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We consider the self-adjoint Smilansky Hamiltonian Hε in L2(R2) associated with the formal differential

expression −∂2
x − 1

2

(
∂2
y + y2)−

√
2εyδ(x) in the sub-critical regime, ε ∈ (0, 1). We demonstrate the existence

of resonances for Hε on a countable subfamily of sheets of the underlying Riemann surface whose distance

from the physical sheet is finite. On such sheets, we find resonance free regions and characterise resonances

for small ε > 0. In addition, we refine the previously known results on the bound states of Hε in the weak

coupling regime (ε → 0+). In the proofs we use Birman-Schwinger principle for Hε, elements of spectral

theory for Jacobi matrices, and the analytic implicit function theorem.
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1. Introduction

In this paper we investigate resonances and bound states of the self-adjoint Hamiltonian
Hε acting in the Hilbert space L2(R2) and corresponding to the formal differential expression

−∂2
x −

1

2

(
∂2
y + y2)−

√
2εyδ(x) on R2, (1.1)

in the sub-critical regime, ε ∈ (0, 1). The operator Hε will be rigorously introduced in
Section 1.1 below. Operators of this type were suggested by U. Smilansky in [30] as a model
of irreversible quantum system. His aim was to demonstrate that the ‘heat bath’ need not
have an infinite number of degrees of freedom. On a physical level of rigour he showed that
the spectrum undergoes an abrupt transition at the critical value ε = 1. A mathematically
precise spectral analysis of these operators and their generalisations has been performed by
M. Solomyak and his collaborators in [15, 16, 24, 27, 31–33]. Time-dependent Schrödinger
equation generated by Smilansky-type Hamiltonian is considered in [21].

By now many of the spectral properties of Hε are understood. On the other hand, little
attention has been paid so far to the fact that such a system can also exhibit resonances.
The main aim of this paper is to initiate investigation of these resonances starting from
demonstration of their existence. One of the key difficulties is that this model belongs to a
class wherein the resolvent extends to a Riemann surface having uncountably many sheets.
The same complication appears e.g. in studying resonances for quantum waveguides [2, 13,
14,17], [18, §3.4.2] and for general manifolds with cylindrical ends [10,11].
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In this paper we prove the existence and obtain a characterisation of resonances of Hε on
a countable subfamily of sheets whose distance from the physical sheet is finite in the sense
explained below. On any such sheet we characterise a region which is free of resonances.
As ε → 0+, the resonances on such sheets are localized in the vicinities of the thresholds
νn = n+1/2, n ∈ N. We obtain a description of the subset of the thresholds in the vicinities
of which a resonance exists for all sufficiently small ε > 0 and derive asymptotic expansions
of these resonances in the limit ε → 0+. No attempt has been made here to define and study
resonances on the sheets whose distance from the physical sheet is infinite.

As a byproduct, we obtain refined properties of the bound states of Hε using similar
methods as for resonances. More precisely, we obtain a lower bound on the first eigenvalue
of Hε and an asymptotic expansion of the weakly coupled bound state of Hε in the limit
ε → 0+.

Methods developed in this paper can also be useful to tackle resonances for the analogue
of Smilansky model with regular potential which is suggested in [3] and further investigated
in [4, 5].

Notations

We use notations N := {1, 2, . . . } and N0 := N ∪ {0} for the sets of positive and natural
integers, respectively. We denote the complex plane by C and define its commonly used sub-
domains: C× := C \ {0}, C± := {λ ∈ C : ± Imλ > 0} and Dr(λ0) := {λ ∈ C : |λ− λ0| < r},
D×

r (λ0) := {λ ∈ C : 0 < |λ− λ0| < r}, Dr := Dr(0), D×
r := D×

r (0) with r > 0. The principal
value of the argument for λ ∈ C× is denoted by arg λ ∈ (−π, π]. The branches of the square
root are defined by

C× ∋ λ 7→ (λ)
1/2
j := |λ|1/2ei((1/2) arg λ+jπ), j = 0, 1.

If the branch of the square root is not explicitly specified we understand the branch (·)1/20

by default. We also set 0 = (0, 0) ∈ C2.

The L2-space over Rd, d = 1, 2, with the usual inner product is denoted by (L2(Rd), (·, ·)Rd)
and the L2-based first order Sobolev space by H1(Rd), respectively. The space of square-
summable sequences of vectors in a Hilbert space G is denoted by ℓ2(N0;G). In the case that
G = C we simply write ℓ2(N0) and denote by (·, ·) the usual inner product on it.

For ξ = {ξn} ∈ ℓ2(N0) we adopt the convention that ξ−1 = 0. Kronecker symbol is
denoted by δnm, n,m ∈ N0, we set en := {δnm}m∈N0 ∈ ℓ2(N0), n ∈ N0, and adopt the
convention that e−1 := {0}. We understand by diag({qn}) the diagonal matrix in ℓ2(N0)
with entries {qn}n∈N0 and by J({an}, {bn}) the Jacobi matrix in ℓ2(N0) with diagonal entries
{an}n∈N0 and off-diagonal entries {bn}n∈N1. We also set J0 := J({0}, {1/2}).

By σ(K) we denote the spectrum of a closed (not necessarily self-adjoint) operator K in
a Hilbert space. An isolated eigenvalue λ ∈ C of K having finite algebraic multiplicity is a
point of the discrete spectrum for K; see [26, §XII.2] for details. The set of all the points of
the discrete spectrum for K is denoted by σd(K) and the essential spectrum of K is defined
by σess(K) := σ(K) \ σd(K).

For a self-adjoint operator T in a Hilbert space we set λess(T) := inf σess(T) and, for k ∈ N,
λk(T) denotes the k-th eigenvalue of T in the interval (−∞, λess(T)). These eigenvalues are

1We do not distinguish between Jacobi matrices and operators in the Hilbert space ℓ2(N0) induced by
them, since in our considerations all the Jacobi matrices are bounded, closed, and everywhere defined in
ℓ2(N0).
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ordered non-decreasingly with multiplicities taken into account. The number of eigenvalues
with multiplicities of the operator T lying in a closed, open, or half-open interval ∆ ⊂ R
satisfying σess(T) ∩∆ = ∅ is denoted by N (∆;T). For λ 6 λess(T) the counting function of
T is defined by Nλ(T) := N ((−∞, λ);T).

