
LORENTZ TRANSFORMATION FROM INFORMATION  

Derivation of Lorentz transformation from principles of statistical 
information theory 

Revised 2/28/2016   

 

 

Thomas E. Butler 
1 Woodruff Way, Columbia, New Jersey 07832 

e-mail address: astraclara@embarqmail.com 

The Lorentz transformation is derived from invariance of an information quantity related to statistical 

hypothesis testing on single particle system identification parameters. Invariance results from recognition 

of an equivalent observer as one who reaches the same conclusions as another when the same statistical 

methods are used.  System identity is maintained by parameter values which minimize discrimination 

information, given by a Kullback-Liebler divergence, under a constraint of known shift in observation time.  

Deviation of discrimination information from the minimum value gives the difference in information 

between an observed system under a constraint shift and the expected system that maintains identity under 

the same constraint.  System observation states are represented by parametric probability distributions of 

particle system measurement values. 
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I. INTRODUCTION 

The observation state of a free single particle system at a 

constant velocity is represented by a probability distribution 

of observation measurement values.  Change in the 

observation time results in a change of the observed system 

state to a state that retains the system identity of the initial 

system.  The system identity [1] [2] [3] is preserved by a 

final observation state that minimizes the number of bits of 

discrimination information given by the Kullback-Liebler 

discrimination information [4] under the constraint of an 

observation time shift. Excess discrimination information 

above the minimization value shows how close an observed 

system state is to a state which preserves system identity, 

and is an input to identity hypothesis testing methods.  

Different observers are expected to obtain the same system 

identity hypothesis conclusions when using the same 

statistical methods.  Then the state associated with a 

different observer must keep the excess discrimination 

invariant.  Invariance of the excess discrimination 

information for a free single particle system gives the 

Lorentz transformation, not of random variables which do 

not transform, but of the observed system state as 

represented by parameters of the probability distribution. 

  Derivations of the Lorentz transformation from within 

other areas of physics, for example quantum information 

and communication theory [5], make the transformation 

dependent on theories within those branches of physics.  

The derivation based on a discrimination invariant shares a 

similar dependence, but primarily on concepts of statistical 

information theory, independent of other branches of 

physics beyond representation of simple Galilean motion. 

Although the statistical discrimination derivation depends 

on specific probability models, the resultant transformation 

is the same for all similar probability models for small 

shifts in space and time parameters. The information based 

derivation also supports generalization of the Lorentz 

transformation to a concept of equivalence transformations 

of distributions of arbitrary quantities. 

  Another characteristic of the statistical information 

derivation of the Lorentz transformation is that there is no 

assumption of an invariant speed [6] [7].  Domain and 

range set properties of equivalence transformations imply 

existence of an upper bound on the magnitude of the 

velocity.   Then transformations that preserve excess 

discrimination invariance require all boundary velocities to 

map to the boundary. 

 

II. PARTICLE OBSERVATION STATE 

Observations of the motion of a particle in an experiment 

produce a set of times of observation and associated 

particle positions.  In a repeatable experiment, the 

information contained by an ensemble of sets of position-

time value pairs can be concisely represented by a 

probability distribution which normalizes over both 

observation time and position random variables, as shown 

in the random sample of Figure 1.  Each experiment is 

independent, so the probability distribution represents the 

expected distribution of a single experiment.  No special 
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interpretations are required beyond the probability 

distribution as a simple representation of measurement data, 

given that a measurement exists. The probability 

distribution is the observation state of the particle system. 

An observation time and position density that represents 

measurement data is applicable to many variants of a 

position versus time experiment.  A single experiment can 

consist of dynamic observations in which the particle time 

and position are recorded as the particle moves.  An 

alternative experiment might consist of a single time-

position measurement, with apparent motion from an 

ensemble of repeated experiments with different 

observation times. The same density represents 

measurements for both interpretations. 

A. Example probability density  

The observed particle state is a probability density in 

position and time random variables which provides a 

realistic summary of observation data from a controlled 

experiment.  This is made evident by a plot of data 

generated by a simulated random sample from a normal 

time and space probability density, shown in Figure 1. 

