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Abstract

We prove that, for every ε ∈ (0, 1), every two C2+α-smooth (α > 0) circle
diffeomorphisms with a break point, i.e. circle diffeomorphisms with a single singular
point where the derivative has a jump discontinuity, with the same irrational rotation
number ρ ∈ (0, 1) and the same size of the break c ∈ R+\{1}, are conjugate to each
other via a conjugacy which is (1− ε)-Hölder continuous at the break points.

1 Introduction

The rigidity theory of circle diffeomorphisms is a classic topic in dynamical systems, which
started with the work of Arnol’d [1] and was largely developed by Herman [7], Yoccoz [22],
and others (see also [8] and [14]). It concerns some implied regularity (often smoothness)
of conjugacies between maps that belong to the same topological conjugacy class. Over the
last twenty-five years a major focus has been put on understanding the rigidity properties
of circle diffeomorphisms with a single singular point where the derivative has a jump
discontinuity (circle maps with a break) or vanishes (critical circle maps). This paper
advances the fairly developed rigidity theory of circle maps with a break. It concerns a
phenomenon not previously seen and establishes a result which has no analog for circle
diffeomorphisms.

The first result on the rigidity of circle diffeomorphisms concerns the smoothness of
conjugations for analytic diffeomorphisms of a circle T1 = R\Z, close to a rotation Rρ :
x 7→ x+ ρ mod 1, with ρ ∈ (0, 1)\Q. Arnol’d [1] proved, using methods of Kolmogorov-
Arnol’d-Moser theory, that any analytic circle diffeomorphism with a Diophantine rotation
∗Email: khanin@math.utoronto.ca
†Email: skocic@olemiss.edu
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number ρ, sufficiently close to a rotation Rρ, is analytically conjugate to Rρ. He also made
a conjecture, proved almost two decades later by Herman [7], that the closeness to the
rotation is not necessary for this claim to hold true. In fact, Herman proved that any
C∞- smooth (Cω-smooth) circle diffeomorphism with a Diophantine rotation number ρ
is C∞- smoothly (Cω-smoothly) conjugate to the rotation Rρ. The required smoothness
of the maps was further weakened by Yoccoz [22], establishing generic C1+ε-rigidity, with
ε > 0, of Cr smooth (r ≥ 3) circle diffeomorphisms. A natural approach to Herman’s
theory is based on renormalization. Renormalizations of circle diffeomorphisms converge
to linear maps with slope 1. A recent result [14], which uses renormalization, shows
that C2+α-smooth circle diffeomorphisms with a Diophantine rotation number ρ of class
D(δ), with 0 ≤ δ < α < 1, are C1+α−δ-smoothly conjugate to Rρ. On the other hand,
robust rigidity, i.e., rigidity for all irrational rotation numbers, does not hold even for
analytic circle diffeomorphisms. In fact, Arnol’d constructed examples of analytic circle
diffeomorphisms with the same Liouville (non-Diophantine) irrational rotation number
for which the conjugacy is essentially singular.

We recently proved a sequence of results on the rigidity of circle maps with breaks
that can be considered an extension of Herman’s theory of the linearization of circle
diffeomorphisms. In [11, 12], we proved that, for almost all irrational ρ ∈ (0, 1), any two
C2+α-smooth circle diffeomorphisms with a break, with the same rotation number ρ and
the same size of the break c ∈ R+\{1} (i.e., the same ratio of the left and right derivatives
at the break point), are C1-smoothly conjugate to each other. This generic C1-rigidity
result follows from the exponential convergence of renormalizations of these maps that
we proved in [11]. In fact, in [11], we proved that, for all irrational ρ, renormalizations fn
and f̃n of any two C2+α-smooth circle diffeomorphisms with a break T and T̃ , with the
same irrational rotation number ρ and the same size of the break c approach each other
exponentially fast (in the C2-topology), i.e., there exist λ ∈ (0, 1) and C > 0 such that

‖fn − f̃n‖C2[−1,0] ≤ Cλn. (1.1)

The exponential rate of convergence λ is universal and depends only on the size of the
break c and α (for α < 1, λ = µα, with µ ∈ (0, 1) independent of α). Partial results
concerning the convergence of renormalizations restricted to sets of rotation numbers of
zero Lebesgue measure, were previously obtained in [9, 15]. A set Srig of rotation numbers
ρ for which C1-rigidity holds [11, 12] can be characterized, using the continued fraction
expansion ρ = [k1, k2, . . . ], as follows. Srig is the set of all ρ for which there exists a
constant C1 > 0 and λ1 ∈ (λ, 1) such that kn+1 ≤ C1λ

−n
1 for all n ∈ 2N, if c < 1, or for all

n ∈ 2N−1, if c > 1. The difference between n odd and n even comes from the difference in
the behavior of the corresponding subsequences of renormalizations. We also proved [10]
that, although generic, C1-rigidity does not hold for all irrational rotation numbers. These
results are analogous to those for circle diffeomorphisms. A recent result of Kocić [18]
shows that, for almost all irrational rotation numbers, C1+ε-rigidity of circle maps with
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breaks does not hold for any ε > 0, contrary to the case of circle diffeomorphisms. The
set Snon of rotation numbers for which C1+ε-rigidity does not hold includes all irrational
numbers ρ ∈ (0, 1), for which there is subsequence of kn+1, with n ∈ 2N, if c < 1, or with
n ∈ 2N− 1, if c > 1, which grows faster then linearly in n.

The smaller set of rotation numbers for which C1+ε-rigidity holds, for some ε > 0, for
circle maps with breaks, in comparison to circle diffeomorphisms, is the consequence of the
strongly unbounded geometry of these maps. While, in the case of circle diffeomorphisms,
the ratio of lengths of neighboring elements of dynamical partitions Pn is at most of the
order of the partial quotient kn+1, in the case of circle maps with a break, this ratio can
be exponentially large in kn+1. This can also be compared with analytic critical circle
maps whose bounded geometry, i.e., the property that this ratio is bounded, is ultimately
responsible for their robust C1-rigidity. Namely, Khanin and Teplinsky proved [13] that
any two analytic critical circle maps with the same irrational rotation number and the
same order of the critical point are C1-smoothly conjugate to each other. A critical point
xc is said to be of order β > 1 if the derivative of the map for x near xc behaves as
|x− xc|β−1. The result is based on the exponential convergence of renormalizations that
was proved by de Faria and de Melo [6] for bounded type rotation numbers and extended
to all irrational rotation numbers by Yampolsky [21]. In fact, de Faria and de Melo proved
that a stronger, C1+ε-rigidity, of analytic critical circle maps holds for generic irrational
rotation numbers [6]. They also proved that such a result cannot be extended to all
irrational rotation numbers in the C∞-class of maps [5]. A local result of Khmelev and
Yampolsky [17] suggested that the analytic case might be different. Nevertheless, for
any ε > 0, Avila [2] constructed examples of analytic critical circle maps, with the same
irrational rotation number and the same order of the critical point, that are not C1+ε-
smoothly conjugate to each other. All positive rigidity results for critical circle maps with
non-analytic critical points are, at the moment, conditional, due to the lack of proof of
the convergence of renormalization in this case.

Contrary to the case of critical circle maps, as already mentioned above, robust C1-
rigidity does not hold even for analytic circle maps with a break. In [10], we even con-
structed pairs of analytic circle maps with a break, with the same irrational rotation
number and the same size of the break, for which no conjugacy between them is Lipschitz
continuous. The rotation numbers ρ of these maps have a rapidly growing (faster than
some exponential function) subsequence of odd-indexed digits in the continued fraction
expansion kn+1 of ρ, if c < 1, or even-indexed digits, if c > 1. In [10], we also proved that
the conjugacy that maps the break point of one map into the break point of the other
can be arbitrarily bad. More precisely, for any modulus of continuity, we constructed
examples of analytic circle maps with a break, with the same irrational rotation number
and the same size of the break, such that the conjugacy that maps the break point of one
map into the break point of the other is not uniformly continuous with that modulus of
continuity.
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The main result of this paper is given by the following theorem.

Theorem 1.1 Let ε ∈ (0, 1), c ∈ R+\{1}, α ∈ (0, 1) and let ρ be any irrational number
in (0, 1). Then, for any two C2+α-smooth circle diffeomorphisms T and T̃ with break
points at xc and x̃c, respectively, with the same rotation number ρ and the same size of
the break c, there is a point x0 ∈ T1 such that the conjugacy ϕ : T1 → T1 that satisfies
ϕ ◦ T ◦ ϕ−1 = T̃ and ϕ(x0) = x̃c is (1− ε)-Hölder continuous at the break points.

Definition 1.2 Let x0 ∈ T1. A function ϕ : T1 → T1 is locally β-Hölder continuous or
β-Hölder continuous at x0 or ϕ(x0) if there exists C > 0 such that, for all x ∈ T1,

C−1|x− x0|
1
β ≤ |ϕ(x)− ϕ(x0)| ≤ C|x− x0|β. (1.2)

The conjugacy is β-Hölder continuous if it is β-Hölder continuous at each x ∈ T1.

Remark 1 We emphasize that the construction of the (1− ε)-Hölder continuous conju-
gacy requires a non-trivial “shift”, i.e., in general x0 = ϕ−1(x̃c) 6= xc.

Remark 2 For any ε > 0, the result establishes robust local (1 − ε)-Hölder rigidity of
C2+α-smooth circle diffeomorphisms with a break. An analogous result does not hold for
circle diffeomorphisms, even when they are analytic.