1.1. Smilansky Hamiltonian

Define the Hermite functions

χn(y) := e−y2/2Hn(y), n ∈ N0. (1.2)

Here, Hn(y) is the Hermite polynomial of degree n ∈ N0 normalized by the condition ∥χn∥R =
12. For more details on Hermite polynomials see [1, Chap. 22] and also [9, Chap. 5]. As it is
well-known, the family {χn}n∈N0 constitutes an orthonormal basis of L2(R). Note also that
the functions χn satisfy the three-term recurrence relation

√
n+ 1χn+1(y)−

√
2yχn(y) +

√
nχn−1(y) = 0, n ∈ N0, (1.3)

where we adopt the convention χ−1 ≡ 0. The relation (1.3) can be easily deduced from the
recurrence relation [1, eq. 22.7.13] for Hermite polynomials. By a standard argument any
function U ∈ L2(R2) admits unique expansion

U(x, y) =
∑
n∈N0

un(x)χn(y), un(x) :=

∫
R
U(x, y)χn(y)dy, (1.4)

where {un} ∈ ℓ2(N0;L
2(R)). Following the presentation in [32], we identify the function

U ∈ L2(R2) and the sequence {un} and write U ∼ {un}. This identification defines a
natural unitary transform between the Hilbert spaces L2(R2) and H := ℓ2(N0;L

2(R)). For
the sake of brevity, we denote the inner product on H by ⟨·, ·⟩. Note that the Hilbert space
H can also be viewed as the tensor product ℓ2(N0)⊗ L2(R).

For any ε ∈ R we define the subspace Dε of H as follows: an element U ∼ {un} ∈ H
belongs to Dε if, and only if

(i) un ∈ H1(R) for all n ∈ N0;

(ii) {−(u′′
n,+ ⊕ u′′

n,−) + νnun} ∈ H with un,± := un|R± and νn = n+ 1/2 for n ∈ N0;

(iii) the boundary conditions

u′
n(0+)− u′

n(0−) = ε
(√

n+ 1un+1(0) +
√
nun−1(0)

)
are satisfied for all n ∈ N0. For n = 0 only the first term is present on the right-hand
side.

By [32, Thm. 2.1], the operator

domHε := Dε, Hε{un} := {−(u′′
n,+ ⊕ u′′

n,−) + νnun}, (1.5)

is self-adjoint in H. It corresponds to the formal differential expression (1.1). Further, we
provide another way of defining Hε which makes the correspondence between the operator
Hε and the formal differential expression (1.1) more transparent. To this aim we define the
straight line Σ := {(0, y) ∈ R2 : y ∈ R}. Then the Hamiltonain Hε, ε ∈ (−1, 1), can be
alternatively introduced as the unique self-adjoint operator in L2(R2) associated via the first

2This normalization means that Hn(y) is, in fact, a product of what is usually called the Hermite polyno-
mial of degree n ∈ N0 with a normalization constant which depends on n.
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representation theorem [22, Thm. VI.2.1] with a closed, densely defined, symmetric, and
semi-bounded quadratic form

hε[u] := ∥∂xu∥2R2 +
1

2
∥∂yu∥2R2 +

1

2
(yu, yu)R2 + ε

√
2
(
sign (y)|y|1/2u|Σ, |y|1/2u|Σ

)
R ,

dom hε :=
{
u ∈ H1(R2) : yu ∈ L2(R2), |y|1/2(u|Σ) ∈ L2(R)

}
.

(1.6)

For more details and for the proof of equivalence between the two definitions of Hε see [32, §9].
Since Hε commutes with the parity operator in y-variable, it is unitarily equivalent to H−ε.
We remark that the case ε = 0 admits separation of variables. Thus, it suffices to study Hε

with ε > 0.

In the following proposition we collect fundamental spectral properties of Hε, ε ∈ (0, 1),
which are of importance in the present paper.

Proposition 1.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the
following claims hold:

(i) σess(Hε) = [1/2,+∞);

(ii) inf σ(Hε) > 1−ε
2
;

(iii) 1 6 N1/2(Hε) < ∞;

(iv) N1/2(Hε) = 1 for all sufficiently small ε > 0.

Items (i)-(iii) follow from [31, Lem 2.1] and [32, Thm. 3.1 (1),(2)]. Item (iv) is a con-
sequence of [31, Thm. 3.2] and [32, §10.1]. Although we only deal with the sub-critical
case, ε ∈ (0, 1), we remark that in the critical case, ε = 1, the spectrum of H1 equals to
[0,+∞) and that in the sup-critical case, ε > 1, the spectrum of Hε covers the whole real
axis. Finally, we mention that in most of the existing literature on the subject not ε > 0
itself but α =

√
2ε is chosen as the coupling parameter. We choose another normalization

of the coupling parameter in order to simplify formulae in the proofs of the main results.

1.2. Main results

While we are primarily interested in the resonances, as indicated in the introduction, we
have also a claim to make about the discrete spectrum which we present here as our first
main result and which complements the results listed in Proposition 1.1.

Theorem 1.2. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the following
claims hold.

(i) λ1(Hε) > 1−
√

1
4
+ ε4 for all ε ∈ (0, 1).

(ii) λ1(Hε) = ν0 − ε4

16
+O(ε5) as ε → 0+.

Theorem 1.2 (i) is proven by means of Birman-Schwinger principle. The bound in Theo-
rem 1.2 (i) is non-trivial for ε4 < 3/4. This bound is better than the one in Proposition 1.1 (ii)
for small ε > 0.

For the proof of Theorem 1.2 (ii) we combine Birman-Schwinger principle and the analytic
implicit function theorem. We expect that the error term O(ε5) in Theorem 1.2 (ii) can be
replaced by O(ε6) because the operator Hε has the same spectral properties as H−ε for any
ε ∈ (0, 1). Therefore, the expansion of λ1(Hε) must be invariant with respect to interchange
between ε and −ε. In Lemma 4.1 given in Section 4 we derive an implicit scalar equation
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on λ1(Hε). This equation gives analyticity of ε 7→ λ1(Hε) for small ε. It can also be used to
compute higher order terms in the expansion of λ1(Hε). However, these computations might
be quite tedious.

Our second main result concerns the resonances of Hε. Before formulating it, we need to
define the resonances rigorously. Let us consider the sequence of functions

rn(λ) := (νn − λ)1/2, n ∈ N0. (1.7)

Each of them has two branches rn(λ, l) := (νn − λ)
1/2
l , l = 0, 1. The vector-valued function

R(λ) = (r0(λ), r1(λ), r2(λ), . . . ) naturally defines the Riemann surface Ẑ with uncountably

many sheets. With each sheet of Ẑ we associate the set E ⊂ N0 and the characteristic vector
lE defined as

lE := {lE0 , lE1 , lE2 , . . . }, lEn :=

{
0, n /∈ E,

1, n ∈ E.
(1.8)

We adopt the convention that lE−1 = 0. The respective sheet of Ẑ is convenient to denote by

ZE. Each sheet ZE of Ẑ can be identified with the set C \ [ν0,+∞) and we denote by Z±
E

the parts of ZE corresponding to C±. With the notation settled we define the realization of
R(·) on ZE as

RE(λ) := (r0(λ, l
E
0 ), r1(λ, l

E
1 ), r2(λ, l

E
2 ), . . . ). (1.9)

The sheets ZE and ZF are adjacent through the interval (νn, νn+1) ⊂ R, n ∈ N0, (ZE ∼n ZF ),
if their characteristic vectors lE and lF satisfy

lFk = 1− lEk , for k = 0, 1, 2, . . . , n

lFk = lEk , for k > n.