   The probability density of Figure 1, which is normalized 

over both observation time and position random variables, 

generates a random sample that appears to be an ordinary 

collection of observation data from a repeated constant 

velocity experiment of finite duration that might have come 

from a physics class lab.  The same result could also be 

produced by a single experiment with a large number of 

observations.  In either case the measurement position 

standard deviation of 16.667 is not an error, but primarily 

the width of the range of the main concentration of position 

observations.  Position error is given by the conditional 

position given time standard deviation of 0.745.  Similarly, 

the measurement time standard deviation of 2 is not an 

error but primarily the extent of the range of observed 

times.  Peak frequency of observations increases without 

limit for a dynamic interpretation of the model, as the 

number of observations rises, without any effect on the 

probability density.  In this respect the normal density 

exhibits a classical physics behavior of independence from 

arbitrarily small time intervals. 

 

 

 
             Figure 1 

B. A model of uniform motion 

The example probability density of Figure 1 is a two 

dimensional normal probability density in observation 

position x  and time t  random variables as a model of 

experimental data from non-quantum mechanical uniform 

particle motion.  Extension to a normal density in four 

dimensions models a three dimensional velocity.  The four 

dimensional normal density f  is  
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with C  the 3x3 position given time co-variance matrix and 
2

t
σ is the observation time variance.  Define the vector of 

random variable observation position components by 
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( )TX x y z=  with mean ( )TX x y z=  The 

density f is the product of the marginal probability density

g in the observation time random variable and the 

conditional probability density h   in observed position 

given observed time, which for (1) are defined by 
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with X V tε δ δ= − , X X Xδ = − , t t tδ = − and where 
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. Although the position standard deviation of (4) is the 

width of the range plus position error, and is not a position 

error, the diagonal components the position covariance 

matrix C are an indication of position error.  The four 

dimensional probability density with parameters 

and , ,V,
t

X t C σ  is selected as a model of single free 

particle motion. 

 

III.  PARAMETERS 

Parameters of the probability distribution are a 

representation of the particle observation state.  A theory 

provides the general form of the distribution as a collection 

of possible allowed distributions, with parameter values to 

select a particular distribution.  All inputs allowed by the 

applicable theory which select a particular ( ): ,f R R Σ  

from the set of all possible densities supported by the 

theory are parameters. Parameters are constructed such that 

there is a one to one relationship between a parameter value 

and a probability distribution.  Initial, boundary and 

environmental conditions of an experiment are parameters, 

as are numerical parameters.  Statistical methods are used 

to estimate parameter values from the output data of an 

experiment. 

Parameters of probability distributions are a necessary 

and common component of physics.  Pressure, temperature, 

entropy and density are thermodynamic parameters 

associated with probability distributions of the underlying 

statistical mechanics of very large degree of freedom 

composite systems.  Some parameters are designed to be 

controlled by an experiment, and others set free to vary in 

response to the controlled parameters.  Thermodynamics 

provides the similar example that for the same ideal gas 

equation of state an isentropic gas produces a different  

relation between pressure and density than that of an 

isothermal gas.  Parameters can be classified as either 

constraints, controlled by an experiment, or as 

unconstrained, left to be determined as parameters of a 

distribution of measurements after an experiment is 

performed. 

A. Parameter classification 

 

All parameter values are extracted from experimental 

data.  Prior to execution of an experiment the design of an 

experiment can select planned values of some parameters, 

based on prior theoretical considerations independent of the 

outputs of the experiment.  Mean and extent of the range of 

the observation time are two parameters which might be set 

by the design of an experiment, and confirmed by 

experimental data, since they can be regarded as under the 

control of the observer and independent of the object 

particle of the experiment.  Parameters are classified as 

constraint or responsive in a given experiment:   

 

1. Constraint Parameters 

 

Constraint parameters are parameters with planned 

values input to an experiment which exhibit high levels 

of repeatability and are independent of the subject of 

an experiment.   The value of a constraint associated 

with a constraint parameter value is given by a subset 

of the set of allowed parameters to which the 

constraint confines distribution selection.    

 

2. Responsive Parameters 
 

Responsive parameters have values which are not 

planned input but are outputs from the execution of an 

experiment and may depend on the subject of the 

experiment. 