In addition to being part of the rigidity theory of circle homeomorphisms, rigidity
results for circle maps with breaks are also important for understanding properties of
the generalized interval exchange transformations. Although quite natural, these trans-
formations were introduced only recently by Marmi, Moussa and Yoccoz [19]. They are
obtained by replacing linear branches with slope 1 of an interval exchange transformation
by smooth diffeomorphisms. Just as an interval exchange transformation of two intervals
can be seen as a rigid rotation on a circle, a generalized interval exchange transformation
of two intervals is a circle map with two break points. As these two points lie on the
same orbit of the map, the map can be piecewise-smoothly conjugated to a circle map
with one point of break. Marmi, Moussa and Yoccoz considered the linearizable case of
an arbitrary number of intervals [19], when there are no break points. The special case
of cyclic permutations, which corresponds to circle maps with more points of break, but
with product of the sizes of breaks equal to 1, was considered by Cunha and Smania [3, 4].
In this case, renormalizations approach piecewise linear maps. In the case of circle maps
with breaks with the product of the sizes of breaks along some orbit not equal to 1,
the renormalizations are essentially non-linear and approach piecewise fractional linear
transformations.

This paper is organized as follows. In Section 2, we review basic facts about dynamical
partitions and renormalizations of circle homeomorphisms - the main technical tools that
we use in this paper. In Section 3, we give a criterion of (local) Hölder continuity of a

4



conjugacy between two circle homeomorphisms. In Section 4, we obtain some general
estimates on the geometry of dynamical partitions. In particular, we show that the
lengths of the corresponding fundamental intervals are asymptotically the same on the
logarithmic scale. In Section 5, we prove that, after an appropriate shift of indexes,
the renormalized intervals of the next level partition inside the fundamental intervals of
dynamical partitions are, in some sense, comparable. Finally, in Section 6, we choose a
particular conjugacy and prove Theorem 1.1.

2 Preliminaries

For every orientation-preserving homeomorphism T : T1 → T1 of the circle T1 := R/Z,
there exists a (unique up to an additive integer constant) continuous and strictly increasing
function T : R→ R, called a lift of T , that satisfies T (x+ 1) = T (x) + 1, for every x ∈ R.
Poincaré showed that, for every such T : T1 → T1, there is a unique rotation number ρ,
given by the limit ρ := lim

n→∞
T n(x)/n mod 1, where T is any lift of T . Renormalizations of

an orientation-preserving homeomorphism of a circle T , with a rotation number ρ ∈ (0, 1)
are defined using the continued fraction expansion

ρ =
1

k1 + 1
k2+ 1

k3+...

, (2.1)

that we also write as ρ = [k1, k2, k3, . . . ]. The sequence of integers (kn)n∈N, called partial
quotients, is infinite if and only if ρ is irrational. Every irrational ρ defines uniquely the
sequence of partial quotients. Conversely, every infinite sequence of partial quotients de-
fines uniquely an irrational number ρ as the limit of the sequence of rational convergents
pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms a sequence of best ratio-
nal approximates of an irrational ρ, i.e., there are no rational numbers with denominators
smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents can also
be defined recursively by pn = knpn−1 +pn−2 and qn = knqn−1 +qn−2, starting with p0 = 0,
q0 = 1, p−1 = 1, q−1 = 0.

To define renormalizations of an orientation-preserving homeomorphism of a circle T ,
with an irrational rotation number ρ, we start with a marked point x0 ∈ T1, and consider
the marked trajectory xi = T ix0, with i ∈ N. The subsequence (xqn)n∈N indexed by the
denominators qn of the sequence of rational convergents of the rotation number ρ, will
be called the sequence of dynamical convergents. It follows from the simple arithmetic
properties of the rational convergents that the sequence of dynamical convergents (xqn)n∈N
for the rigid rotation Rρ has the property that its subsequence with n odd approaches
x0 from the left monotonically and the subsequence with n even approaches x0 from the
right monotonically. Since all circle homeomorphisms with the same irrational rotation
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number are combinatorially equivalent, the order of the dynamical convergents of T is the
same.

The interval [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0

and called the n-th renormalization segment associated to x0. The n-th renormalization
segment associated to xi will be denoted by ∆

(n)
i . It follows from the properties of the

continued fractions that the only points of the orbit {xi : 0 < i ≤ qn+1} that belong to
∆

(n−1)
0 are {xqn−1+iqn : 0 ≤ i ≤ kn+1}.
A certain number of images of ∆

(n−1)
0 and ∆

(n)
0 , under the iterates of the map T , cover

the whole circle without overlapping beyond the end points and form the n-th dynamical
partition of the circle

Pn := {T i∆(n−1)
0 : 0 ≤ i < qn} ∪ {T i∆(n)

0 : 0 ≤ i < qn−1}. (2.2)

The intervals ∆
(n−1)
0 and ∆

(n)
0 will be called the fundamental intervals of Pn. We also define

∆̄
(n−1)
0 := ∆

(n−1)
0 ∪∆

(n)
0 and the renormalization parameter an :=

|∆(n)
0 |

|∆(n−1)
0 |

, characterizing
the geometry of dynamical partitions.

The n-th renormalization of an orientation-preserving homeomorphism T : T1 → T1,
with a rotation number ρ, with respect to the marked point x0 ∈ T1, is a function fn :
[−1, 0]→ R obtained from the restriction of T qn to ∆

(n−1)
0 , by rescaling the coordinates,

in the following way. If τn is the affine change of coordinates that maps xqn−1 into −1 and
x0 into 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.3)

Definition (2.3) is valid for all n ∈ N0, where N0 := N ∪ {0}, if and only if ρ is irrational;
otherwise, n is less than or equal to the length of the continued fraction expansion of ρ.
If we identify x0 with zero, then τn is exactly the multiplication by (−1)n/|∆(n−1)

0 |. Here,
and in what follows, |I| denotes the length of an interval I on the circle T1. Notice that
fn(0) = an.

When necessary to state explicitly which marked point x0 the quantities ∆
(n)
i , ∆̄

(n−1)
0 ,

an, Pn, fn and τn are associated to, they are denoted by ∆
(n)
i (x0), ∆̄

(n−1)
0 (x0), an(x0),

Pn,x0 , fn,x0 and τn,x0 , respectively.
This paper concerns circle diffeomorphisms (maps) with a break, i.e., homeomorphisms

of a circle for which there exists a point xc ∈ T1, such that

(i) T ∈ Cr(T1\{xc}),

(ii) T ′(x) is bounded from below by a positive constant on T1\{xc}, and

(iii) the one-sided derivatives T ′−(xc) and T ′+(xc) at xc are such that the size of the break

c :=

√
T ′−(xc)

T ′+(xc)
6= 1.
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In this paper, we will reserve the notation ∆
(n)
i , ∆̄

(n−1)
0 , an, Pn, fn and τn for the quan-

tities associated to the marked point x0 = xc. The corresponding quantities, associated

to the map T̃ will be denoted by ∆̃
(n)
i , ˜̄∆(n−1)

0 , ãn, P̃n, f̃n and τ̃n.
Since for circle maps with a break V := VarT1 lnT ′ < ∞, we have | ln(T qn)′(x)| ≤ V ,

for all x ∈ T1, by Denjoy’s lemma [20]. Therefore, we have the uniform bound

| ln f ′n(x)| ≤ V, (2.4)

for all x ∈ [−1, 0].
It was proved in [16] that the renormalizations of circle maps with a break approach

a particular family of fractional linear transformations. For every c ∈ R+\{1} and α ∈
(0, 1), there exists λ ∈ (0, 1) such that the sequence of renormalizations (fn)n∈N0 of a circle
map T , with a break of size c, satisfies

‖fn − Fn‖C2[−1,0] ≤ Cλn, (2.5)

for some C > 0, where Fn := Fan,bn,Mn,cn : [−1, 0]→ R,

Fn(z) :=
an + (an + bnMn)z

1− (Mn − 1)z
, (2.6)

with

an :=
|∆(n)

0 |
|∆(n−1)

0 |
, bn :=

|∆(n−1)
0 | − |∆(n)

qn−1|
|∆(n−1)

0 |
, Mn = exp

qn−1∑
i=0

xi∫
xqn−1+i

T ′′(x)

2T ′(x)
dx

 . (2.7)

We end this section with a few more comments about the notation. For functions
f, g : D → R, with a domain D, we write f(x) = O(g(x)) if there is a constant K > 0,
independent of x ∈ D, such that |f(x)| ≤ K|g(x)|. We write f(x) = Θ(g(x)) if there is a
constant K > 0, independent of x ∈ D, such that K−1g(x) ≤ f(x) ≤ Kg(x).

3 A criterion of Hölder continuity of the conjugacy

In this section, we state and prove a criterion of Hölder regularity of the conjugacy.

