Rigidity for a class of generalized interval exchange transformations

Konstantin Khanin^{1*} and Saša Kocić^{2†}

February 14, 2016

Abstract

For almost all irrational $\rho \in (0,1)$, any two cyclic generalized interval exchange transformations with breaks on the same orbit, with the same rotation number ρ , and the same size of the corresponding breaks, are C^1 -smoothly conjugate to each other. In particular, for almost all irrational $\rho \in (0,1)$, generalized interval exchange transformations of two intervals, with the same rotation number ρ and the same size of the corresponding breaks, are C^1 -smoothly conjugate to each other. These results generalize the results of Marmi, Moussa and Yoccoz [8].

1 Introduction and statement of the results

Interval exchange transformations play an important role in dynamics. These are piecewise affine maps $T_{\mathbf{a},\sigma}$, with slope 1, of an interval I = [0,1], determined by a vector $\mathbf{a} \in (0,1)^{k-1}$, with components satisfying $0 < a_1 < \cdots < a_{k-1} < 1$, that cuts the interval into k subintervals $I_i = [a_{i-1}, a_i]$, $i = 1, \ldots, k$, where $a_0 = 0$ and $a_k = 1$, and a permutation $\sigma \in S_k$ that permutes them. In a recent paper [8], Marmi, Moussa and Yoccoz introduced generalized interval exchange transformations, obtained by replacing the affine restrictions of $T_{\mathbf{a},\sigma}$ to each I_i with smooth diffeomorphisms. This paper concerns rigidity of generalized interval exchange transformations.

*Email: khanin@math.toronto.edu

†Email: skocic@olemiss.edu

¹ Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4

² Department of Mathematics, University of Mississippi, University, MS 38677-1848, USA

Marmi, Moussa and Yoccoz showed that sufficiently smooth generalized interval exchange transformations of a certain combinatorial type, which are deformations of standard interval exchange transformations and tangent to them at the points of discontinuities, are smoothly linearizable [8]. Cunha and Smania [1] showed that break-equivalent cyclic generalized interval exchange transformations, with bounded-type rotation numbers and zero mean nonlinearity $\mathcal{N} = \int_I \frac{T''_{\mathbf{a},\sigma}(x)}{2T'_{\mathbf{a},\sigma}(x)} dx$, are C^1 -smoothly conjugate to each other. We say that two such maps $T_{\mathbf{a},\sigma}$ and $\widetilde{T}_{\widetilde{\mathbf{a}},\sigma}$ are break-equivalent if the break points of one map \widetilde{a}_i are mapped into the break points of the other a_i , by a topological conjugacy φ , satisfying $T_{\widetilde{\mathbf{a}},\sigma} = \varphi^{-1} \circ T_{\mathbf{a},\sigma} \circ \varphi$, i.e. $a_i = \varphi(\widetilde{a}_i)$, and the corresponding sizes of breaks, $c_i = \sqrt{(T_{\mathbf{a},\sigma})'_-(a_i)/(T_{\mathbf{a},\sigma})'_+(a_i)}$ and $\widetilde{c}_i = \sqrt{(\widetilde{T}_{\widetilde{\mathbf{a}},\sigma})'_-(\widetilde{a}_i)/(\widetilde{T}_{\widetilde{\mathbf{a}},\sigma})'_+(\widetilde{a}_i)}$, are the same, for each i = 1, ..., k. If we identify the end points of the interval I, a generalized interval exchange transformation for which σ is a cyclic permutation of $(1,\ldots,k)$ is a circle diffeomorphism with k break points. Correspondingly, $(T_{\mathbf{a},\sigma})'_{+}(a_k)$ above should be understood as $(T_{\mathbf{a},\sigma})'_+(0)$. Notice that the mean nonlinearity $\mathcal{N} = \log \prod_{i=1}^k c_i$. We call a map a circle diffeomorphism with breaks if it is a piecewise smooth diffeomorphism of a circle with the derivative bounded away from 0. In the following, we will consider cyclic generalized interval exchange transformations as acting on the circle $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$. The following claim, that follows directly from our recent results on rigidity of circle maps with a single break point [5,6], is the first result on rigidity of generalized interval exchange transformations in the general case of non-vanishing mean nonlinearity.