 

Let ( )t
P X V t Cσ=  represent the parameters 

of the probability density so that (4) is condensed to  

 

 ( ) ( ) ( ): : : C
t

f R P m t hδ σ ε=   (5) 

 

Some parameters or transformations of parameters might be 

selected to be either constraints or responsive, for different 

experiment designs.  Other parameters can have intrinsic 

properties that effectively classify the parameters as 

constraint or responsive parameters.  Time parameters have 

such intrinsic properties. 
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4. Constraint Sets 
 

Let { }P∀Q =  be the set of all probability distribution 

parameters allowed by a theory.  An experiment design 

defines constraints which restrict parameter values to a 

subset ⊂C Q . The value of a constraint is given by subset

C .  Denote the set of all valid constraint sets as ( )Λ Q , so

( )∈ ΛC Q .   

Define the set of constraint sets ( )ϒ C   relative to a set 

C to be the set of all subsets of C which are also valid 

constraint sets, so that ( ) ( ) ( )ϒ = Λ ∩ ΡC Q C  where ( )Ρ C

is the set of all subsets ofC .  All constraints associated 

with a particular type of parameter constraint are contained 

in an adjustable constraint relative to constraintD which is 

defined to be a set ( ),Α D  
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with elements 
i
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for distinct elements 
i j
≠C C , and where the union of all 

elements satisfies 
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Properties (7) and (8) of an adjustable constraint imply that 

every element of D is contained within one and only one 

element of ( )Α D .  Then there exists a function 

( )( ):M P Α D   for each P ∈D which returns the 

constraint set element of ( )Α D  that containsP .  For 

example, if one of the co-ordinates of P is the mean 

observation time t parameter constraint, then index i t=
and ( )( ):

t
M P Α =D C .  If a type of constraint is defined 

by known values of parameter components denoted by ζ

then ζ can be used as the index and ( )( ):ζ ΑC D is the 

corresponding constraint set element of the adjustable 

constraint set. 

   Let ( )i c
∈ ΑC D  be an element of an adjustable constraint 

and ( )i b
∈ ΑB D be an element of a different adjustable 

constraint.  Then the elements of set 

( ) { }( , )b c i j i j
Α = ∩ ∀ ≠D B C B C satisfy (7) and (8) so that

( )( , )b c
Α D  is an adjustable constraint relative to D . 

B. Confirmation Sets 

Verification of a theory is rarely accomplished by a 

single type of experiment represented by the constraint 

choices in a one adjustable constraint set.  More typical is a 

variety of types of experiments to provide a stronger 

verification of a theory.  Each type of experiment 

corresponds to a different adjustable constraint set. Define a 

confirmation set of adjustable constraints to be the set of all 

adjustable constraints used in experiments to verify a 

theory. 

 DesignateAɶ  given by  

 ( ) ( ){ }1
, , ,

n
A = Α Αɶ … …D D   (9) 

 

as the confirmation set for the single particle theory. 

 

C. The Time Postulate 

 

In an experiment set up to measure the particle position 

about a specified time the mean observed time and the 

extent of the range of observed times give all parameters – 

mean and standard deviation -  of the normal marginal time 

density. Since all of the time measurements are under 

control of the observer, all of the marginal observation time 

density parameters are constraint parameters. 

Set up a different experiment in which a clock is triggered 

to measure the time the particle passes a detector at a 

known position.  This experiment can be used to measure 

mean velocity, and provides an example where the mean 

position is a constraint parameter and the mean time is not a 

constraint.   

A verifiable theory with a time and spatial components 

includes adjustable constraints corresponding to both types 

of experiments, which are elements of the confirmation set 

of the theory.  A prominent characteristic of observation 

time distributions is the tendency whenever possible to 

regard the time distribution parameters as experimental 

constraints.  This tendency is prevalent because time values 

are generally considered to be under the control of the 

observer to the maximum extent possible.  These 

consideration suggest the time postulate, which is 

 

 

1. Time Postulate 

 

Every parameter that selects a marginal distribution of 

an observation time independent of any other random 



LORENTZ TRANSFORMATION FROM INFORMATION  

observation variables is a control parameter, and thus 

an experimental constraint, in at least one Adjustable 

Constraint set element of a Confirmation Set of a 

theory with time dependence, and it is this quality of 

the necessity of control that distinguishes time from all 

other quantities. 