Proposition 3.1 (Criterion of local Hölder regularity) Let γ ∈ (0, 1) and x ∈ T1.
Let T̃ , T : T1 → T1 be two orientation-preserving circle homeomorphisms and ϕ : T1 → T1

a homeomorphism satisfying
ϕ ◦ T ◦ ϕ−1 = T̃ . (3.1)

If there exist σ > 0 and δ > 0 such that, for all y ∈ T1 satisfying |x− y| < δ, there exists
J ∈ N and a finite sequence of intervals ∆j ⊂ [x, y], j = 1, . . . , J , such that
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(i)
J∑
j=1

|ϕ(∆j)| ≥ σ|ϕ(x)− ϕ(y)|,

(ii)
J∑
j=1

|∆j| ≥ σ|x− y|,

(iii) (∀j : 1 ≤ j ≤ J) |∆j| ≥ σ|x− y|2,

(iv) (∀j : 1 ≤ j ≤ J) |ϕ(∆j)| ≥ σ|ϕ(x)− ϕ(y)|2,

(v) (∀j : 1 ≤ j ≤ J)

γ <
ln |ϕ(∆j)|

ln |∆j|
< 2− γ, (3.2)

then the conjugacy ϕ and its inverse ϕ−1 are 2γ − 1-Hölder continuous at x and ϕ(x),
respectively.

Remark 3 In this paper, [x, y] denotes the shortest arc on T1 with end points at x and
y. |x− y| denotes the shortest arc distance on T1, i.e., the length of [x, y].

Proof. It follows from (3.2) that, for all x ∈ T1 and all ∆j ⊂ [x, y] we have |ϕ(∆j)| ≤
|∆j|γ and |∆j| ≤ |ϕ(∆j)|γ. Using (i) and (iii), we have

|ϕ(x)− ϕ(y)| ≤ σ−1

J∑
j=1

|ϕ(∆j)| ≤ σ−1

J∑
j=1

|∆j|γ ≤ σγ−2|x− y|2γ−1. (3.3)

This proves that ϕ is 2γ − 1-Hölder continuous at x. 2γ − 1-Hölder continuity of ϕ−1 at
ϕ(x) is established similarly, using (ii) and (iv),

|x− y| ≤ σ−1

J∑
j=1

|∆j| ≤ σ−1

J∑
j=1

|ϕ(∆j)|
1

2−γ ≤ σ
1

2−γ−2|x− y|
2

2−γ−1. (3.4)

and the fact that 1
2−γ > γ, for γ ∈ (0, 1). QED

It was shown in [10] that, for every c ∈ R+\{1}, there are irrational numbers ρ ∈ (0, 1)

and pairs of circle diffeomorphisms T and T̃ with breaks at xc and x̃c, respectively, with
the same rotation number ρ and the same size of the break c, such that the conjugacy ϕ
that satisfies (3.1) and ϕ(xc) = x̃c is not Hölder continuous at xc. The main goal of this
paper is to determine a point x0, for any such pairs of maps, such that the assumptions
of Proposition 3.2 are satisfied, with the intervals ∆j chosen from among the intervals of
dynamical partitions Pn,x0 .
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4 Estimates on the renormalization parameters

In the following, let T and T̃ be two circle diffeomorphisms with breaks at xc and x̃c,
respectively, with the same irrational rotation number ρ ∈ (0, 1) and the same size of the
break c ∈ R\{1}. In this section, we obtain some general estimates on the renormalization
parameters an and ãn and show that the logarithms of the lengths of the corresponding
fundamental intervals of T and T̃ are asymptotically the same.

Proposition 4.1 Let λ2 ∈ (
√
λ/λ1, 1). There exists C2 > 0 such that, if cn > 1 or if

cn < 1 and kn+1 ≤ C1λ
−n
1 , then ∣∣∣∣ ãnan − 1

∣∣∣∣ ≤ C2λ
n
2 . (4.1)

Remark 4 If cn > 1, (4.1) can actually be strengthened by replacing λ2 with λ.

Proof. Let λ3 ∈ (λ/λ2, λ1λ2). If cn < 1 and an ≥ C3λ
n
3 , for some C3 > 0, the claim

follows directly from the exponential closeness of renormalizations (1.1), since λ2 > λ/λ3

and
|ãn − an| = |f̃n(0)− fn(0)| ≤ Cλn. (4.2)

If cn > 1, the claim follows from the same estimate since, in that case, an is bounded from
below by a positive constant (see Proposition 3.3 of [11]).

Now, assume that cn < 1 and an < C3λ
n
3 . We assume that n is sufficiently large

such that the renormalizations are concave downwards (see Proposition 3.6 of [11]). If
ãn/an > 1 + C2λ

n
2 , then there is a constant C4 > 0 such that

|τ̃n(∆̃
(n)
qn−1)|

|τn(∆
(n)
qn−1)|

> 1 + C4λ
n
2 . (4.3)

This follows from the fact that |τn(∆
(n)
qn−1)| = f ′n−1(ζ)|τn(∆

(n)
0 )| = f ′n−1(ζ)an, where ζ ∈

τn−1(∆
(n)
0 ), and |τ̃n(∆̃

(n)
qn−1)| = f̃ ′n−1(ζ̃)|τ̃n(∆̃

(n)
0 )| = f̃ ′n−1(ζ̃)ãn, where ζ̃ ∈ τ̃n−1(∆̃

(n)
0 ), using

again (1.1) and the Denjoy estimate (2.4). Namely,

|τ̃n(∆̃
(n)
qn−1)|

|τn(∆
(n)
qn−1)|

=
|f̃ ′n−1(ζ̃)|
|f ′n−1(ζ)|

ãn
an

> (1 +O(λn + an))(1 + C2λ
n
2 ) > 1 + C4λ

n
2 . (4.4)

Here, we have also used that |ζ − ζ̃| ≤ C5an < C3C5λ
n
3 , for some C5 > 0.

Furthermore, there is a constant C6 > 0 such that

|τ̃n(∆̃
(n+1)
0 )|

|τn(∆
(n+1)
0 )|

=
ãn+1

an+1

ãn
an

> (1 +O(λn))(1 + C2λ
n
2 ) > 1 + C6λ

n
2 . (4.5)
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Therefore, there is a constant C7 > 0 such that

|τ̃n(∆̃
(n)
qn+1)|

|τn(∆
(n)
qn+1)|

=
ãn(1 + ãn+1(1− f̃ ′n(ζ̃ ′)))

an(1 + an+1(1− f ′n(ζ ′)))

=
ãn
an

(
1 +

(ãn+1 − an)(1− f̃ ′n(ζ̃ ′)) + an(f ′n(ζ ′)− f̃ ′n(ζ̃ ′))

1 + an+1(1− f ′n(ζ ′))

)
> (1 +O(λn) + anO(λn + an))(1 + C2λ

n
2 ) > 1 + C7λ

n
2 ,

(4.6)

where ζ ′ ∈ τn(∆
(n+1)
0 ) and ζ̃ ′ ∈ τ̃n(∆̃

(n+1)
0 ). Here, we have used that |ζ ′ − ζ̃ ′| ≤ C8an ≤

C3C8λ
n
3 , for some C8 > 0, in addition to using |τn(∆

(n+1)
qn )| = f ′n(ζ ′)|τn(∆

(n+1)
0 )| =

f ′n(ζ ′)an+1an and |τ̃n(∆̃
(n+1)
qn )| = f̃ ′n(ζ̃ ′)|τ̃n(∆̃

(n+1)
0 )| = f̃ ′n(ζ̃ ′)ãn+1ãn. We have also used (1.1)

and the Denjoy estimate (2.4).
Since

|τ̃n(∆̃
(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+iqn

)|
=
|τ̃n(∆̃

(n)
qn−1)|

|τn(∆
(n)
qn−1)|

i−1∏
j=0

f̃ ′n(ζ̃j)

f ′n(ζj)
,

|τ̃n(∆̃
(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+iqn

)|
=
|τ̃n(∆̃

(n)
qn+1)|

|τn(∆
(n)
qn+1)|

kn+1−1∏
j=i

(
f̃ ′n(ζ̃j)

f ′n(ζj)

)−1

,

(4.7)

where ζj ∈ τn(∆
(n)
qn−1+jqn

) and ζ̃j ∈ τ̃n(∆̃
(n)
qn−1+jqn

), we can obtain that, for some C9 > 0,

|τ̃n(∆̃
(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+iqn

)|
> 1 + C9λ

n
2 , (4.8)

for all 0 ≤ i ≤ kn+1 such that the intervals τ̃n(∆̃
(n)
qn−1+iqn

) ⊂ [−1,−1 + λn3 ] ∪ [−λn3 , 0]. All
but at most order n of the intervals τ̃n(∆̃

(n)
qn−1+iqn

) satisfy this condition. Starting with
estimate (4.3) and using the first of the identities (4.7), we obtain

|τ̃n(∆̃
(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+iqn

)|
> (1 + C4λ

n
2 )(1 +O(λn3 ))−C1λ

−n
1 , (4.9)

and, thus, (4.8) follows for i such that τ̃n(∆̃
(n)
qn−1+iqn

) ⊂ [−1,−1 + λn3 ]. Here, we have used
the estimate |f̃ ′n(ζ̃j) − f ′n(ζj)| ≤ C10λ

n
3 , where C10 > 0, together with λ < λ3 < λ1λ2.

Similarly, starting with estimate (4.6) and using the second of the identities (4.7), we
obtain (4.8) for i such that τ̃n(∆̃

(n)
qn−1+iqn

) ⊂ [−λn3 , 0].