We set ν−1 = −∞ and note that any sheet ZE is adjacent to itself through (ν−1, ν0). In
particular, the function λ 7→ RE(λ) turns out to be componentwise analytic on the Riemann

surface Ẑ.

The sequence E = {E1, E2, . . . , EN} of subsets of N0 is called a path if for any k =
1, 2, . . . , N − 1 the sheets ZEk

and ZEk+1
are adjacent. The following discrete metric

ρ(E,F ) := inf{N ∈ N0 : E = {E1, E2, . . . , EN}, E1 = E,EN = F}, (1.10)

turns out to be convenient. The value ρ(E,F ) equals the number of sheets in the shortest
path connecting ZE and ZF . Note that for some sheets ZE and ZF a path between them
does not exist and in this case we have ρ(E,F ) = ∞. We identify the physical sheet with the

sheet Z∅ (for E = ∅). A sheet ZE of Ẑ is adjacent to the physical sheet Z∅ if ρ(E,∅) = 1
and it can be characterised by existence of N ∈ N0 such that lEn = 1 if, and only ifn 6 N .
Further, we define the component

Z̃ := ∪E∈EZE ⊂ Ẑ, E := {E ⊂ N0 : ρ(E,∅) < ∞}, (1.11)

of Ẑ which plays a distinguished role in our considerations. Any sheet in Z̃ is located on a

finite distance from the physical sheet with respect to the metric ρ(·, ·). The component Z̃

of Ẑ in (1.11) can be alternatively characterised as

Z̃ = ∪F∈FZF , F := {F ⊂ N0 : sup{n ∈ N0 : l
F
n = 1} < ∞}. (1.12)

The number of the sheets in Z̃ is easily seen to be countable. In order to define the resonances

of Hε on Z̃ we show that the resolvent of Hε admits an extension to Z̃ in a certain weak
sense.
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Proposition 1.3. For any u ∈ L2(R) and n ∈ N0 the function

λ 7→ r∅n,ε(λ;u) :=
⟨
(Hε − λ)−1u⊗ en, u⊗ en

⟩
(1.13)

admits unique meromorphic continuation rEn,ε(·;u) from the physical sheet Z∅ to any sheet

ZE ⊂ Z̃.

The proof of Proposition 1.3 is postponed until Appendix A. Now we have all the tools

to define resonances of Hε on Z̃.

Definition 1.4. Each resonance of Hε on ZE ⊂ Z̃ is identified with a pole of rEn,ε(·;u) for

some u ∈ L2(R) and n ∈ N0. The set of all the resonances for Hε on the sheet ZE is denoted
by RE(ε).

Our definition of resonances for Hε is consistent with [26, §XII.6], see also [18, Chap. 2]
and [23] for multi-threshold case. It should be emphasized that by the spectral theorem
for self-adjoint operators eigenvalues of Hε are also regarded as resonances in the sense of
Definition 1.4 lying on the physical sheet Z∅. This allows us to treat the eigenvalues and
‘true’ resonances on the same footing. Needless to say, bound states and true resonances
correspond to different physical phenomena and their equivalence in this paper is merely a
useful mathematical abstraction.

According to Remark 2.5 below the set of the resonances for Hε on ZE is symmetric with
respect to the real axis. Thus, it suffices to analyse resonances on Z−

E . Now we are prepared
to formulate the main result on resonances.

Theorem 1.5. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet

ZE ⊂ Z̃ of the Riemann surface Ẑ be fixed. Define the associated set by

S(E) :=
{
n ∈ N : (lEn−1, l

E
n , l

E
n+1) ∈ {(1, 0, 0), (0, 1, 1)}

}
.

Let RE(ε) be as in Definition 1.4 and set R−
E(ε) := RE(ε) ∩ C−. Then the following claims

hold.

(i) R−
E(ε) ⊂ U(ε) := {λ ∈ C− : |νn−1 − λ||νn − λ| 6 ε4n2, ∀n ∈ N}.

(ii) For any n ∈ S(E) and sufficiently small ε > 0 there is exactly one resonance λE
n (Hε) ∈

C− of Hε on Z−
E lying in a neighbourhood of νn, with the expansion

λE
n (Hε) = νn −

ε4

16

[
(2n+ 1) + 2n(n+ 1)i

]
+O(ε5), ε → 0 + . (1.14)

(iii) For any n ∈ N \ S(E) and all sufficiently small ε, r > 0

R−
E(ε) ∩ Dr(νn) = ∅.

In view of Theorem 1.5 (i) for sufficiently small ε > 0 the resonances of Hε on any sheet of

Z̃ are located in some neighbourhoods of the thresholds νn (see Figure 1.1). Such behaviour
is typical for problems with many thresholds; see e.g. [13,17] and [18, §2.4, 3.4.2]. Note also
that the estimate in Theorem 1.5 (i) reflects the correct order in ε in the weak coupling limit
ε → 0+ given in Theorem 1.5 (ii). However, the coefficient of ε4 in the definition of U(ε) can
be probably improved. Observe also that R−

E(ε) ⊂ U(1) for any ε ∈ (0, 1).

According to Theorem 1.5 (ii)-(iii) existence of a resonance near the threshold νn, n ∈ N,
on a sheet ZE for small ε > 0 depends only on the branches chosen for rn−1(λ), rn(λ),
rn+1(λ) on ZE. Although, one can not exclude that higher order terms in the asymptotic
expansion (1.14) depend on the branches chosen for other square roots. By exactly the same
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Fig. 1.1. The region U(0.12) (for ε = 0.12) from Theorem 1.5 (i) (in grey) consists
of 6 connected components. The components located in the neighbourhoods of the
points ν0, ν1, ν2, ν3, are not visible because of being too small. The plot is performed
with the aid of Sagemath.

reason as in Theorem 1.2 (ii), we expect that the error term O(ε5) in Theorem 1.5 (ii) can
be replaced by O(ε6). Theorem 1.5 (ii)-(iii) are proven by means of the Birman-Schwinger
principle and the analytic implicit function theorem. The implicit scalar equation on reso-
nances derived in Lemma 4.1 gives analyticity of ε 7→ λE

n (Hε) for small ε > 0 and, as in the
bound state case, it can be used to compute further terms in the expansion of λE

n (Hε).

We point out that according to numerical tests in [19] some resonances emerge from the
inner points of the intervals (νn, νn+1), n ∈ N0, as ε → 1−. The mechanism of creation for
these resonances is unclear at the moment.