 

 

To the extent that every mechanism is repeatable and 

controlled, all mechanisms are clocks.  Under the time 

postulate, parameters which describe a clock’s data must all 

be under the control of an observer in at least one 

verification experiment, and are therefore constraint 

parameters for that experiment. 

   Each confirmation set of a time dependent theory must 

contain at least one adjustable constraint in which all 

parameters of the marginal observation time density are 

constraint parameters.  The design of the experiment must 

select one of these time parameter adjustable constraints as 

a primary constraint, to serve as the focus of statistical 

decisions. Only the primary constraint is used to determine 

the excess discrimination invariant.   This is because only a 

constrained time parameter marginal density provides 

potential operator selection of all possible time 

measurement scenarios that are under control of the 

observer with certainty.  Parameters in other adjustable 

constraints in a confirmation Set are incomplete in that they 

do not provide certainty of access to all possible 

measurement times, for if they did the time postulate 

requires that they also be time, potentially as a parameter of 

a clock mechanism. 

 

IV. CHANGE OF OBSERVATION STATE 

A. Parameter Shifts 

   A single particle probability density in observation time 

and position random variables models data from an 

experiment of finite duration.  Motion can continue outside 

the range of data from an experiment, which presents the 

opportunity for observation data collected by additional 

experiments.  The density for each experiment is 

represented by different parameter values. 

   Particle observation state is given by the probability 

density which represents data from an experiment.  

Different densities represent different experiments, and 

different particle observation states.  Motion of a particle 

through different experiments occurs with a change of 

particle observation states. Transitions between observation 

states of the particle are represented as changes in 

parameters of the probability density. 

 

B. Discrimination Information 

A sequence of experiments which measure position and 

observation time of a single particle produces a sequence of 

observation data and a corresponding sequence of 

observation data probability density parameters.  Parameter 

values which are far from values expected for the uniform 

motion of a free particle are not representative of the 

uniform motion of the originally observed free particle. 

When trajectory information is the only available particle 

identity information then only parameters along an initial 

trajectory maintain the identity of the particle system. 

Let 
0

P  be the initial particle system observation state 

parameter, and 
1

P  the observation state of a subsequent 

experiment with new constraint parameter values.  The 

discrimination information available in the density in favor 

that analysis of data selects
1

P over 
0

P is  

 

( ) ( ) ( )
( )

( )
( )
( )

( ) ( ) ( )
( )

1

1 0 1

0

1 1

1 1

0 0

1 1

1 1 1 1

0 0

:
, : ln

:

:
: ln

:

: C
: : C ln

: C

R

t

t

t

t

R

f R P
I P P dxdydzdt f R P

f R P

m t
dt m t

m t

h
dxdydzdt m t h

h

δ σ
δ σ

δ σ

ε
δ σ ε

ε

∀
∞

−∞

∀

=

= +

∫

∫

∫

 (10) 

which evaluates to 
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where ∆  indicates a component of 
1 0

P P− and

0
X V tδΠ = ∆ − ∆ . 

   

C. Preservation of  identity  

 

An initial observation state parameter
0

P shifts to a 

parameter
1

P for a single particle system when controlled 

constraint parameters, such as the mean observation time 

component of
1

P , shift to planned values.  Adjustable 

constraint sets provide structures to constraints which can 

be used by all observers.  A particular adjustable constraint 

set defines possible constraint values for a particular type of 

constraint associated with an experiment.   
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Parameters 
1

R  which preserve identity of a system with 

observation state parameter 
0

P  under a shift in constraint 

value must minimize discrimination information and so 

must satisfy 
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where ( )( ) ( )( )1 1
: :M R
ζ ζ

ζ =Α ΑC Q Q . 