Let ξi and ξi+1 be the left and right end point of the interval τn(∆
(n)
qn−1+iqn

). Let,
similarly, ξ̃i and ξ̃i+1 be the left and right end point of the interval τ̃n(∆̃

(n)
qn−1+iqn

). Let

10



ri = ξ̃i − ξi. Estimates (4.8) imply that for i such that τ̃n(∆̃
(n)
qn−1+iqn

) ⊂ [−1,−1 + λn3 ],
ri ≥ C11λ

n
2 |τ̃n(∆̃

(n)
qn−1+iqn

)|, for some C11 > 0, and n large enough. Here, we have also used
that, for all such i, |τ̃n(∆̃

(n)
qn−1+iqn

)| is of the same order as
∑i

j=0 |τ̃n(∆̃
(n)
qn−1+iqn

)|. This follows
from the fact that for such i, f ′n(ζi)−c−1

n = O(λn3 ) and f̃ ′n(ζ̃i)−c−1
n = O(λn3 ) and, therefore,

the length of the intervals τ̃n(∆̃
(n)
qn−1+iqn

) increases exponentially with i. Similarly, for i
such that the intervals τ̃n(∆̃

(n)
qn−1+iqn

) ⊂ [−λn3 , 0], we have ri ≤ −C12λ
n
2 |τ̃n(∆̃

(n)
qn−1+iqn

)|, for
some C12 > 0, and n large enough. Let imin be the index i of the longest of the intervals
τ̃n(∆̃

(n)
qn−1+iqn

) ⊂ [−1,−1 + λn3 ]. If such imin does not exist we set imin := 0. Similarly, let
imax be the index i of the longest of the intervals τ̃n(∆̃

(n)
qn−1+iqn

) ⊂ [−λn3 , 0]. If such imax

does not exist, we set imax := kn+1. Since |τ̃n(∆̃
(n)
qn−1+iminqn

)| and |τ̃n(∆̃
(n)
qn−1+imaxqn

)| are at
least of the order of λn3 , we obtain that rimin

≥ C13λ
n
2λ

n
3 and rimax ≤ −C13λ

n
2λ

n
3 , for some

C13 > 0, and all n large enough. We can now extend these estimates using the following
relation

ri+1 = f̃ ′n(ζ̃ ′i)ri +O(λn), (4.10)

where ζ̃ ′i ∈ (ξi, ξ̃i). By iterating this relation, we obtain

ri ≥ rimin

i−1∏
j=imin

f̃ ′n(ζ̃ ′j)− C14λ
n

i−imin−1∑
k=0

i−1∏
j=i−k

f̃ ′n(ζ̃ ′j), (4.11)

where C14 > 0. For any κ > 0, there exists κ > 0, such that if ζ̃ ′i ∈ [−1,−1 + κ], then
|f̃ ′n(ζ̃ ′i) − c−1

n | < κ and if ζ̃ ′i ∈ [−κ, 0], then |f̃ ′n(ζ̃ ′i) − cn| < κ. Therefore, if κ is small
enough, and i is such that τ̃n(∆̃

(n)
qn−1+iqn

) ⊂ [−1,−1 + κ], the derivatives in (4.11) are
larger than and bounded away from 1. Consequently, the sum of the products in (4.11)
is of the order of the maximal product. Therefore,

ri ≥ C13λ
n
2λ

n
3 − C15λ

n ≥ C16λ
n
2λ

n
3 , (4.12)

for some C15, C16 > 0 and n large enough. Similarly, for i such that τ̃n(∆̃
(n)
qn−1+iqn

) ⊂
[−κ, 0], we obtain that

ri ≤ −C17λ
n
2λ

n
3 , (4.13)

for some C17 > 0 and all n large enough. Using (4.10), each of the estimates (4.12) and
(4.13) can be extended to i such that τ̃n(∆̃

(n)
qn−1+iqn

) ∩ (−1 + κ,−κ) 6= ∅. This leads to a
contradiction. The claim follows. QED

Proposition 4.2 There exists C18, C19 > 0 such that, if cn < 1 and kn+1 > C18, then∣∣∣∣ ln an
1
2
kn+1 ln cn

− 1

∣∣∣∣ ≤ C19 max

{
ln kn+1

kn+1

, λn
}
. (4.14)
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Proof. Let us consider two subintervals of [−1, 0], L1 := [−1,−1 + 1/kn+1] and L2 :=
[fkn+1
n (−1) − 1/kn+1, f

kn+1
n (−1)], and the set of points S := {f jn(−1) : j = 1, . . . , kn+1}.

Let m1 and m2 be the cardinalities of the sets S ∩ L1 and S ∩ L2, respectively. Then,
there is C20 > 0 such that

kn+1 − (m1 +m2) ≤ C20 ln kn+1, (4.15)

since the cardinality of the set S\(L1∪L2) is of the order of ln kn+1. This follows from the
fact that, for cn < 1 and sufficiently large n, the second derivative of the renormalizations
f ′′n is bounded away from zero and negative (see Proposition 3.6 of [11]).

If bn,1 = (fn)′+(−1) and bn,2 = (fn)′−(0), and M ≥ max
z∈[−1,0]

|f ′′n(z)|, then

C−1
21 b

−m1
n,1

kn+1

≤ |fn(−1) + 1| ≤
C21b

−m1
n,1

kn+1

(
1− M

bn,1kn+1

)−m1

,

C−1
21 b

m2
n,2

kn+1

≤ |fkn+1
n (−1)− fkn+1−1

n (−1)| ≤
C21b

m2
n,2

kn+1

(
1 +

2M

bn,2kn+1

)m2

,

(4.16)

for some C21 > 0. The last inequality is obtained under the assumption |fkn+1
n (−1)| <

1/kn+1. It follows from the Denjoy estimate (2.4) that

e−3V |fkn+1
n (−1)− fkn+1−1

n (−1)| ≤ |fn(−1) + 1| ≤ e3V |fkn+1
n (−1)− fkn+1−1

n (−1)|. (4.17)

Since both m1,m2 ≤ kn+1, this implies that, for some C22 > 0,

C−1
22 b

m2
n,2 ≤ b−m1

n,1 ≤ C22b
m2
n,2. (4.18)

Using (4.15), for some C23 > 0, we have∣∣∣∣∣m1 −
ln bn,2

ln b−1
n,1 + ln bn,2

kn+1

∣∣∣∣∣ ≤ C23 ln kn+1,∣∣∣∣∣m2 −
ln b−1

n,1

ln b−1
n,1 + ln bn,2

kn+1

∣∣∣∣∣ ≤ C23 ln kn+1.

(4.19)

It follows that |fkn+1
n (−1)| < C24b

−m1
n,1 /kn+1 < 1/kn+1, for some C24 > 0, if kn+1 is large

enough. Since, by (2.5), |bn,1 − F ′n(−1)| ≤ Cλn and F ′n(−1) = c−1
n + O(an) (due to

Proposition 3.2 of [11]), the claim follows. QED

Corollary 4.3 Let λ4 ∈ (λ1/3, 1). There exist C25 > 0 and N1 ∈ N such that, for all
n ≥ N1 such that cn < 1, we have ∣∣∣∣ ln ãnln an

− 1

∣∣∣∣ ≤ C25λ
n
4 . (4.20)

12



Proof. Let λ1 = λ1/3. If kn+1 ≤ C1λ
−n
1 , the claim follows from Proposition 4.1. If

kn+1 > C1λ
−n
1 , the claim follows from Proposition 4.2. We have also used the fact that,

if cn < 1, then, for n ≥ N1 and N1 ∈ N large enough, an < cn < 1 (see Proposition 3.3
in [11]). QED

Proposition 4.4

lim
n→∞

ln |∆̃(n)
0 |

ln |∆(n)
0 |

= 1. (4.21)

Proof. Let ε > 0. Since ∆
(n)
0 =

∏n
k=1 ak, we have ln |∆(n)

0 | = ln
n∏

k=1 : ck>1

ak+ln
n∏

k=1 : ck<1

ak.

If N2 ∈ N and N2 ≥ N1, using Proposition 4.1 and Corollary 4.3, we obtain

ln |∆̃(n)
0 |

ln |∆(n)
0 |

=1 +

ln
n∏

k=1 : ck>1

(1 +O(λk2)) +
N2−1∑

k=1 : ck<1

ln akO(λk4)

ln |∆(n)
0 |

+

n∑
k=N2 : ck<1

ln akO(λk4)

ln |∆(n)
0 |

=1 +
O(1) + Ψ1(N2)

ln |∆(n)
0 |

+O(λN2
4 )

ln
n∏

k=N2 : ck<1

ak

ln |∆(n)
0 |

,

(4.22)

where Ψ1(N2) is a constant that depends on N2, but does not depend on n. Since |∆(n)
0 |

decrease at least exponentially with n and since, for sufficiently large k and ck > 1, ak
are bounded both from above and from below by positive constants (see Proposition 3.3
of [11]), we have

ln
n∏

k=N2 : ck<1

ak

ln |∆(n)
0 |

= 1−
ln

N2−1∏
k=1 : ck<1

ak

ln |∆(n)
0 |

−
ln

n∏
k=1 : ck>1

ak

ln |∆(n)
0 |

= O(1)− Ψ2(N2)

ln |∆(n)
0 |

, (4.23)

where Ψ2(N2) is a constant that depends on N2 only. It follows from (4.22) that if N2 has
been chosen large enough, there exists N3 ≥ N2 such that, for all n ≥ N3, we have∣∣∣∣∣ ln |∆̃(n)

0 |
ln |∆(n)

0 |
− 1

∣∣∣∣∣ < ε. (4.24)

The claim follows. QED
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5 Estimates on the renormalized intervals of the next
level partition and the shift of indexes

The following proposition was proved in [12].