Theorem 1.1 Let $T_{\mathbf{a},\sigma}$ and $\widetilde{T}_{\widetilde{\mathbf{a}},\sigma}$ be two $C^{2+\alpha}$ -smooth, with $\alpha \in (0,1)$, cyclic generalized interval exchange transformations, of $k \geq 2$ intervals, with all break-points on the same orbit and the same nonlinearity \mathcal{N} . There is a set $\mathcal{S} \subset (0,1)\backslash \mathbb{Q}$ of Lebesgue measure 1 such that the following holds. If $T_{\mathbf{a},\sigma}$ and $\widetilde{T}_{\widetilde{\mathbf{a}},\sigma}$ have the same rotation number $\rho \in \mathcal{S}$ and if they are break-equivalent, then they are C^1 -smoothly conjugate to each other, i.e. there is a C^1 -smooth diffeomorphism $\varphi : \mathbb{S}^1 \to \mathbb{S}^1$ such that

$$\widetilde{T}_{\widetilde{\mathbf{a}},\sigma} = \varphi^{-1} \circ T_{\mathbf{a},\sigma} \circ \varphi.$$
 (1.1)

Remark 1 The set of rotation numbers $S = S(\alpha, \mathcal{N})$ depends on the smoothness exponent $\alpha \in (0, 1)$ and the nolinearity of the maps \mathcal{N} . In the special case $\mathcal{N} = 0$, it follows essentially from Herman's theory and the analysis below that this set can be taken to be the set of Diophantine numbers of class $\mathcal{D}(\delta)$, for any $\delta \in (0, \alpha)$, for which rigidity holds for circle diffeomorphisms. A number ρ is said to be Diophantine of class $\mathcal{D}(\delta)$ if there exist C > 0 and $\delta \geq 0$ such that $|\rho - p/q| > C/q^{2+\delta}$, for any $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. In the more general case, $\mathcal{N} \neq 0$, it follows from our results [5,6], that the set S can be taken to be the set S_{rig} , for which C^1 -rigidity holds for circle maps with a break. We reserve the term circle map with a break for a circle diffeomorphism with a break of size different than 1. The set S_{rig} includes all irrational $\rho \in (0,1)$ for which partial quotients k_n , in the

3

Figure 1: Two break-equivalent generalized interval exchange transformations of two intervals.

continued fraction expansion of the rotation number $\rho = [k_1, k_2, \dots]$, satisfy the following. For some $C_1 > 0$ and $\lambda_1 \in (0,1)$, $k_n \leq C_1 \lambda_1^{-n}$, for all n odd if $\mathcal{N} < 0$ or all n even, if $\mathcal{N} > 0$. We note that the intersection of all these sets is still of full measure and that the set \mathcal{S} can also be chosen independently of α or \mathcal{N} .

Remark 2 Strictly speaking, Herman's theory [2,3,7,9] is not sufficient to provide the desired estimates in the case $\mathcal{N}=0$. Namely, after the conjugation of $T_{\mathbf{a},\sigma}$, the diffeomorphism that we obtain can have discontinuities of the second derivative at points that correspond to the original break points. Nevertheless, outside of these points, the map is still $C^{2+\alpha}$ -smooth. It is not difficult to show that this discontinuity will not influence the validity of the results.

Remark 3 The result of Theorem 1.1 cannot be extended to all irrational rotation numbers $\rho \in (0, 1)$, as follows from [4].

It is easy to see that a generalized interval exchange transformation T_a , with $a \in (0, 1)$, of k = 2 intervals, for which $\sigma \in S_2$ is a transposition, is a circle map with two break points 0 and a. Since these two points are on the same orbit of the map, i.e. $T_a(a) = 0$, we immediately have the following.

Let c_a be the size of the break of T_a at point a, i.e. $c_a = \sqrt{\frac{(T_a)'_-(a)}{(T_a)'_+(a)}}$.

Corollary 1.2 Let T_a and $\widetilde{T}_{\widetilde{a}}$ be two $C^{2+\alpha}$ -smooth generalized interval exchange transformations of k=2 intervals. If $\rho=\widetilde{\rho}\in\mathcal{S}$, $c_a=\widetilde{c}_{\widetilde{a}}$ and $\mathcal{N}=\widetilde{\mathcal{N}}$, then T_a and $\widetilde{T}_{\widetilde{a}}$ are C^1 -smoothly conjugate to each other.

Lemma 1.3 Any $C^{2+\alpha}$ -smooth cyclic generalized interval exchange transformation $T_{\mathbf{a},\sigma}$ with breaks of size c_i , $i=1,\ldots,k$, on the same orbit can be conjugated to a circle diffeomorphism with a single break point \mathcal{T} , with a break of size $c=\prod_{i=1}^k c_i$, via a piecewise smooth homeomorphism $\mathcal{H}:\mathbb{S}^1\to\mathbb{S}^1$, with breaks on the same orbit. Moreover, the sizes of breaks of \mathcal{H} are completely determined by the sizes and combinatorics of the breaks of $T_{\mathbf{a},\sigma}$.