   The time postulate requires 
1
t  and 

1t
σ  be constraint 

parameters.  Position error in pre-quantum theory
1

C is 

under the control of the observer, so 
1

C  is also a constraint 

parameter.  With ( )1 1 1 1t
t Cζ σ=  as constraint 

parameter, only parameters
1

X and 
1

V  remain to be 

adjusted in (11) to satisfy (12).  The identity preservation 

parameters which solve (12) are 

 

 1 0 0

1 0

X X V t

V V

= + ∆
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with  
1
t  , 

1t
σ and 

1
C  as constraint parameters with known 

values.  Thus the parameters that preserve identity continue 

motion along a trajectory with the same initial velocity on 

the same line. 

 

V. EQUIVALENT OBSERVERS 

A. Experiment Verification 

Acceptance of the outcome of an experiment demands an 

independent method of verification. The demand can be 

met in traditional physics where there are implicit 

assumptions of independent, identifiable, characteristics of 

the physical system outside the scope of a theory.  One 

example is the Kepler-Newton theory of orbital motion of 

the planet Mars about the sun, where deviations from the 

orbit can be observed since the planet is identifiable by 

characteristics, such as surface features and diameter, 

outside the scope of the orbital theory.  When the theory 

contains all of the identity information of the physical 

system, verification cannot be based on system 

characteristics independent of the theory.  An example of 

such a theory is the bosonic theory of photons, which are 

indisitnguishable particles fully identified by symmetric 

wave functions, where no single photon experiment can be 

repeated using exactly the same photon [8].   

  Exclusion of verification based on independent system 

characteristics elevates the significance of verification 

restricted to statistical analysis of repeatability which 

underlies the probability densities of the theory. 

Repeatability can be verified by observers outside the scope 

of the theory.  Thus by keeping the theory incomplete in the 

sense that it does not bring all observers within the scope of 

the theories physical descriptions, the requirement of  

verification with  separate system identification moves to a 

requirement of independent observer verification, 

especially when the entire physical system description is 

contained within the theory.   Verification of a bosonic 

photon experimental result never involves preparation of 

the same photon by a different observer, but instead 

repetition of the same experimental conditions by an 

independent observer.  Any theory that fully contains the 

identity of a system cannot support validation based on 

independent characteristics of the system.   

 In the theory of special relativity independent 

observers are represented by Lorentz transformations of 

space time co-ordinates.  Lorentz transformations in one 

approach arise from quantum consideration [5].  In 

quantum theory the wave function becomes the object of 

the transformation through invariant wave equations,  

associated with corresponding transformations of 

observables.  An information theoretic approach to define 

the reference frame of equivalent observers has the 

opportunity to generalize the transformation to another 

observer to be a transformation of the probability 

distribution for any type of random variable and theory, 

without limitation to only space and time quantities.  Define 

an equivalence transformation to be a generalized 

transformation of the distribution, and therefore of the 

distribution parameters, to the frame of an equivalent 

observer.  An identity transformation of the probability 

distribution of a theory defines the local observer and is 

also an equivalence transformation.  A verification 

capability requires that at least one other observer exist that 

is not the local observer.  A complete and independently 

verifiable scientific theory has the property of: 

 

1. Independent Observer Scrutiny 

 
Every independently verifiable theory must support at least 

one independent observer other than the local observer, 

and must necessarily have at least one equivalence 

transformation that is not the identity transformation. 

 

B. Equivalence Transformations 

An equivalent observer must reach the same conclusions 

from data available to the observer as the local observer of 

an experiment reaches.   Each equivalent observer then has 

the same information to accept or reject the conclusion of 

identity preservation under a shift in constraints.  The 

design of the experiment makes the transformation of all 

initial parameters available to all observers, and execution 
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of the experiment results in estimates of final parameter 

values for all observers. An equivalence transformation E

transforms parameters P  in use by an observer into 

parametersP P′ = E used by an equivalent observer.   If 

E   is the equivalent observer transformation, the final 

discrimination information determined by the equivalent 

observer is   ( )1 0
,I P PE E , but the same observer would 

determine that discrimination as ( )1 0
,I R PE E if identity 

preservation parameters were observed as expected by the 

theory, where 
1

R  is given by (13).  The larger the 

magnitude of the difference between the two discrimination 

values the more likely is a rejection of the conclusion that 

identity is preserved by the tested theory, while a very 

small magnitude difference supports the conclusion.  The 

difference is proportional to the number of bits input into 

statistical decision methods and for the local observer is 

equal to 

 
( ) ( ) ( )
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( )( )
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1