Proposition 5.1 ([12]) Let λ5 = max{λ2, λ
(1+α)α
8(2+α) }. There exists C26 > 0 such that, for

all n ∈ N such that either cn > 1 or cn < 1 and kn+1 ≤ C1λ
−n
1 , we have∣∣∣∣∣ |τ̃n(∆̃

(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+iqn

)|
− 1

∣∣∣∣∣ ≤ C26λ
n
5 , (5.1)

for all i such that 0 ≤ i < kn+1.

Let xi := T i(xc).

Proposition 5.2 For every α ∈ (0, 1), ρ ∈ (0, 1)\Q and c ∈ R+\{1}, there exists λ ∈
(0, 1) and, for every C2+α-smooth circle map T with a break of size c and rotation number
ρ, there exists C27 > 0, such that, if cn < 1 then, for every i = 1, . . . , qn, we have

‖fn,xi−qn − F
(0)
n ‖C2[−1,0] ≤ C27(λn + an), (5.2)

where
F (0)
n (z) =

cnz

1 + (1− cn)z
. (5.3)

Proof. The proof of the claim is similar to the proof of (2.5), using Proposition 3.2 of

[11] and the fact that |∆(n)
0 (xi−qn )|

|∆(n−1)
0 (xi−qn )|

= Θ(an), for i = 1, . . . , qn − 1, due to the bounded

distortion of the ratio |∆(n)
0 |

|∆(n−1)
0 |

under the action of T−i. QED

Let Sn,xi := {f jn,xi(−1) : j = 1, . . . , kn+1}.

Proposition 5.3 Let ε1 > 0 and let n1 = n1(n, i) be the cardinality of Sn,xi ∩M1, where
M1 := [−1,−1 + ε1]. There exists C28 > 0 such that, if cn < 1 and kn+1 > C28n, then, for
i = 0, . . . , qn − 1,

n1 =
1

2
kn+1 +O(λnkn+1 + ln kn+1). (5.4)

Proof. Since the distortion of the ratio |∆(n)
i−qn |

|∆(n−1)
i−qn |

under T qn−i is bounded, |∆(n−1)
i | =

|∆(n−1)
i−qn |(1 + O(an)), for i = 1, . . . , qn − 1. It follows that, for sufficiently large n, the

cardinality of the set Sn,xi−qn ∩M1, that we will denote by n̄1, can differ from n1 by at

14



most 2. Here, we have used Proposition 5.2 and, therefore, that the distance between
successive points f jn,xi−qn (−1) grows exponentially with j. Using Proposition 5.2 again,
in particular that the second derivative of fn,xi−qn is bounded both from below and above
by negative constants and that the derivatives f ′n,xi−qn (−1) and f ′n,xi−qn (0) can be made
arbitrary close to c−1

n and cn, respectively, by choosing n and kn+1 sufficiently large, one
can prove, completely analogously to the proof of the first inequality in (4.19) (see the
proof of Proposition 4.2), that

n̄1 =
ln bn,xi−qn ,2

ln b−1
n,xi−qn ,1

+ ln bn,xi−qn ,2
kn+1 +O(ln kn+1), (5.5)

where bn,xi−qn ,1 = (fn,xi−qn )′+(−1) and bn,xi−qn ,2 = (fn,xi−qn )′−(0). Here, we have also used
the fact that the cardinality of the set Sn,xi−qn ∩(M1\L1) (see the proof of Proposition 4.2)
is of the order of ln kn+1.

Since it follows from Proposition 4.2 and Proposition 5.2 that (fn,xi−qn )′+(−1)− c−1
n =

O(λn) and (fn,xi−qn )′+(0) − cn = O(λn), for kn+1 > C28n and C28 > 0 sufficiently large,
the claim follows from (5.5). QED

Let x̃i := T̃ i(x̃c) and S̃n,x̃i := {f̃ jn,x̃i(−1) : j = 1, . . . , kn+1}. An immediate corollary of
Proposition 5.3 is the following.

Corollary 5.4 Let λ6 ∈ (λ1, 1). Let ε1 > 0 and let n1 and ñ1 be the cardinalities of
Sn,xi ∩M1 and S̃n,x̃i ∩M1, where M1 := [−1,−1 + ε1]. There exists K1 > 0, depending on
T and T̃ only, such that, if cn < 1 and kn+1 > C1λ

−n
1 , then, for i = 0, . . . , qn − 1,

|n1 − ñ1| ≤ K1ε(n)kn+1, (5.6)

where ε(n) = λn + ln kn+1

kn+1
≤ Θ(λn6 ).

The following proposition shows that, after a proper shift of indexes, in, the lengths
of the intervals τ̃n(∆̃qn−1+iqn) and τn(∆qn−1+(i+in)qn) are of the same order.

To simplify the notation, let Ji := τn(∆
(n)
qn−1+iqn

) and J̃i := τ̃n(∆̃
(n)
qn−1+iqn

). It follows
from Proposition 5.2 that, for cn < 1, kn+1 ≥ C1λ

−n
1 and n large enough, the renormaliza-

tions fn and f̃n are uniformly concave downwards with derivatives at −1 and 0 close to
c−1
n and cn, respectively. Therefore, there are unique points z∗n and z̃∗n such that f ′n(z∗n) = 1

and f̃n(z̃∗n) = 1. Let i(n) and ĩ(n) be the indexes of two intervals Ji(n) and J̃ĩ(n) such that
z∗n ∈ Ji(n) and z̃∗n ∈ J̃ĩ(n) . We define

in := i(n) − ĩ(n). (5.7)

If i(n) or ĩ(n) is not defined uniquely, we choose in to take the value that maximizes |in|.
It follows from Corollary 5.4 that |in| < C29ε(n)kn+1, for some C29 > 0.
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Proposition 5.5 For sufficiently small ε2 > 0, there exists C30 > 0, such that if cn < 1
and kn+1 ≥ C1λ

−n
1 then, for every i satisfying 0 ≤ i ≤ kn+1 and |i − ĩ(n)| ≤ ε2λ

−n, we
have ∣∣∣∣∣ln |τ̃n(∆̃

(n)
qn−1+iqn

)|

|τn(∆
(n)
qn−1+(i+in)qn

)|

∣∣∣∣∣ ≤ C30. (5.8)

Proof. It is easy to see that the lengths of the intervals Ji(n) and J̃ĩ(n) are of order
1. It follows that, for every κ > 0, there exists C31 > 0, such that for all i such that
(Ji+in ∪ J̃i) ∩M0 6= ∅, where M0 = (−1 + κ,−κ), we have

C−1
31 ≤

|J̃i|
|Ji+in|

≤ C31. (5.9)

We will now extend this estimate for i such that 0 ≤ i ≤ kn+1 and |i− ĩn| ≤ ε2kn+1, using
the recursion relation

|J̃i+1|
|Ji+in+1|

=
|J̃i|
|Ji+in|

f̃ ′n(ζ̃i)

f ′n(ζi+in)
, (5.10)

where ζi ∈ Ji and ζ̃i ∈ J̃i. If i(n)
min and i(n)

max are the smallest and largest values of i such
that (Ji+in ∪ J̃i) ∩M0 6= ∅, we have

|J̃i|
|Ji+in|

=
|J̃
i
(n)
min
|

|J
i
(n)
min+in

|

i
(n)
min−1∏
j=i

(
f̃ ′n(ζ̃j)

f ′n(ζj+in)

)−1

, (5.11)

for i < i
(n)
min, and

|J̃i|
|Ji+in|

=
|J̃
i
(n)
max
|

|J
i
(n)
max+in

|

i−1∏
j=i

(n)
max

f̃ ′n(ζ̃j)

f ′n(ζj+in)
, (5.12)

for i > i
(n)
max, as long as 0 ≤ i < kn+1 and 0 ≤ i+ in < kn+1. It follows from Proposition 5.2

that, for any κ > 0, there exists κ > 0, such that if ζi, ζ̃i ∈M1, where M1 = [−1,−1 +κ],
then |f ′n(ζi)− c−1

n | < κ and |f̃ ′n(ζ̃i)− c−1
n | < κ and if ζi, ζ̃i ∈M2, where M2 = [−κ, 0], then

|f ′n(ζi)− cn| < κ and |f̃ ′n(ζ̃i)− cn| < κ.
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Since the second derivatives f ′′n and f̃ ′′n are bounded, it follows from (5.11) that

|J̃i|
|Ji+in |

=
|J̃
i
(n)
min
|

|J
i
(n)
min+in

|

i
(n)
min−1∏
j=i

(1 +O(max{|Jj+in|, |J̃j|}) + λn))

=
|J̃
i
(n)
min
|

|J
i
(n)
min+in

|

1 +

i
(n)
min−1∑
j=i

O(max{|Jj+in|, |J̃j|})

Θ
(
(1 + λn)imin−i

)

=
|J̃
i
(n)
min
|

|J
i
(n)
min+in

|
(1 +O(κ))Θ(1).

(5.13)

In the last step, we have used that i(n)
min − i ≤ ĩ(n) − i ≤ ε2λ

−n
1 , for κ small enough. We

have also used the fact that, for all j satisfying i ≤ j < i
(n)
min, Jj+in , J̃j ⊂M1. This follows

from the fact that |̃i(n) − in| > C32λ
−n
1 , for some C32 > 0, and, therefore, |̃i(n) − i| ≤

ε2λ
−n
1 < |̃i(n) − in|, for ε2 > 0 small enough. This proves the claim for i < i

(n)
min.

