thin (cylindrical) neck (see [18]). The idea is that the mean curvature in the neck
is much larger than the one in the two balls and hence the radius of the neck goes to
zero faster than the radius of the balls. Of course the fact that the dimension of the
surface is larger than 2 is crucial to have positive mean curvature in the neck (indeed for
a cylindrical neck we would have one direction in which the principal curvature is zero,
and the others in which all principal curvatures are strictly positive).

Interestingly, when we consider the fractional mean curvature flow, this neckpinch sin-
gularity can be observed also in dimension n = 2, providing hence a counterexample to
the Grayson Theorem [19], which states that any smooth embedded curve in the plane
evolving by (classical) MCF shrinks to a point. The heuristich reason for this is that,
thanks to its nonlocality, the fractional mean curvature of a very thin neck, is strictly
positive also in dimension 2: Indeed if we “sit” on the boundary of the neck we see much
more complement of E than E itself.

To build our example, we start by recalling the following fact that was proved in [28].

Lemma 8 (Lemma 2 and Corollary 3 in [28]). The fractional mean curvature of the ball
of radius R is equal, up to dimensional constants, to R−s.

More precisely, for any x ∈ ∂B1

Hs
B1

(x) = ω̄,

for some ω̄ > 0, and for any x ∈ ∂BR(0),

Hs
BR

(x) = ω̄R−s.

Moreover, if we set R(t) := (Rs+1
0 − (ω̄(1 + s))t)

1
s+1 , then BR(t) is a solution to the

fractional mean curvature flow starting from BR0 and it collapses to a point in the finite
time

TBR0
=

Rs+1
0

ω̄(s+ 1)
. (29)

Observe that, while for the classical mean curvature flow, the extinction time of a sphere
of radius R0 is proportional to R2

0, in the fractional case it is proportional to Rs+1
0 .

We can now give the proof of our main result.

Proof of Theorem 4. We consider now the set Eε defined in Corollary 7:

Eε :=

{
x = (x′, xn) ∈ Rn s.t. |xn| < ε+

2

π
arctan

(
δ |x′|2

)}
.

We know that there exists ε and δ positive such that, for any 0 < ε 6 ε and 0 < δ 6 δ

inf
x∈∂Eε

Hs
Eε(x) > c0 > 0, (30)
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for some c0 depending only on n and s.
Let now κ and ε0 be two positive parameters satisfying

κ < c0 and ε0 < min

{
ε̄,

1

4
κTB1

}
, (31)

where TB1 is the extinction time of the ball of radius 1 given in (29).
The idea is to consider the set Eε0 and to make it evolve with constant velocity κ in

the inner vertical direction. More precisely, we set

ε(t) := ε0 − κ t,
and, for any t, we consider the set

Eε(t) :=

{
x = (x′, xn) ∈ Rn s.t. |xn| < ε(t) +

2

π
arctan

(
δ |x′|2

)}
. (32)

Hence, we have that any point x ∈ ∂Eε(t) satisfies

∂tx · ν = V · ν,
where

V =

{
−κen if xn > 0

κen if xn < 0.

Thus,

∂tx · ν > −κ > −c0 > −Hs
Eε(t)

,

where in the last inequality we have used (30) and the fact that Eε(t) ⊂ Eε0 for any t > 0.
Therefore, the set Eε(t) is a smooth supersolution (and hence in particular a viscosity
supersolution) to (1).

By the definition of the set Eε0 we have that the infimum distance between the two
disconnected components of its boundary {(x′, xn) ∈ Rn s.t. xn = ε0 + arctan (δ|x′|2)}
and {(x′, xn) ∈ Rn s.t. xn = −ε0 − arctan (δ|x′|2)} is attained at the points (0, . . . , 0, ε0)
and (0, . . . , 0,−ε0). Since Eε(t) evolves with constant negative velocity κ along the inner
vertical direction, we deduce that the singular time for Eε(t) is given by

TEε(t) =
2ε0
κ
. (33)

Let now define a closed set A0 with the following properties:

(1) A0 is contained in Eε0 ;
(2) A0 containes two balls B−1 and B+

1 of radius 1 centered at (−L, 0, . . . , 0) and
(L, 0, . . . , 0) respectively, where L is chosen large enough so that (1) and (2) are
both satisfied.

We consider now the fractional mean curvature flow At starting from A0. By the
comparison principle (Proposition 4), At must be contained in Eε(t). Moreover it must
contains the evolutions B−1,t and B+

1,t of the two balls B−1 and B+
1 .

On the one hand, since At must be contained in Eε(t), using (33) and the choice of ε0
(31), we deduce that the singular time of At satisfies

TA 6
2ε0
κ
6

1

2
TB1 .

12



On the other hand, by assumption (2), At does not shrink to a point as t→ TA, since
it contains two balls with positive radius. This concludes the proof of Theorem 1. �
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