1 0 1 0 1 0
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, min ,
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K P P I P P I R P
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ζ

∈ Α

Α = −

= −
Q
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where the 
1

R  constraint parameter values 

( )1 1 1 1t
t Cζ σ= are also component values in 

1
P . Since 

K is input to statistical methods which determine rejection 

or acceptance of identity preservation, K   is invariant: 

 

 ( ) ( )1 0 1 0
, : , :K P P K P P

ζ ζ
Α = ΑE E   (15) 

 

In the invariant equation (15) the same adjustable constraint 

ζ
Α  is used by all equivalent observers of the experiment.  

Equivalence transformations are dependent on the primary 

adjustable constraint. 

An equivalent observer transformation operates on all 

parametersP ∈D   in a subset ⊂P Q  of the set of 

parametersQ .  As every equivalent observer is also an 

equivalent observer to any other equivalent observer, the 

inverse 1P−
E exists for every P  in the range of E and is 

an equivalence transformation.  

An equivalence transformation defines observers in the 

context of a theory.  Equivalence transformations depend 

on properties of the Primary Constraint of a Confirmation 

Set.  In the Primary Constraint all parameters of the 

marginal time distribution are constraint parameters; and 

the equivalence transformations for that adjustable 

constraint define the transformations which must be 

associated with all remaining adjustable constraints in the 

Confirmation Set. 

Equivalence transformations are defined by properties, 

such as invariance, of each transformation.  Properties of 

collections of transformations, such as the verifiable theory 

property of independent observer scrutiny, also contribute 

to the definition of equivalence transformations.  

 

 

C. Equivalent Observer Collections 

 

Define an equivalent observer collection CCCC   as a set 

containing a set { }1
, , , ,

n
… …E EEEEE =  of equivalence 

transformations using primary adjustable constraint
ζ

Α

which is also a member of CCCC , a parameter domain ⊆D Q

and range ⊆R Q common to all transformations withinEEEE , 

{ }, , ,
ζ

= ΑD RC EC EC EC E . The properties required of an 

equivalent observer collectionCCCC   are: 

1. Containment Structure 

Every equivalence transformation E  is an element 

of a set EEEE  contained in some equivalent observer 

collectionCCCC , ∈ ∈E E CE CE CE C . A theory may produce 

more than one equivalent observer collection. 

2. Time Postulate Primary Constraint 

All equivalent observers of an experiment on a 

probability model of a physical system, with each 

observer represented by an element ∈ ∈E E CE CE CE C   

choose constraints from an adjustable constraint
ζ

Α

which must be the primary constraint of a 

confirmation set of adjustable constraints. The time 

postulate implies that all parameters of the model 

marginal probability distribution of observation time 

within 
ζ

Α  are constraint parameters. 

3. Invariant Excess Identity Discrimination  

Every ∈E EEEE preserves identity discrepancy

( )1 0
, :K P P

ζ
Α .  Let { }1

, , , ,
n

… …B BS =  be the 

set of all transformations which preserveK . Then

i
P∀ ∈D , ( ) ( )1 0 1 0

, : , :
i i

K P P K P P
ζ ζ

Α = ΑB B , 

and ⊆EEEE S . 

4. Independent Observer Scrutiny 

Every EEEE contains at least one E not the identity. 

 

 

5. Transitivity 
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If { }, , ,
ζ

′ ′= ΑD RC EC EC EC E  and  { }, , ,
ζ

= ΑR HC EC EC EC E   

are equivalent operator collections, then 

{ }, , ,
ζ

′′ ′′= ΑC EC EC EC E D H  must also be an equivalent 

operator collection with every equivalence 

transformation ′′ ′′∈EEEEE  equal to the composition 

′′ ′=E E E for some ∈EEEEE  and ′ ′∈E EEEE , where 

H  can be any domain or range in an equivalent 

operator collection.  This property implies there must 

always exist a collection for which the 

transformation domain equals the range.   