Using (5.12), one can similarly obtain

|J̃i|
|Ji+in|

=
|J̃
i
(n)
max
|

|J
i
(n)
max+in

|
(1 +O(κ))Θ(1), (5.14)

for i > i
(n)
max satisfying i− ĩ(n) ≤ ε2λ

−n
1 , and ε2 > 0 small enough. The claim follows. QED

An immediate corollary of the previous proposition is the following.

Corollary 5.6 Under the assumptions of Proposition 5.5, we have∣∣∣∣∣ ln |τ̃n(∆̃
(n)
qn−1+iqn

)|

ln |τn(∆
(n)
qn−1+(i+in)qn

)|
− 1

∣∣∣∣∣ ≤ C30

| ln |τn(∆
(n)
qn−1+(i+in)qn

)||
. (5.15)

Proposition 5.7 Let λ6 ∈ (λ1, 1) and ε2 > 0. There exists C33 > 0 such that, if cn < 1
and kn+1 ≥ C1λ

−n
1 , for all i such that 0 ≤ i < kn+1 and |i− ĩ(n)| > ε2λ

−n
1 , we have∣∣∣∣∣ ln |τ̃n(∆̃

(n)
qn−1+iqn

)|

ln |τn(∆
(n)
qn−1+(i+in)qn

)|
− 1

∣∣∣∣∣ ≤ C33λ
n
6 . (5.16)

Proof. Let i(n)
l and i(n)

r be the smallest and largest value of i for which (5.8) holds. Since
ĩ(n) − i(n)

l and i(n)
r − ĩ(n) are at least of the order of λ−n1 , it follows from Proposition 5.2
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that there is C34 > 0 such that | ln |J̃
i
(n)
l
||, | ln |J̃

i
(n)
r
|| ≥ C34λ

−n
1 . Corollary 5.6 then implies

that there exists C35 > 0 such that∣∣∣∣∣∣
ln |J̃

i
(n)
l
|

ln |J
i
(n)
l +in

|
− 1

∣∣∣∣∣∣ ,
∣∣∣∣∣ ln |J̃

i
(n)
r
|

ln |J
i
(n)
r +in

|
− 1

∣∣∣∣∣ ≤ C35λ
n
1 . (5.17)

We will now extend this estimate for 0 ≤ i < i
(n)
l and i(n)

r < i < kn+1, using the following
relation

ln |J̃j+1|
ln |Jj+1+in|

=
ln |J̃j|+ ln(T̃ qn)′(̃zj)

ln |Jj+in|+ ln(T qn)′(zj+in)
, (5.18)

where zj ∈ ∆
(n)
qn−1+jqn

and z̃j ∈ ∆̃
(n)
qn−1+jqn

.

We will first extend the estimate (5.17) to i(n)
r < i < kn+1; for 0 ≤ i < i

(n)
l , the analysis

is similar. By iterating (5.18), we obtain

ln |J̃i|
ln |Ji+in|

=
ln |J̃

i
(n)
r
|+
∑i−1

j=i
(n)
r

ln(T̃ qn)′(̃zj)

ln |J
i
(n)
r +in

|+
∑i−1

j=i
(n)
r

ln(T qn)′(zj+in)
. (5.19)

For i(n)
r < j < imax := min{kn+1, kn+1 − in}, the derivatives satisfy∣∣∣∣∣ (T̃ qn)′(̃zj)

(T qn)′(zj+in)
− 1

∣∣∣∣∣ ≤ C36λ
n, (5.20)

for some C36 > 0, since (T qn)′(zj) = f ′n(ζj) and (T̃ qn)′(̃zj) = f̃ ′n(ζ̃j) and, for sufficiently
large n, all the points ζj+in , ζ̃j belong to an interval L2 := [−d, 0], where 0 < d ≤ c

C37λ
−n
1

n ,
for some C37 > 0. Here, we have also used that, by Proposition 5.2, for i(n)

r < j < imax,
|f ′n(ζj+in) − cn| = O(λn) and |f̃ ′n(ζ̃j) − cn| = O(λn). Therefore, for i(n)

r < i < imax, we
obtain

ln |J̃i|
ln |Ji+in|

−1 =
(i− i(n)

r )O(λn)

ln |Ji+in|
+O(λn1 ) =

(i− i(n)
r )O(λn)

Θ(λ−n1 ) + Θ(i− i(n)
r )

+O(λn1 ) = O(λn1 ). (5.21)

If in > 0, then imax < kn+1. To extend estimate (5.17) to i satisfying imax < i < kn+1, we
use the following estimate, similar to (5.19), which was also obtained from (5.18),

ln |J̃i|
ln |Ji+in|

=
ln |J̃imax−1|+

∑i−1
j=imax−1 ln(T̃ qn)′(̃zj)

ln |Jimax+in−1|+
∑i−1

j=imax−1 ln(T qn)′(zj+in)
. (5.22)

For imax ≤ j < kn+1, however, the derivatives (T̃ qn)′(̃zj) and (T qn)′(zj+in) can differ by (at
most) a constant, as follows from Proposition 5.2. The number of these terms, however,
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is bounded by in and is, therefore, of the order of ε(n)kn+1, which is small in comparison
to kn+1. For imax ≤ i < kn+1, we, therefore, obtain

ln |J̃i|
ln |Ji+in|

− 1 =
kn+1O(λn1 ) + kn+1O(ε(n))

ln |Ji+in|
= O(λn1 ) +O

(
ln kn+1

kn+1

)
, (5.23)

taking into account that | ln |Jimax|| = Θ(kn+1). The claim follows. QED

6 Choice of the conjugacy and proof of the main result

In the previous section, we considered intervals of dynamical partitions Pn and P̃n of
circle diffeomorphisms with a break T and T̃ , constructed with the corresponding marked
points xc and x̃c, respectively. For the map T , we will now consider intervals of dynamical
partitions Pn,x0 , constructed with a marked point x0 that will be defined below.

We will assume that the rotation number ρ ∈ (0, 1)\Q of T and T̃ is such that there
is an infinite increasing sequence of positive integers (`i)i∈N such that, for all n ∈ N for
which cn < 1, we have:

(i) kn+1 > C1λ
−n
1 , if n = `i, for some i ∈ N;

(ii) kn+1 ≤ C1λ
−n
1 , if n 6= `i, for any i ∈ N.

If this is not the case, i.e., if the sequence (`i)i∈N is finite or empty, the claim of Theorem 1.1
follows directly from the fact that T and T̃ are conjugate to each other via a C1-smooth
conjugacy ϕ that satisfies ϕ(xc) = x̃c [11, 12].

For all n ∈ N such that n = `i, for some i ∈ N, let in := in, where in is the integer
defined by (5.7). For all n ∈ N such that n 6= `i, for any i ∈ N, we define in := 0.

Let x(n)
0 := T

∑n
m=1 imqmxc, for n ∈ N, and x(0)

0 := xc.
Notice that |x(`i)

0 −x
(`−1)
0 | is of the order of the length of i`i consecutive “long” intervals

of partition P`i+1, nearest to the point x(`i−1)
0 . Since the number of such intervals is small

compared to k`i+1, they all belong either to ∆
(`i−1)
0 (x

(`i−1)
0 ) or to ∆

(`i−1)
−q`i−1

(x
(`i−1)
0 ). The

following proposition gives an estimate on this distance.

Proposition 6.1 Let ε3 > 0. There exist N4 ∈ N and C38 > 0 such that, for all n ≥ N4,
we have

a`i(x
(`i−1)
0 ) ≤ C38c

( 1
2
−ε3)k`i+1

`i
(6.1)

and
|x(`i)

0 − x(`i−1)
0 | ≤ C38c

( 1
2
−ε3)k`i+1

`i
|∆(`i−1)

0 (x
(`i−1)
0 )|. (6.2)
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Proof. Since k`i+1 > C1λ
−`i
1 , Proposition 5.3 implies that a`i(x

(`i−1)
0 ) = c

1
2
k`i+1+O(λn6 )k`i+1

`i
.

Since
|x(`i)

0 − x(`i−1)
0 | = O

(
c
O(ε(n)k`i+1)

`i

)
a`i(x

(`i−1)
0 )|∆(`i−1)

0 (x
(`i−1)
0 )|, (6.3)

the claim follows. QED

Let `0 := 0. Let sn := max{i ∈ N0 : `i ≤ n}.

Proposition 6.2
x0 := lim

n→∞
x

(n)
0 ∈ T1. (6.4)

Proof. Let n > m. It follows from Proposition 6.1 that

|x(n)
0 −x

(m)
0 | = |x

(`sn )
0 −x(`sm )

0 | ≤
sn∑

i=sm+1

|x(`i)
0 −x

(`i−1)
0 | ≤ C39

sn∑
i=sm+1

λ`i1 ≤ C40λ
`sm+1

1 , (6.5)

where C39, C40 > 0, and, therefore, (x
(n)
0 )n∈N is a Cauchy sequence on T1. Since T1 is

compact, the sequence is convergent. QED

Lemma 6.3 There exists C41 > 0 such that the following holds for 0 ≤ j < kn+1. For all
n ∈ N such that n 6= `i, for all i ∈ N, we have∣∣∣∣∣ln |τ̃n(∆̃

(n)
qn−1+jqn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|

∣∣∣∣∣ ≤ C41. (6.6)

If n = `i, for some i ∈ N, we have∣∣∣∣∣ln |τ̃n(∆̃
(n)
qn−1+jqn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|

∣∣∣∣∣ ≤ C41 max{1, λn6 | ln |τn,x0(∆
(n)
qn−1+jqn

(x0))||}. (6.7)

Proof. Consider first the case n 6= `i, for any i ∈ N. We would like to estimate the ratio

|τn(∆
(n)
qn−1+jqn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|
=
|τ
n,x

(`sn )
0

(∆
(n)
qn−1+jqn

(x
(`sn )
0 ))|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|

sn∏
i=1

|τ
n,x

(`i−1)

0

(∆
(n)
qn−1+jqn

(x
(`i−1)
0 ))|

|τ
n,x

(`i)
0

(∆
(n)
qn−1+jqn

(x
(`i)
0 ))|

.