Example 1.6. Let E = {1, 2, 4, 5}. In this case lE = {0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, . . . } and we
get that S(E) = {1, 4, 6}. By Theorem 1.5 (ii)-(iii) for all sufficiently small ε > 0 there will
be exactly one resonance on Z−

E near ν1, ν4, ν6 and no resonances near the thresholds νn
with n ∈ N \ {1, 4, 6}. We confirm this result by numerical tests whose outcome is shown in
Figures 1.2 and 1.3.
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-0.002

0.000

Fig. 1.2. Resonances of Hε with ε = 0.2 lying on Z−
E with E = {1, 2, 4, 5} are com-

puted numerically with the help of Mathematica. Unique weakly coupled resonances
near the thresholds ν1 = 1.5, ν4 = 4.5, ν6 = 6.5 are located at the intersections of
the curves.

To plot Figure 1.2 we used the condition on resonances in Theorem 2.4 below. The
infinite Jacobi matrix in this condition was truncated up to a reasonable finite size. Along
the curves, respectively, the real and the imaginary part of the determinant of the truncated
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matrix vanishes. At the points of intersection of the curves the determinant itself vanishes.
These points are expected to be close to true resonances3. We have also verified numerically
that resonances do not exist near other low-lying thresholds νn with n ∈ N \ {1, 4, 6} which
corresponds well to Theorem 1.5. In Figure 1.3 we summarise the results of all the numerical
tests.

Fig. 1.3. Resonances of Hε with ε = 0.2 lying on Z−
E with E = {1, 2, 4, 5}.

Finally, we mention that no attempt has been made here to analyse the multiplicities of

the resonances and to investigate resonances lying on Ẑ \ Z̃.

Structure of the paper

Birman-Schwinger-type principles for characterisation of eigenvalues and resonances of
Hε are provided in Section 2. Theorem 1.2 (i) on a lower bound for the first eigenvalue and
Theorem 1.5 (i) on resonance free region are proven in Section 3. The aim of Section 4 is to
prove Theorem 1.2 (ii) and Theorem 1.5 (ii)-(iii) on weakly coupled bound states and reso-
nances. The proofs of technical statements formulated in Proposition 1.3 and Theorem 2.4
are postponed until Appendix A.

2. Birman-Schwinger-type conditions

Birman-Schwinger principle is a powerful tool for analysis of the discrete spectrum of
a perturbed operator in the spectral gaps of the unperturbed one. This principle has also
various other applications. Frequently, it can be generalized to detect resonances, defined as
the poles of a meromorphic continuation of the (sandwiched) resolvent from the physical sheet
to non-physical sheet(s) of the underlying Riemann surface. In the model under consideration
we encounter yet another manifestation of this principle.

In order to formulate a Birman-Schwinger-type condition on the bound states for Hε we
introduce the sequence of functions

bn(λ) :=
n1/2

2(νn − λ)1/4(νn−1 − λ)1/4
, n ∈ N, (2.1)

and the off-diagonal Jacobi matrix

J(λ) = J ({0}, {bn(λ)}) , λ ∈ (0, ν0) . (2.2)

3The analysis of convergence of the numerical method is beyond our scope.



On resonances and bound states of Smilansky Hamiltonian 9

Recall that we use the same symbol J(λ) for the operator in ℓ2(N0) generated by this matrix.
It is straightforward to check that the operator J(λ) is bounded and self-adjoint. It can
be easily verified that the difference J(λ) − J0 is a compact operator. Therefore, one has
σess(J(λ)) = σess(J0) = [−1, 1]. Moreover, the operator J(λ) has simple eigenvalues ±µn,
µn > 1, with the only possible accumulation points at µ = ±1.

Theorem 2.1. [31, Thm. 3.1] Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5) and
let the Jacobi matrix J(λ) be as in (2.2). Then the relation

N ((0, λ);Hε) = N ((1/ε,+∞); J(λ)) (2.3)

holds for all λ ∈ (0, ν0).

Remark 2.2. A careful inspection of the proof of [31, Thm 3.1] yields that Theorem 2.1 can
also be modified, replacing (2.3) by

N ((0, λ];Hε) = N ([1/ε,+∞); J(λ)). (2.4)

In other words, the right endpoint of the interval (0, λ) and the left endpoint of the interval
(1/ε,+∞) can be simultaneously included.

The following consequence of Theorem 2.1 and of the above remark will be useful further.

Corollary 2.3. Let the assumptions be as in Theorem 2.1. Then the following claims hold:

(i) ε 7→ λk(Hε) are continuous non-increasing functions;

(ii) dim ker (Hε − λ) = dimker
(
I + εJ(λ)

)
for all λ ∈ (0, ν0). In particular, since the

eigenvalues of J(λ) are simple, the eigenvalues of Hε are simple as well.

Proof. (i) Let ε1 ∈ (0, 1). For λ = λk(Hε1), k ∈ N, we have by Theorem 2.1 and Remark 2.2

N ([1/ε1,+∞); J(λ)) = N ((0, λ];Hε1) > k.

Hence, for any ε2 ∈ (ε1, 1) we obtain

N ((0, λ];Hε2) = N ([1/ε2,+∞); J(λ)) > N ([1/ε1,+∞); J(λ)) > k.

Therefore, we get λk(Hε2) 6 λ = λk(Hε1).

Recall that Hε represents the quadratic form hε defined in (1.6). Continuity of the
eigenvalues follows from [22, Thms. VI.3.6, VIII.1.14] and from the fact that the quadratic
form

dom hε ∋ u 7→ ε
√
2
(
sign y|y|1/2u|Σ, |y|1/2u|Σ

)
R , ε ∈ (0, 1),

is relatively bounded with respect to

dom hε ∋ u 7→ ∥∂xu∥2R2 +
1

2
∥∂yu∥2R2 +

1

2
(yu, yu)R2

with a bound less than one; cf. [31, Lem. 2.1].

(ii) By Theorem 2.1, Remark 2.2, and using symmetry of σ(J(λ)) with respect to the origin
we get

dimker (Hε − λ) = N ((0, λ];Hε)−N ((0, λ);Hε)

= N ([1/ε,+∞); J(λ))−N ((1/ε,+∞); J(λ)) = dimker
(
I+ εJ(λ)

)
. �
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For resonances of Hε one can derive a Birman-Schwinger-type condition analogous to the

one in Corollary 2.3 (ii). For the sheet ZE ⊂ Z̃ of the Riemann surface Ẑ we define the
Jacobi matrix

JE(λ) := J({0}, {bEn (λ)}), λ ∈ C \ [ν0,+∞), (2.5)

where

bEn (λ) :=
1

2

(
n

rn(λ, lEn )rn−1(λ, lEn−1)

)1/2

, n ∈ N. (2.6)

The Jacobi matrix JE(λ) in (2.5) is closed, bounded, and everywhere defined in ℓ2(N0), but
in general non-selfadjoint. For E = ∅ and λ ∈ (0, ν0) the Jacobi matrix J∅(λ) coincides with
J(λ) in (2.2). In what follows it is also convenient to set bE0 (λ) = 0. In the next theorem we
characterise resonances of Hε lying on the sheet ZE.