6. Inverse Existence 

Unique 1−
E  exists for all

{ }, , ,
ζ

∈ ∈ = ΑD RE C EE C EE C EE C EE , and each 1−
E  is a 

valid equivalence transformation and an element of 

an equivalent observer collection

{ }1 1, , ,
ζ

− −= ΑR DC EC EC EC E , where

{ }1 1 1
1
, , ,

n

− − −= … …E EEEEE  .  EveryE is a one to 

one map.   

7. Maximally Inclusive 

a. Maximal Transformation Set 

Every { }, , ,
ζ

∈ = ΑD RE C EE C EE C EE C E  contains all 

possible E that have properties 1 through 6 

and produce only valid probability models. 

b. Maximal Parameter Set 

Every { }, , ,
ζ

∈ = ΑD D RC EC EC EC E and ∈G CCCC   

contain all possible parameter values P  

that give valid probability models for all 

transformations which satisfy the Maximal 

Transformation Set property. 

 

These properties define an equivalent observer collection, 

and the equivalent transformations contained within the 

collection.  There can be more than one observer collection 

for each probability model. 

D. K Invariance 

Invariant K  is defined by (14), and for the norm density 

space and time observation model is equal to 

 
( ) ( )1

0 0 0

2 1
1 0

1

2
1

2

T

T

t

K X V t C X V t

V C Vσ

−

−

= ∆ − ∆ ∆ − ∆

+ ∆ ∆
  (16) 

 

The presence of 2 2 2
1 0t t t
σ σ σ= +∆  in the second term 

makes (16) a third order invariant in parameter shifts. 

The Equivalent observer collection property of Invariant 

Excess Identity Discrimination requires invariance of K  

and implies that if 0K =  then

( )1 0
, : 0K K P P

ζ
′ = Α =E E , so that identity 

preservation is invariant.  With parameter

( ), , , ,
t

P X V t Cσ=  set ( ), , , ,
t

P P X V t Cσ′ ′ ′ ′ ′ ′= =E  

Identity preservation equation (13) transforms to  

 1 0 0

1 0

X X V t

V V

′ ′ ′ ′= + ∆
′ ′=

  (17) 

Each component of P ′  potentially depends on components 

ofP .  Represent components of parameterP by the 

invertible transform 

 1
t

X Vt t V

C

µ τ υ

η σ ε −

= − = =

= =
  (18)  

so that the identity preservation equations (13) and (17) 

become  

 

* *
1 0 1 0
* *
1 0 1 0

µ µ µ µ

υ υ υ υ

′ ′= =

′ ′= =
  (19) 

with 
1 1 1
, ,τ η ε   as constraint parameters and *  to indicate 

identity preservation parameters. In the following analysis 

assume the transformations are continuous functions of 

parameters and continuous for all first through third 

derivatives with respect to components of
0

P .  Differentiate 

*
1
µ′ and *

1
υ ′  in (17) with respect to 

1 1
,τ η   and 

1
ε   , and use 

(19) to get 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

0 0 1 1 1 0 0 0 0 0
1 1

0 0 1 1 1 0 0 0 0 0
1 1

0 0 1 1 1 0 0 0 0 0
1 1

0 0 1 1 1 0 0 0 0 0
1 1

0 0 1 1 1
1 1

, , , , , , , , 0

, , , , , , , , 0

, , , , , , , , 0

, , , , , , , , 0

, , , ,

υ µ υ τ η ε υ µ υ τ η ε
τ τ

υ µ υ τ η ε υ µ υ τ η ε
η η

υ µ υ τ η ε υ µ υ τ η ε
ε ε

µ µ υ τ η ε µ µ υ τ η ε
τ τ

µ µ υ τ η ε µ µ
η η

∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′= =
∂ ∂
∂ ∂′ ′=
∂ ∂

( )

( ) ( )

0 0 0 0 0

0 0 1 1 1 0 0 0 0 0
1 1

, , , , 0

, , , , , , , , 0

υ τ η ε

µ µ υ τ η ε µ µ υ τ η ε
ε ε

=

∂ ∂′ ′= =
∂ ∂

  

which imply that µ′  and υ ′  can be written as 
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 ( ) ( ), ,υ υ µ υ µ µ µ υ′ ′ ′ ′= =   (20) 

  

In the ( ), , , ,P µ υ τ η ε=  representation of parameters the 

invariance equation K K ′=  becomes 

 
( ) ( )