Proof. Let $h: \mathbb{S}^1 \to \mathbb{S}^1$ be a piecewise smooth diffeomorphism of the circle and let $F = h^{-1} \circ T_{\mathbf{a},\sigma} \circ h$. For every $x \in \mathbb{S}^1$, the one-sided derivatives

$$F'_{\pm}(x) = (h^{-1})'_{\pm}(T_{\mathbf{a},\sigma} \circ h(x))(T_{\mathbf{a},\sigma})'_{\pm}(h(x))h'_{\pm}(x)$$

$$= \frac{1}{h'_{\pm}(F(x))}(T_{\mathbf{a},\sigma})'_{\pm}(h(x))h'_{\pm}(x).$$
(1.2)

Let $b_i = h^{-1}(a_i)$, for i = 1, ..., k. Let h be a diffeomorphism with a single break point and break of size c_i^{-1} at b_i , i.e. $c_i^{-1} = \sqrt{(h'_-(b_i))/(h'_+(b_i))}$.

Let $x \in \mathbb{S}^1$. If $x \neq b_i$ and $x \neq F^{-1}(b_i)$, then

$$\sqrt{\frac{F'_{-}(x)}{F'_{+}(x)}} = \sqrt{\frac{(T_{\mathbf{a},\sigma})'_{-}(h(x))}{(T_{\mathbf{a},\sigma})'_{+}(h(x))}},\tag{1.3}$$

and, thus, the size of the break of F at x is the same as the size of the break of $T_{\mathbf{a},\sigma}$ at h(x).

It follows from (1.2) for $x = b_i$ that

$$\sqrt{\frac{F'_{-}(b_i)}{F'_{+}(b_i)}} = \sqrt{\frac{(T_{\mathbf{a},\sigma})'_{-}(a_i)h'_{-}(b_i)}{(T_{\mathbf{a},\sigma})'_{+}(a_i)h'_{+}(b_i)}} = c_i c_i^{-1} = 1, \tag{1.4}$$

and, hence, F has no break at b_i . For $x = F^{-1}(b_i)$, (1.2) gives

$$\sqrt{\frac{F'_{-}(F^{-1}(b_i))}{F'_{+}(F^{-1}(b_i))}} = \sqrt{\frac{(T_{\mathbf{a},\sigma})'_{-}(T_{\mathbf{a},\sigma}^{-1}(a_i))h'_{+}(b_i)}{(T_{\mathbf{a},\sigma})'_{+}(T_{\mathbf{a},\sigma}^{-1}(a_i))h'_{-}(b_i)}} = c_i\sqrt{\frac{(T_{\mathbf{a},\sigma})'_{-}(T_{\mathbf{a},\sigma}^{-1}(a_i))}{(T_{\mathbf{a},\sigma})'_{+}(T_{\mathbf{a},\sigma}^{-1}(a_i))}},$$
(1.5)

and, thus, the size of the break of F at $F^{-1}(b_i)$ is c_i times larger than the size of the break of $T_{\mathbf{a},\sigma}$ at $T_{\mathbf{a},\sigma}^{-1}(a_i)$. Therefore, the effect of the transformation of $T_{\mathbf{a},\sigma}$ with a conjugacy h with a single break point at b_i is a multiplicative "shift" of the size of the break c_i to its preimage under the map. If all the break points of $T_{\mathbf{a},\sigma}$ are on the same orbit, the map \mathcal{H} can, therefore, be constructed as a composition of a finite number of maps of the same type as h, shifting all the breaks of $T_{\mathbf{a},\sigma}$ to a single break point. All the break points of \mathcal{H} are on the same orbit of $\mathcal{T} = \mathcal{H}^{-1} \circ T_{\mathbf{a},\sigma} \circ \mathcal{H}$, and their sizes are completely determined by the combinatorics and the sizes of breaks of $T_{\mathbf{a},\sigma}$. The breaks of $T_{\mathbf{a},\sigma}$ belong to a single

K. Khanin and S. Kocić

5

orbit. Let us order them according to the time along this orbit, i.e. $a_{\pi(1)}, \ldots, a_{\pi(k)}$, where π is a permutation in S_k . Hence, we have $T_{\mathbf{a},\sigma}^{\ell_n} a_{\pi(n)} = a_{\pi(n+1)}$, for every $n = 1, \ldots, k-1$. It is easy to see that, for every such n and $j = 1, \ldots, \ell_n$, \mathcal{H} has a break of size $\prod_{m=n+1}^k c_{\pi(m)}^{-1}$ at $\mathcal{H}^{-1} \circ T_{\mathbf{a},\sigma}^j(a_{\pi(n)}) = \mathcal{T}^j \circ \mathcal{H}^{-1}(a_{\pi(n)})$. The claim follows.