(6.8)
Notice that x(`i)

0 = T i`iq`ix
(`i−1)
0 . The ratio in the product is the reciprocal of the distortion

of the ratio |τ
n,x

(`i−1)

0

(∆
(n)
qn−1+jqn

(x
(`i−1)
0 ))| under the action of T i`iq`i and can be estimated

as

|τ
n,x

(`i−1)

0

(∆
(n)
qn−1+jqn

(x
(`i−1)
0 ))|

|τ
n,x

(`i)
0

(∆
(n)
qn−1+jqn

(x
(`i)
0 ))|

= 1 +O

i`iq`i−1∑
j=0

|∆(n−1)
j (x

(`i−1)
0 )|

 = 1 +O(c
( 1
2
−ε3)C1λ

−`i
1

`i
),

(6.9)
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since n > `sn .
To estimate the ratio in front of product in (6.8), notice that Proposition 6.1 implies

|x0 − x(`sn )
0 | = O(c

( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
)|∆(`sn+1−1)

0 (x
(`sn )
0 )|. (6.10)

Due to the Denjoy estimate (2.4), the distances |T qn−1(x0)−T qn−1(x
(`sn )
0 )| and |T qn−1+qn(x0)−

T qn−1+qn(x
(`sn )
0 )| are of the same order. Since, `sn+1 > n, we have that |∆(`sn+1−1)

0 (x
(`sn )
0 )| ≤

eV |∆(n)
qn−1(x

(`sn )
0 ))| and, therefore, using (6.10), we obtain

|∆(n)
qn−1(x

(`sn )
0 ))| − |∆(n)

qn−1(x0))|
|∆(n)

qn−1(x
(`sn )
0 ))|

= O(c
( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
) (6.11)

and
|∆(n−1)

0 (x
(`sn )
0 ))| − |∆(n−1)

0 (x0))|
|∆(n−1)

0 (x
(`sn )
0 ))|

= O(c
( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
). (6.12)

Let ξj,x0 := T qn−1+jqnx0 and ξ
j,x

(`sn )
0

:= T qn−1+jqnx
(`sn )
0 . Let rj := |ξj,x0− ξj,x(`sn )

0

|. Since

the distortion of the ratio r0/|∆(n)
qn−1(x

(`sn )
0 ))| under the action of T jqn , for j = 1, . . . , kn+1,

is bounded, we obtain that the ratio in front of the product in (6.8) can be estimated as

|τ
n,x

(`sn )
0

(∆
(n)
qn−1+jqn

(x
(`sn )
0 ))|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|
= 1 +O(c

( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
). (6.13)

Therefore, the ratio in (6.8) can be estimated as

|τn(∆
(n)
qn−1+jqn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|
=

sn+1∏
i=1

(
1 +O(c

( 1
2
−ε3)C1λ

−`i
1

`i
)

)
= 1 +O(c

( 1
2
−ε3)C1λ

−`1
1

`1
). (6.14)

The first claim, (6.6), follows from this estimate and Proposition 5.1. To prove the second
claim, (6.7) (for n = `i, for some i ∈ N), we similarly have

|τn(∆
(n)
qn−1+(j+in)qn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|
=
|τ
n,x

(`sn )
0

(∆
(n)
qn−1+jqn

(x
(`sn )
0 ))|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|

|τ
n,x

(`sn−1)

0

(∆
(n)
qn−1+(j+in)qn

(x
(`sn−1)
0 ))|

|τ
n,x

(`sn )
0

(∆
(n)
qn−1+jqn

(x
(`sn )
0 ))|

·
sn−1∏
i=1

|τ
n,x

(`i−1)

0

(∆
(n)
qn−1+(j+in)qn

(x
(`i−1)
0 ))|

|τ
n,x

(`i)
0

(∆
(n)
qn−1+(j+in)qn

(x
(`i)
0 ))|

.

(6.15)
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Using the same arguments as above, we can estimate the first ratio and the product of
the ratios. To estimate the second ratio, notice that n = `sn and ∆

(n)
qn−1+(j+in)qn

(x
(`sn−1)
0 ) =

∆
(n)
qn−1+jqn

(x
(`sn )
0 ). We, therefore, obtain

|τn(∆
(n)
qn−1+(j+in)qn

)|

|τn,x0(∆
(n)
qn−1+jqn

(x0))|
=

sn+1∏
i=1

(
1 +O(c

( 1
2
−ε3)C1λ

−`i
1

`i
)

)
= 1 +O(c

( 1
2
−ε3)C1λ

−`1
1

`1
). (6.16)

The claim (6.7) follows from identity (6.16), Proposition 5.5 and Proposition 5.7. QED

Proposition 6.4

lim
n→∞

ln |∆̃(n)
0 |

ln |∆(n)
0 (x0)|

= 1. (6.17)

Proof. Let ε4 > 0. We will estimate first

ln
|∆(n−1)

0 (x0)|
|∆(n−1)

0 |
= ln

|∆(n−1)
0 (x0)|

|∆(n−1)
0 (x

(`sn )
0 )|

+
sn∑
i=1

ln
|∆(n−1)

0 (x
(`i)
0 )|

|∆(n−1)
0 (x

(`i−1)
0 )|

. (6.18)

We use the same notation as in the proof of Lemma 6.3. Since x(`i)
0 = T i`iq`ix

(`i−1)
0 , using

the Denjoy estimate (2.4) and (6.10), we have∣∣∣∣∣ln |∆(n−1)
0 (x0)|
|∆(n−1)

0 |

∣∣∣∣∣ ≤ C42c
( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
+ V

sn∑
i=1

|i`i |, (6.19)

where C42 > 0. Therefore,∣∣∣∣ln |∆(n−1)
0 (x0)|
|∆(n−1)

0 |

∣∣∣∣
| ln |∆(n−1)

0 ||
≤
C42c

( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
+ V

∑sn
i=1 |i`i |∑n−1

i=1 | ln ai|

≤
C42c

( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
+ V C29

∑sn
i=1 ε(`i)k`i+1

C43

∑sn
i=1 k`i+1

,

(6.20)

for some C43 > 0. The last quantity can be made arbitrarily small for n ≥ N5, by choosing
N5 ∈ N and C1 large enough (such that `1 is sufficiently large).

The claim now follows from

ln |∆̃(n−1)
0 |

ln |∆(n−1)
0 (x0)|

=
ln |∆̃(n−1)

0 |

ln |∆(n−1)
0 |+ ln

|∆(n−1)
0 (x0)|
|∆(n−1)

0 |

(6.21)
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and Proposition 4.4 since, for n ≥ N5,∣∣∣∣∣ ln |∆̃(n−1)
0 |

ln |∆(n−1)
0 (x0)|

− 1

∣∣∣∣∣ < ε4. (6.22)

QED

Let ϕ be the conjugacy between T and T̃ that satisfies (3.1) and ϕ(x0) = x̃c.

Lemma 6.5

lim
n→∞

max
0≤j<kn+1

ln |∆̃(n)
qn−1+jqn

|

ln |∆(n)
qn−1+jqn

(x0)|
= 1, lim

n→∞
min

0≤j<kn+1

ln |∆̃(n)
qn−1+jqn

|

ln |∆(n)
qn−1+jqn

(x0)|
= 1. (6.23)

Proof. The claim follows from Lemma 6.3 and Proposition 6.4, taking into account that

∣∣∣∣∣ ln |∆̃(n)
qn−1+jqn

|

ln |∆(n)
qn−1+jqn

(x0)|
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
ln

|τ̃n(∆̃
(n)
qn−1+jqn

)|

|τn,x0 (∆
(n)
qn−1+jqn

(x0))|
+ ln

|∆̃(n−1)
0 |

|∆(n−1)
0 (x0)|

ln |∆(n)
qn−1+jqn

(x0)|

∣∣∣∣∣∣∣∣ , (6.24)

and that max0≤j<kn+1 |∆qn−1+jqn(x0)| decreases at least exponentially with n. QED

Proposition 6.6

lim
n→∞

max
0<j≤kn+2

ln |∆̃(n+1)
jqn+1
|

ln |∆(n+1)
jqn+1

(x0)|
= 1, lim

n→∞
min

0<j≤kn+2

ln |∆̃(n+1)
jqn+1
|

ln |∆(n+1)
jqn+1

(x0)|
= 1. (6.25)

Proof. Notice that ∆
(n+1)
jqn+1

(x0) ⊂ ∆
(n)
qn+1−qn(x0), for 0 < j ≤ kn+2. Since

|∆̃(n+1)
jqn+1
|

|∆(n+1)
jqn+1

(x0)|
=
|∆̃(n+1)

qn+jqn+1
|

|∆(n+1)
qn+jqn+1

(x0)|
(T qn)′(z)