Theorem 2.4. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet

ZE ⊂ Z̃ be fixed, let RE(ε) be as in Definition 1.4 and the associated operator-valued function
JE(λ) be as in (2.5). Then the following equivalence holds

λ ∈ RE(ε) ⇐⇒ ker (I+ εJE(λ)) ̸= {0}. (2.7)

For E = ∅ the claim of Theorem 2.4 follows from Corollary 2.3 (ii). The proof of the
remaining part of Theorem 2.4 is postponed until Appendix A. The argument essentially
relies on Krein-type resolvent formula [32] for Hε and on the analytic Fredholm theorem [29,
Thm. 3.4.2].

Remark 2.5. Thanks to compactness of the difference JE(λ)−J0 we get by [26, Lem. XIII.4.3]
that σess(εJE(λ)) = σess(εJ0)) = [−ε, ε]. Therefore, the equivalence (2.7) can be rewritten as

λ ∈ RE(ε) ⇐⇒ −1 ∈ σd(εJE(λ)).

Identity JE(λ)
∗ = JE(λ) combined with [22, Rem. III.6.23] and with Theorem 2.4 yields that

the set RE(ε) is symmetric with respect to the real axis.

3. Localization of bound states and resonances

In this section we prove Theorem 1.2 (i) and Theorem 1.5 (i). The idea of the proof is to
estimate the norm of JE(λ) and to apply Corollary 2.3 (ii) and Theorem 2.4.

Proof of Theorem 1.2 (i) and Theorem 1.5 (i). The square of the norm of the operator JE(λ)
in (2.5) can be estimated from above by

∥JE(λ)∥2 6 sup
ξ∈ℓ2(N0),∥ξ∥=1

∥JE(λ)ξ∥2

6 sup
ξ∈ℓ2(N0),∥ξ∥=1

( ∑
n∈N0

|bEn (λ)ξn−1 + bEn+1(λ)ξn+1|2
)

6 sup
ξ∈ℓ2(N0),∥ξ∥=1

(
2
∑
n∈N0

(
|bEn (λ)|2|ξn−1|2 + |bEn+1(λ)|2|ξn+1|2

))
6 4 sup

n∈N0

|bEn (λ)|2 sup
ξ∈ℓ2(N0),∥ξ∥=1

∥ξ∥2 = 4 sup
n∈N

|bEn (λ)|2,

(3.1)

where bEn (λ), n ∈ N0, are defined as in (2.6).

If ∥εJE(λ)∥ < 1 holds for a point λ ∈ C− then the condition ker (I + εJE(λ)) ̸= {0} is
not satisfied. Thus, λ cannot by Theorem 2.4 be a resonance of Hε lying on Z−

E in the sense
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of Definition 1.4. In view of estimate (3.1) and of (2.6) to fulfil ∥εJE(λ)∥ < 1 it suffices to
satisfy

n

|νn−1 − λ|1/2|νn − λ|1/2
<

1

ε2
, ∀ n ∈ N,

or, equivalently,
|νn − λ| · |νn−1 − λ| > ε4n2, ∀ n ∈ N.

Thus, the claim of Theorem 1.5 (i) is proven.

If ∥εJ∅(λ)∥ < 1 holds for a point λ ∈ (0, 1/2) then the condition ker (I + εJ∅(λ)) ̸= {0}
is not satisfied. Thus, by Corollary 2.3 (ii), λ is not an eigenvalue of Hε. In view of (3.1)
and (2.6) to fulfil ∥εJ∅(λ)∥ < 1 it suffices to satisfy(

νn−1 − λ
)(
νn − λ

)
= λ2 − 2nλ+ n2 − 1/4 > n2ε4, ∀ n ∈ N. (3.2)

The roots of the equation λ2−2nλ+n2−1/4−n2ε4 = 0 are given by λ±
n (ε) = n±

√
1/4 + n2ε4.

Since λ+
n (ε) > 1/2 for all n ∈ N, the condition (3.2) yields λ1(Hε) > minn∈N λ

−
n (ε). For n ∈ N

we have

λ−
n+1(ε)− λ−

n (ε) = 1− (2n+ 1)ε4(
1
4
+ n2ε4

)1/2
+
(
1
4
+ (n+ 1)2ε4

)1/2 > 1− (2n+ 1)ε4

(2n+ 1)ε2
= 1− ε2 > 0.

Hence, minn∈N λ
−
n (ε) = λ−

1 (ε) and the claim of Theorem 1.2 (i) follows. �

4. The weak coupling regime: ε → 0+

In this section we prove Theorem 1.2 (ii) and Theorem 1.5 (ii)-(iii). Intermediate results
of this section given in Lemmata 4.1 and 4.3 are of an independent interest.

First, we introduce some auxiliary operators and functions. Let n ∈ N0 and the sheet

ZE ⊂ Z̃ be fixed. We make use of notation Pkl := en+k−2(·, en+l−2) with k, l ∈ {1, 2, 3}. Note
that for n = 0 we have Pk1 = P1k = 0 for k = 1, 2, 3. It will also be convenient to decompose
the Jacobi matrix JE(λ) in (2.5) as

JE(λ) = Sn,E(λ) + Tn,E(λ), (4.1)

where the operator-valued functions λ 7→ Tn,E(λ), Sn,E(λ) are defined by

Tn,E(λ) := bEn+1(λ) [P23 + P32] + bEn (λ) [P21 + P12] , Sn,E(λ) := JE(λ)− Tn,E(λ). (4.2)

Clearly, the operator-valued function Sn,E(·) is uniformly bounded on D1/2(νn). Moreover,
for sufficiently small r = r(n) ∈ (0, 1/2) the bounded operator I + εSn,E(λ) is at the same
time boundedly invertible for all (ε, λ) ∈ Ωr(n) := Dr × Dr(νn). Thus, the operator-valued
function

Rn,E(ε, λ) :=
(
I+ εSn,E(λ)

)−1
, (4.3)

is well-defined and analytic on Ωr(n) and, in particular, Rn,E(0, νn) = I. Furthermore, we
introduce auxiliary scalar functions Ωr(n) ∋ (ε, λ) 7→ fE

kl(ε, λ) by

fE
kl(ε, λ) :=

(
Rn,E(ε, λ)en+k−2, en+l−2

)
, k, l ∈ {1, 2, 3}. (4.4)

Thanks to Rn,E(0, νn) = I we have fE
kl(0, νn) = δkl. Finally, we introduce 3× 3 matrix-valued

function
Dr × D×

r (νn) ∋ (ε, λ) 7→ An,E(ε, λ) :=
(
aEkl(ε, λ)

)3,3
k,l=1

(4.5)

with the entries given for k, l = 1, 2, 3 by

aEkl(ε, λ) := bEn (λ)
(
fE
1k(ε, λ)δ2l + fE

2k(ε, λ)δ1l
)
+ bEn+1(λ)

(
fE
2k(ε, λ)δ3l + fE

3k(ε, λ)δ2l
)
. (4.6)
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We remark that rankAn,E(ε, λ) 6 2 due to linear dependence between the first and the third
columns in An,E(ε, λ).