Proof of Theorem 1.1. It follows from Lemma 1.3 that there is a pair of circle diffeomorphisms with a break \mathcal{T} and $\widetilde{\mathcal{T}}$, with a break of size $\prod_{i=1}^k c_i$, and a pair of break-equivalent piecewise-smooth circle diffeomorphisms \mathcal{H} and $\widetilde{\mathcal{H}}$, such that $\mathcal{T} = \mathcal{H}^{-1} \circ T_{\mathbf{a},\sigma} \circ \mathcal{H}$ and $\widetilde{\mathcal{T}} = \widetilde{\mathcal{H}}^{-1} \circ \widetilde{T}_{\mathbf{a},\sigma} \circ \widetilde{\mathcal{H}}$. If $\prod_{i=1}^k c_i = 1$, \mathcal{T} and $\widetilde{\mathcal{T}}$ are circle diffeomorphisms; if $\prod_{i=1}^k c_i \neq 1$, \mathcal{T} and $\widetilde{\mathcal{T}}$ are circle maps with a break. For $\rho \in \mathcal{S}$, it follows from Herman's theory [2,3,7,9] (see also remark 2), if $\prod_{i=1}^k c_i = 1$, and from our results on rigidity of circle maps with a single break point [5,6], if $\prod_{i=1}^k c_i \neq 1$, that \mathcal{T} and $\widetilde{\mathcal{T}}$ are C^1 -smoothly conjugate to each other, i.e. there is a C^1 -smooth diffeomorphism ϕ such that $\widetilde{\mathcal{T}} = \phi^{-1} \circ \mathcal{T} \circ \phi$. It follows that $\widetilde{T}_{\mathbf{a},\sigma} = \varphi^{-1} \circ T_{\mathbf{a},\sigma} \circ \varphi$, where $\varphi = \mathcal{H} \circ \phi \circ \widetilde{\mathcal{H}}^{-1}$. Since, for every $x \in \mathbb{S}^1$, the one-sided derivatives,

$$\varphi'_{\pm}(x) = \mathcal{H}'_{\pm}(\phi \circ \widetilde{\mathcal{H}}^{-1}(x))\phi'(\widetilde{\mathcal{H}}^{-1}(x))(\widetilde{\mathcal{H}}^{-1})'_{\pm}(x)$$

$$= \mathcal{H}'_{\pm}(\phi \circ \widetilde{\mathcal{H}}^{-1}(x))\phi'(\widetilde{\mathcal{H}}^{-1}(x))\frac{1}{\widetilde{\mathcal{H}}'_{+}(\widetilde{\mathcal{H}}^{-1}(x))}.$$
(1.6)

Since ϕ is C^1 -smooth, it maps the break point of $\widetilde{\mathcal{T}}$ into the break point of \mathcal{T} . Since, by Lemma 1.3, the sizes of breaks of \mathcal{H} at $\phi(\widetilde{y})$ and $\widetilde{\mathcal{H}}$ at \widetilde{y} are the same, it follows that $\varphi'_{-}(x) = \varphi'_{+}(x)$. The claim follows.

References

- [1] K. Cunha and D. Smania, Rigidity for piecewise smooth homeomorphisms on the circle, *Adv. Math.* **250** (2014) 193–226.
- [2] M. R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations, *Publ. Math. Inst. Hautes Etudes Sci.* **49** (1979), 5–234.
- [3] Y. Katznelson, D. Orstein, The differentiability of conjugation of certain diffeomorphisms of the circle, *Ergod. Th. & Dynam. Sys.* **9** (1989), 643–680.
- [4] K. Khanin, S. Kocić, Absence of robust rigidity for circle diffeomorphisms with breaks, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 3 (2013), 385–399.
- [5] K. Khanin, S. Kocić, Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks, *Geom. Funct. Anal.* **24** 6 (2014), 2002–2028.

- [6] K. Khanin, S. Kocić, E. Mazzeo, C^1 -rigidity of circle diffeomorphisms with breaks for almost all rotation numbers, Preprint mp-arc 11-102.
- [7] K. Khanin, A. Teplinsky, Herman's theory revisited, *Invent. Math.* **178** (2009), 333–344.
- [8] S. Marmi, P. Moussa, J.-C. Yoccoz, Linearization of generalized interval exchange maps, *Ann. Math* **176** 3 (2012) 1583–1646.
- [9] J.-C. Yoccoz, Conjugaison differentiable des difféomorphismes du cercle donc le nombre de rotation vérifie une condition Diophantienne, Ann. Sci. Ec. Norm. Sup. 17 (1984), 333–361.