(T̃ qn)′(̃z)
, (6.26)

where z ∈ ∆
(n+1)
jqn+1

(x0) and z̃ ∈ ∆̃
(n+1)
jqn+1

, we have

∣∣∣∣∣ ln |∆̃(n+1)
jqn+1
|

ln |∆(n+1)
jqn+1

(x0)|
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
(

ln |∆̃(n+1)
qn+jqn+1

|

ln |∆(n+1)
qn+jqn+1

(x0)|
− 1

)
ln |∆(n+1)

qn+jqn+1
(x0)|+ ln (T qn )′(z)

(T̃ qn )′ (̃z)

ln |∆(n+1)
jqn+1

(x0)|

∣∣∣∣∣∣∣∣ . (6.27)

The claim follows from the latter identity by using Denjoy bound (2.4) and Lemma 6.5
since |∆(n+1)

jqn+1
(x0)| ≤ eV |∆(n+1)

qn+jqn+1
(x0))|. QED
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Proposition 6.7 If n 6= `i, for any i ∈ N, then

an(x0) = Θ(an). (6.28)

Proof. Similar to (6.8), we have

an
an(x0)

=
|τn(∆

(n)
0 )|

|τn,x0(∆
(n)
0 (x0))|

=
|τ
n,x

(`sn )
0

(∆
(n)
0 (x

(`sn )
0 ))|

|τn,x0(∆
(n)
0 (x0))|

sn∏
i=1

|τ
n,x

(`i−1)

0

(∆
(n)
0 (x

(`i−1)
0 ))|

|τ
n,x

(`i)
0

(∆
(n)
0 (x

(`i)
0 ))|

. (6.29)

The ratio in the product is the reciprocal of the distortion of the ratio |τ
n,x

(`i−1)

0

(∆
(n)
0 (x

(`i−1)
0 ))|

under the action of T i`iq`i and, since n > `sn , it can be estimated, similar to (6.9), as

|τ
n,x

(`i−1)

0

(∆
(n)
0 (x

(`i−1)
0 ))|

|τ
n,x

(`i)
0

(∆
(n)
0 (x

(`i)
0 ))|

= 1+O

i`iq`i−1∑
j=0

|∆(n−1)
j (x

(`i−1)
0 )|

 = 1+O(c
( 1
2
−ε3)C1λ

−`i
1

`i
). (6.30)

To estimate the ratio in front of product in (6.29), notice that, due to (6.10) and Denjoy
estimate (2.4), we obtain

|∆(n)
0 (x0))|

|∆(n)
0 (x

(`sn )
0 ))|

= 1 +O(c
( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
) (6.31)

and
|∆(n−1)

0 (x0))|
|∆(n−1)

0 (x
(`sn )
0 ))|

= 1 +O(c
( 1
2
−ε3)C1λ

−`sn+1
1

`sn+1
). (6.32)

Therefore, the ratio in (6.29) can be estimated as

an
an(x0)

=
sn+1∏
i=1

(
1 +O(c

( 1
2
−ε3)C1λ

−`i
1

`i
)

)
= 1 +O(c

( 1
2
−ε3)C1λ

−`1
1

`1
). (6.33)

The claim follows. QED

Proof of Theorem 1.1. To prove the claim we will verify that the assumptions of
Proposition 3.2 are satisfied with x = x0 and the intervals ∆j chosen among the intervals
of partitions Pn,x0 , for n ∈ N. Proposition 6.4, Lemma 6.5 and Proposition 6.6 give us
that, for every ε > 0, there exists N6 ∈ N such that, for all n ≥ N6, 0 ≤ j̄ < kn+1 and
0 < ĵ ≤ kn+2,

1− ε

2
<

ln |∆̃(n)

qn−1+j̄qn
|

ln |∆(n)

qn−1+j̄qn
(x0)|

,
ln |∆̃(n−1)

0 |
ln |∆(n−1)

0 (x0)|
,

ln |∆̃(n+1)

ĵqn+1
|

ln |∆(n+1)

ĵqn+1
(x0)|

< 1 +
ε

2
. (6.34)
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Let us choose δ > 0 small enough such that the interval [x0 − δ, x0 + δ] is contained
inside the interval ∆̄

(N6)
0 . For every y ∈ (−δ, δ), there exists n > N6, such that the

interval [x0, y] ⊂ ∆
(n−1)
0 (x0) and [x0, y] 6⊂ ∆

(n+1)
0 (x0). Consider the following partitions of

∆
(n−1)
0 (x0): Qn+1,x0 := {∆(n)

qn−1+j̄qn
(x0) : 0 ≤ j̄ < kn+1} ∪ {∆(n+1)

0 (x0)} and

Gn+1,x0 := Qn+1,x0\{∆
(n)
qn+1−qn(x0)}∪{∆(n+2)

qn+1−qn(x0)}∪{∆(n+1)

ĵqn+1
(x0) : 0 < ĵ ≤ kn+2}. (6.35)

Denote the corresponding partitions of ∆̃
(n−1)
0 by Q̃n+1 and G̃n+1, respectively.

Recall that if cn > 1, an and ãn are bounded from below by a positive constant (see
Proposition 3.3 in [11]). Due to Proposition 6.7, an(x0) is also bounded from below by a
positive constant.

Consider first the case cn < 1. It follows from the discussion above and the Denjoy
estimate (2.4) that the lengths of the intervals ∆

(n)
qn+1−qn(x0), ∆

(n)
0 (x0) and ∆

(n+1)
0 (x0)

are of the same order. Due to the Denjoy estimate (2.4), for every C44 > 0, there
exists ε5 > 0, such that if kn+1 ≤ C44, then an(x0) > ε5. For every ε6 > 0, there
exists κ1 > 0, N7 ≥ N6, and C44 > 0 such that if n ≥ N7 and kn+1 > C44, then
|f ′n,x0(z) − cn| ≤ ε6, for z ∈ [−κ1, τn,x0(T

−qnx0)]. Therefore, the length of the intervals
∆

(n)

qn−1+j̄qn
(x0) ⊂ τ−1

n,x0
([−κ1, 0]) decreases exponentially with j̄. Consequently, if y ∈

∆
(n)

qn−1+j̄qn
(x0), for some j̄, there is an interval of partition Qn+1,x0 whose length is of

the same order as |x0 − y|: if j̄ < kn+1 − 1, then there is j such that j̄ < j < kn+1

and |∆(n)
qn−1+jqn

(x0)| = Θ(|x0 − y|); if j̄ = kn+1 − 1, then |∆(n+1)
0 (x0)| = Θ(|x0 − y|).

Similarly, if j̄ < kn+1 − 1, then |∆̃(n)

qn−1+(j̄+1)qn
| = Θ(|ϕ(x0)− ϕ(y)|); if j̄ = kn+1 − 1, then

|∆̃(n+1)
0 | = Θ(|ϕ(x0)− ϕ(y)|). This interval satisfies conditions (i)-(iv) of Proposition 3.2.

By (6.34), condition (v) of Proposition 3.2 is also satisfied with γ = 1− ε
2
.

If cn > 1, |∆(n+1)
0 (x0)| can actually be much smaller than |∆(n)

qn+1−qn(x0)|, if kn+2 is
very large. In this case, we need to consider the extended partition Gn+1,x0 of ∆

(n−1)
0 (x0).

Since the lengths of the intervals ∆
(n)
qn+1−qn(x0), ∆

(n)
0 (x0) and ∆

(n−1)
0 (x0) are of the same

order, if y ∈ ∆
(n)

qn−1+j̄qn
(x0) and j̄ < kn+1 − 1, then |∆(n)

qn+1−qn(x0)| = Θ(|x0 − y|) and

|∆̃(n)
qn+1−qn(x0)| = Θ(|ϕ(x0) − ϕ(y)|). If y ∈ ∆

(n)
qn+1−qn(x0), then either y ∈ ∆

(n+2)
qn+1−qn(x0) or

y ∈ ∆
(n+1)

ĵqn+1
(x0) for some ĵ satisfying 0 < ĵ ≤ kn+2. Since cn+1 < 1, for every ε7 > 0,

there exist κ2 > 0, N8 ≥ N6 and C45 > 0 such that |f ′n+1,xqn+1−qn
(z) − c−1

n | ≤ ε7, for
z ∈ [−1 + κ2, τn+1,xqn+1−qn

(T 2qn+1x0)], for n ≥ N8 and kn+2 > C45. Similar analysis as
before gives us that if y ∈ ∆

(n+2)
qn+1−qn(x0) or y ∈ ∆

(n+1)

ĵqn+1
(x0) for some ĵ < kn+2, there is

j satisfying ĵ < j ≤ kn+2, |∆(n+1)
jqn+1

(x0)| = Θ(|x0 − y|) and |∆̃(n+1)
jqn+1
| = Θ(|ϕ(x0) − ϕ(y)|);

if y ∈ ∆
(n+1)
qn+1 (x0), then |∆(n+1)

0 (x0)| = Θ(|x0 − y|) and |∆̃(n+1)
0 | = Θ(|ϕ(x0) − ϕ(y)|).
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Therefore, conditions (i)-(iv) of Proposition 3.2 are satisfied. By (6.34), condition (v) of
Proposition 3.2 is also satisfied with γ = 1− ε

2
.

Proposition 3.2 shows that ϕ and ϕ−1 are (1 − ε)-Hölder continuous at x0 and x̃c,
respectively. By exchanging the roles of T and T̃ , due to the symmetry in the definition
(5.7), we can easily see that ϕ−1 and ϕ are (1 − ε)-Hölder continuous at ϕ(xc) and xc,
respectively. The claim follows. QED
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