In the first lemma we derive an implicit scalar equation which characterises those points
λ ∈ C \ [ν0,+∞) near νn for which the condition ker (I + εJE(λ)) ̸= {0} is satisfied under
additional assumption that ε > 0 is small enough. This equation can be used to characterise
the ‘true’ resonances for Hε as well as the weakly coupled bound state if n = 0 and E = ∅.

Lemma 4.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let n ∈ N0 and the

sheet ZE ⊂ Z̃ be fixed. Let r = r(n) > 0 be chosen as above. Then for all ε ∈ (0, r) a point
λ ∈ Dr(νn) \ [ν0,∞) is a resonance of Hε on ZE if, and only if

det
(
I+ εAn,E(ε, λ)

)
= 0.

Proof. Using the decomposition (4.1) of JE(λ) and the auxiliary operator in (4.3) we find

dimker (I+ εJE(λ)) = dimker (I+ εSn,E(λ) + εTn,E(λ))

= dimker (I+ εRn,E(ε, λ)Tn,E(λ)) .
(4.7)

Note that

rank (Rn,E(ε, λ)Tn,E(λ)) 6 rank (Tn,E(λ)) 6 3

and, hence, using [28, Thm. 3.5 (b)], we get

dimker (I+ εRn,E(ε, λ)Tn,E(λ)) > 1 ⇐⇒ det (I+ εRn,E(ε, λ)Tn,E(λ)) = 0. (4.8)

For the orthogonal projector P := P11 + P22 + P33 the identity Tn,E(λ) = Tn,E(λ)P is
straightforward. Hence, employing [20, IV.1.5] we find

det (I+ εRn,E(ε, λ)Tn,E(λ)) = det (I+ εRn,E(ε, λ)Tn,E(λ)P)

= det (I+ εPRn,E(ε, λ)Tn,E(λ)) .
(4.9)

For k, l ∈ {1, 2, 3} we can write the following identities

PkkPRn,E(ε, λ)Tn,E(λ)Pll = PkkRn,E(ε, λ)
(
bEn (λ) [P21 + P12] + bEn+1(λ) [P23 + P32]

)
Pll

= PkkRn,E(ε, λ)
(
bEn (λ) [P2lδ1l + P1lδ2l] + bEn+1(λ) [P2lδ3l + P3lδ2l]

)
= Pklb

E
n (λ)

[
fE
2k(ε, λ)δ1l + fE

1k(ε, λ)δ2l
]

+ Pklb
E
n+1(λ)

[
fE
2k(ε, λ)δ3l + fE

3k(ε, λ)δ2l
]

= aEkl(ε, λ)Pkl

with fE
kl as in (4.4), and as a result we get

PRn,E(ε, λ)Tn,E(λ) =
3∑

k=1

3∑
l=1

aEkl(ε, λ)Pkl,

with aEkl(ε, λ) as in (4.6). Hence, the determinant in (4.9) can be expressed as

det (I+ εRn,E(ε, λ)Tn,E(λ)) = det(I+ εAn,E(ε, λ))

where on the right-hand side we have the determinant of the 3 × 3 matrix I + εAn,E(ε, λ);
cf. (4.5). The claim of lemma follows then from (4.7), (4.8), and Theorem 2.4. �
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In the second lemma we establish the existence and investigate properties of solutions
of the scalar equation in Lemma 4.1. To this aim it is natural to try to apply the analytic
implicit function theorem. The main obstacle that makes a direct application of the implicit
function theorem difficult lies in the fact that λ 7→ det(I + εAn,E(ε, λ)) is not analytic near
νn due to the cut on the real axis. We circumvent this obstacle by applying the analytic
implicit function theorem to an auxiliary function which is analytic in the disc and has
values in different sectors of this disc that are in direct correspondence with the values of

λ 7→ det(I + εAn,E(ε, λ)) on the four different sheets in Z̃ which are mutually adjacent in a
proper way.

Assumption 4.2. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Let the sheets ZF , ZG and
ZH be such that ZE ∼n−1 ZF , ZF ∼n ZG and ZG ∼n−1 ZH . For r > 0 let the matrix-valued
function Dr × D×

r ∋ (ε, κ) 7→ Bn,E(ε, κ) be defined by

Bn,E(ε, κ) :=


An,E(ε, νn − κ4), arg κ ∈ ΦE := (−π,−3π

4
] ∪ (0, π

4
],

An,F (ε, νn − κ4), arg κ ∈ ΦF := (−3π
4
,−π

2
] ∪ (π

4
, π
2
],

An,G(ε, νn − κ4), arg κ ∈ ΦG := (−π
2
,−π

4
] ∪ (π

2
, 3π

2
],

An,H(ε, νn − κ4), arg κ ∈ ΦH := (−π
4
, 0] ∪ (3π

2
, π].

Tracing the changes in the characteristic vector along the path ZE ∼n−1 ZF ∼n ZG ∼n−1

ZH one easily verifies that ZH ∼n ZE. Thanks to that Bn,E is analytic on Dr × D×
r for

sufficiently small r > 0 which is essentially a consequence of componentwise analyticity in
Dr of vector-valued function

κ 7→ R•(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•,

where R• is as in (1.9).

Lemma 4.3. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Set (p, q, r) := (lEn−1, l
E
n , l

E
n+1). Let

the matrix-valued function Bn,E be as in Assumption 4.2. Then the implicit scalar equation

det
(
I+ εBn,E(ε, κ)

)
= 0

has exactly two solutions κn,E,j(·) analytic near ε = 0 such that κn,E,j(0) = 0, satisfying
det(I+ εBn,E(ε, κn,E,j(ε))) = 0 pointwise for sufficiently small ε > 0, and having asymptotic
expansions

κn,E,j(ε) = ε
(zn,E)

1/2
j

2
+O(ε2), ε → 0+, (4.10)

where zn,E = (−1)q+r(n+ 1) + (−1)p+q+1ni.

Proof. First, we introduce the shorthand notations

u(κ) := b•n(νn − κ4), v(κ) := b•n+1(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•.

Let bkl with k, l ∈ {1, 2, 3} be the entries of the matrix-valued function Bn,E. Furthermore,
define the scalar functions X = X(ε, κ), Y = Y (ε, κ), and Z = Z(ε, κ) by

X := b11 + b22 + b33,

Y := b11b22 + b22b33 + a11a33 − b13b31 − b12b21 − b23b32,

Z := b11b22b33 + b13b32b21 + b12b23b31 − b13b31b22 − b12b21b33 − b11b23b32.

(4.11)

Employing an elementary formula for the determinant of 3× 3 matrix, the equation det(I+
εBn,E(ε, κ)) = 0 can be equivalently written as

1 + εX(ε, κ) + ε2Y (ε, κ) + ε3Z(ε, κ) = 0. (4.12)
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By purely algebraic argument one can derive from (4.6) that Z = 0. Hence, (4.12) simplifies
to 1 + εX(ε, κ) + ε2Y (ε, κ) = 0. Introducing new parameter t := ε/κ we can further rewrite
this equation as

1 + tκX(ε, κ) + t2κ2Y (ε, κ) = 0. (4.13)

Note also that the coefficients (ε, κ) 7→ κX(ε, κ), κ2Y (ε, κ) of the quadratic equation (4.13)
are analytic in D2

r. For each fixed pair (ε, κ) the equation (4.13) has (in general) two distinct
roots tj(ε, κ), j = 0, 1. The condition det(I+ εBn,E(ε, κ)) = 0 with κ ̸= 0 holds if, and only
if at least one of the two conditions

fj(ε, κ) := ε− κtj(ε, κ) = 0, j = 0, 1, (4.14)

is satisfied. Using analyticity of u(·) and v(·) near κ = 0, we compute

lim
κ→0

κu = lim
r→0+

reiπ/8u(reiπ/8)

= lim
r→0+

n1/2

2

reiπ/8

((−1 + ir4)
1/2
p (ir4)

1/2
q )1/2

=
n1/2eiπ/8

2((−1)p+qieiπ/4)1/2
,

lim
κ→0

κv = lim
r→0+

reiπ/8v(reiπ/8)

= lim
r→0+

(n+ 1)1/2

2

reiπ/8

((ir4)
1/2
q (1 + ir4)

1/2
r )1/2

=
(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2
.

Hence, we get

lim
ε,r→0+

reiπ/8bkl(ε, re
iπ/8) = lim

r→0+
reiπ/8u(reiπ/8)

(
fE
2k(0)δ3l + fE

3k(0)δ2l
)

+ lim
r→0+

reiπ/8v(reiπ/8)
(
fE
1k(0)δ2l + fE

2k(0)δ1l
)

=
n1/2eiπ/8

(
δ2kδ3l + δ3kδ2l

)
2((−1)p+qieiπ/4)1/2

+
(n+ 1)1/2eiπ/8

(
δ1kδ2l + δ2kδ1l

)
2((−1)q+reiπ/4)1/2

.

Combining this with (4.11) we end up with

lim
(ε,κ)→0

κX = lim
ε,r→0+

reiπ/8X(ε, reiπ/8) = lim
ε,r→0+

reiπ/8
[
b11 + b22 + b33

]
(ε, reiπ/8) = 0,

lim
(ε,κ)→0

κ2Y = lim
ε,r→0+

r2eiπ/4Y (ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
b11b22 + b22b33 + b11b33 − b13b31 − b12b21 − b23b32

]
(ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
− b12b21 − b23b32

]
(ε, reiπ/8)

= −
(

n1/2eiπ/8

2((−1)p+qieiπ/4)1/2

)2

−
(

(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2

)2

= −(−1)p+q+1ni

4
− (−1)q+r(n+ 1)

4
= −zn,E

4
.

Hence, the roots tj(ε, κ) of (4.13) converge in the limit (ε, κ) → 0 to the roots 2
[
(zn,E)

1/2
j

]−1
,

j = 0, 1, of the quadratic equation zn,Et
2 − 4 = 0. Moreover, analyticity of the coefficients

in equation (4.13), the above limits, and the formula for the roots of a quadratic equation
imply analyticity of the functions (ε, κ) 7→ tj(ε, κ) near 0.

Step 2. The partial derivatives of fj in (4.14) with respect to ε and κ are given by ∂εfj =
1 − κ∂εtj and ∂κfj = −tj − κ∂κtj. Analyticity of tj near 0 implies (∂εfj)(0) = 1 and
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(∂κfj)(0) = −tj. In particular, we have shown that (∂κfj)(0) ̸= 0. Since the functions
fj(·) are analytic near 0 and satisfy fj(0) = 0, we can apply the analytic implicit function
theorem [29, Thm. 3.4.2] which yields existence of a unique function κj(·), analytic near ε = 0
such that κj(0) = 0 and that fj(ε, κj(ε)) = 0 holds pointwise. Moreover, the derivative of
κj at ε = 0 can be expressed as

κ′
j(0) = − (∂εfj)(0)

(∂κfj)(0)
=

1

tj(0)
. (4.15)

Hence, we obtain Taylor expansion for κj near ε = 0

κj(ε) = κj(0) + κ′
j(0)ε+O(ε2) =

ε

tj(0)
+O(ε2) = ε

(zn,E)
1/2
j

2
+O(ε2) ε → 0 + .

The functions κj, j = 0, 1, satisfy all the requirements in the claim of the lemma. �

Now we are prepared to prove Theorem 1.2 (ii) and Theorem 1.5 (ii)-(iii) from the intro-
duction.

Proof of Theorem 1.2 (ii). By Proposition 1.1 (iv) we have N1/2(Hε) = 1 for all sufficiently
small ε > 0. Recall that we denote by λ1(Hε) the corresponding unique eigenvalue. Thus,
we have by Lemma 4.1

det(I+ εA0,∅(ε, λ1(Hε))) = 0.

Using the construction of Assumption 4.2 for the physical sheet and n = 0, we obtain

det(I+ εB0,∅(ε, (λ1(Hε)− ν0)
1/4)) = det(I+ εA0,∅(ε, λ1(Hε))) = 0,

where we have chosen the principal branch for (·)1/4. Thus, by Lemma 4.3 we get

(λ1(Hε)− ν0)
1/4 = ±ε

2
+O(ε2), ε → 0+,

where we have used the fact that z0,∅ = 1. Hence, taking the fourth power of the left and
right hand sides in the above equation we arrive at

λ1(Hε) = ν0 −
ε4

16
+O(ε5), ε → 0 + . �

Proof of Theorem 1.5 (ii)-(iii). Let n ∈ N and the sheet ZE ⊂ Z̃ be fixed. Let us repeat
the construction of Assumption 4.2. By Lemma 4.3 we infer that there exist exactly two
analytic solutions κn,E,j, j = 0, 1 of the implicit scalar equation det(I+ εBn,E(ε, κ)) = 0 such
that κn,E,j(0) = 0. It can be checked that both solutions correspond to the same resonance
and it suffices to analyse the solution κn,E := κn,E,0 only.

For all small enough ε > 0 the asymptotics (4.10) yields

arg(κn,E(ε)) =
1

2
arg(zn,E) ∈ ΦE, if, and only if n ∈ S(E).

Hence, if n ∈ N \ S(E), Lemmata 4.1 and 4.3 imply that there will be no resonances in a
neighbourhood of the point λ = νn lying on Z−

E for sufficiently small ε > 0. Thus, we have
proven Theorem 1.5 (iii). While if n ∈ S(E) we get by Lemmata 4.1 and 4.3 that there will
be exactly one resonance

λE
n (Hε) = νn − (κn,E(ε))

4,

in a neighbourhood of the point λ = νn lying on Z−
E for sufficiently small ε > 0 and its

asymptotic expansion is a direct consequence of the asymptotic expansion (4.10) given in
Lemma 4.3. Thus, the claim of Theorem 1.5 (ii) follows. �
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A. Krein’s formula, meromorphic continuation of resolvent, and condition on
resonances

In this appendix we use Krein’s resolvent formula for Smilansky Hamiltonian to prove

Proposition 1.3 and Theorem 2.4 on meromorphic continuation of (Hε − λ)−1 to Z̃. The
proposed continuation procedure is of an iterative nature wherein we, first, extend (Hε−λ)−1

to the sheets adjacent to the physical sheet, then to the sheets which are adjacent to the
sheets being adjacent to the physical sheet and so on.

To this aim we define for n ∈ N0 the scalar functions C \ [ν0,+∞) 7→ yn(λ) and (C \
[ν0,+∞))× R 7→ ηn(λ; x) by

yn(λ) := rn(λ)
√
νn, ηn(λ;x) := ν1/4

n exp(−rn(λ)|x|), (A.1)

where rn(·), n ∈ N0, is as in (1.7). Next, we introduce the following operator-valued function

T(λ) : ℓ2(N0) → H, T(λ){cn} := {cnηn(λ; x)}.
For each fixed λ ∈ C \ [ν0,+∞) the operator T(λ) is bounded and everywhere defined and
the adjoint of T(λ) acts as

T(λ)∗{un} ∼ {In(λ;un)}n∈N0 , In(λ;u) :=

∫
R
ηn(λ;x)u(x)dx.

With these preparations, the resolvent difference of Hε and H0 can be expressed by [32, Thm.
6.1] (see also [24, Sec. 6]) as follows

(Hε−λ)−1 = (H0−λ)−1+T(λ)Y(λ)
[(
I+εJ∅(λ)

)−1− I
]
Y(λ)T(λ)∗, λ ∈ C\ [ν0,+∞), (A.2)

where H0 is the Smilansky Hamiltonian with ε = 0, Y(λ) := diag{(yn(λ))−1/2}, and J∅(λ) is
as in (2.5). The formula (A.2) can be viewed as a particular case of abstract Krein’s formula
(see e.g. [6,8,12]) for the resolvent difference of two self-adjoint extensions of their common
densely defined symmetric restriction.

Proof of Proposition 1.3 and Theorem 2.4. Let us fix n ∈ N0 and a sheet ZE ⊂ Z̃. We
denote by Rn(λ) the resolvent of the self-adjoint operator H2(R) ∋ f 7→ −f ′′ + νnf in
the Hilbert space L2(R). We can express the function r∅n,ε(·;u) in (1.13) using Krein’s
formula (A.2) as

r∅n,ε(λ;u) =
⟨
(Hε − λ)−1u⊗ en, u⊗ en

⟩
=

⟨
(H0 − λ)−1u⊗ en, u⊗ en

⟩
+
(
Y(λ)

[
(I+ εJ∅(λ))

−1 − I
]
Y(λ)T(λ)∗u⊗ en,T(λ)

∗u⊗ en
)

= (Rn(λ)u, u)R + In(λ;u)In(λ;u)
([

(I+ εJ∅(λ))
−1 − I

]
Y(λ)en,Y(λ)

∗en
)

= (Rn(λ)u, u)R +
In(λ;u)In(λ;u)

yn(λ)

[((
I+ εJ∅(λ)

)−1
en, en

)
− 1

]
.

Since (Rn(λ)u, u)R, yn(λ), In(λ;u), and In(λ;u) can be easily analytically continued to Z̃,

to extend r∅n,ε(·;u) meromorphically to the other sheets of the component Z̃ it suffices to
extend

s∅n,ε(λ) :=
(
(I+ εJ∅(λ))

−1 en, en
)
,

meromorphically from Z∅ to Z̃. The poles of the meromorphic extension of s∅n,ε(·) can be
identified with the resonances of Hε in the sense of Definition 1.4.



On resonances and bound states of Smilansky Hamiltonian 17

To this aim we set by definition

sEn,ε(λ) :=
(
(I+ εJE(λ))

−1 en, en
)
,

for any λ ∈ C \ [ν0,+∞) such that −1 /∈ σ(εJE(λ)). In what follows let ZE and ZF be two

sheets of Z̃ such that ZE ∼n−1 ZF with n ∈ N0
4. Suppose that λ 7→ sEn,ε(·) is well defined

and meromorphic either on Z+
E or on Z−

E . Next, we extend λ 7→ sEn,ε(·) meromorphically from

Z±
E to Z∓

F . Without loss of generality we restrict our attention to the case that λ 7→ sEn,ε(·)
is meromorphic on Z+

E and extend it meromorphically to Z−
F . On the open set Ωn :=

C+ ∪ C− ∪ (νn−1, νn) the operator-valued function

JEF (λ) :=

{
JE(λ), λ ∈ C+,

JF (λ), λ ∈ Ωn \ C+,

is analytic which is essentially a consequence of analyticity on Ωn of the entries b•m(λ) (with
• = E for λ ∈ C+ and • = F for λ ∈ C−) for the underlying Jacobi matrix. Thus, the
operator-valued function

Ωn ∋ λ 7→ AEF
ε (λ) := ε (I+ εJ0)

−1 (JEF (λ)− J0)

is also analytic on Ωn because of the analyticity of JEF (λ). Furthermore, the values of
AEF
ε (·) are compact operators thanks to compactness of the difference JEF (λ)− J0. Taking

into account that((
I+ AEF

ε (λ)
)−1

en, (I+ εJ0)
−1 en

)
=

{
sEn,ε(λ), λ ∈ C+,

sFn,ε(λ), λ ∈ Ωn \ C+,

we obtain from the analytic Fredholm theorem [25, Thm. VI.14] that C− ∋ λ 7→ sFn,ε(λ) is

a meromorphic continuation of C+ ∋ λ 7→ sEn,ε(λ) across the interval (νn−1, νn) and that the

poles of C− ∋ λ 7→ sFn,ε(λ) satisfy the condition

ker (I+ εJF (λ)) ̸= {0}, λ ∈ C−.

Starting from the physical sheet Z∅ we use the above procedure iteratively to extend s∅n,ε(·)
meromorphically to the whole of Z̃ thus proving Proposition 1.3 and Theorem 2.4. �
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