( ) ( )

1
0 1 0 1

1
0 1 0 1

1

2 2
1

2 2

TT

TT

η
υ ε υ µ τ υ ε µ τ υ

η
υ ε υ µ τ υ ε µ τ υ

∆ ∆ + ∆ + ∆ ∆ + ∆ =

′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′∆ ∆ + ∆ + ∆ ∆ + ∆

 (21)  

Differentiate (21) with respect to 
0
η   to get  

 

( ) ( )

1 0

0

0
1 1

0

0
2

1

2

T

T

η ε
υ υ

η

ε
µ τ υ µ τ υ

η

′ ′∂
′ ′= ∆ ∆
∂

′∂
′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆

∂

  (22)    

Extraction of valid equivalence transformations E  begins 

with determination of transformations B  which keep K  

invariant, with initial assumption that the domain D and 

range R  are the set of all parameters.  Then D and R  are 

adjusted to satisfy the properties of equivalent observer 

collections.  

   Components of 
1

P ′   appear in (22) but not components of 

1
P , so the initial assumption that range and domain equal 

D implies 
1

P ′  can be any valid parameter in the D .  Then 

µ′∆ , υ′∆ and 
1
τ ′  can take on an infinity of values.   

   To establish a procedure that reveals the impact of the 

infinity of 
1

P ′  values that satisfy (22), define unit vectors 

( )1
ˆ 1 0 0Tj =  , ( )2

ˆ 0 1 0Tj = , ( )3
ˆ 0 0 1Tj = , 

( )1ˆ ˆ ˆ

2
ij i k

k j j= + and ( )1ˆ ˆ ˆ

2
ij i j
l j j= − .  If S  is any 

x3 3  symmetric matrix 

 

 ( )1 ˆ ˆ ˆ ˆ
2

T T

ij ij ij ij ik
k Sk l Sl S− =   (23) 

 

 If i k=  , (23) becomes ˆ ˆT

i i ii
j Sj S= .  In (22), set υ′∆ first 

to ˆ
ij

ak for some scalar a  and then to ˆ
ij

al and subtract the 

equations to replace a TSυ υ′ ′∆ ∆ term with 2
ik

a S  .   

  Select 
1
µ  such that 0µ′∆ =  in (22), and select any small 

scalar a .   Adjust 
1
υ ′  to apply the procedure to use (23) for 

each index pair ,i j  with indices 1 3… .  The result is 

( )
2

2 0
1 1

0

0
2

a ε
η τ

η

′∂
′ ′= +

∂
, so that 0

ε

η

′∂
=

∂
.   

   Next differentiate (21) with respect to 
0
τ  : 

   

 

( ) ( )

1 0

0

0
1 1

0

0
2

1

2

T

T

η ε
υ υ

τ

ε
µ τ υ µ τ υ

τ

′ ′∂
′ ′= ∆ ∆
∂

′∂
′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆

∂

  (24) 

    

Analysis similar to that for (22) results in 0
ε

τ

′∂
=

∂
. 

 Take the second derivative of (21) with respect to 
1
η : 

 

( )
2

2
1 1 02

1
2
1

02
1

1
0
2

T

T

η τ υ ε υ
η

τ
υ ε µ

η

∂ ′ ′ ′ ′ ′= + ∆ ∆
∂

′∂
′ ′ ′+ ∆ ∆

∂

  (25) 

   

.  Components of 
0

P ′   appear in (25) but not components of 

0
P , so 

0
P ′ can be any valid parameter.  Select 

0 1
µ µ′ ′=   to 

remove the second term.  Since 
0
ε′  is an inverse co-

variance matrix, 
0

Tυ ε υ′ ′ ′∆ ∆ is almost positive definite, 

and positive for some υ′∆ so that ( )
2

2

2
0η τ

η

∂ ′ ′+ =
∂

. 

Values of µ′∆ exist for which 
0

Tυ ε µ′ ′ ′∆ ∆ is not zero, 

with the result 
2 2

2 2
0

η τ

η η

′ ′∂ ∂
= =

∂ ∂
. 

  The third derivative of (21) with respect to 
1
τ  is: 

  

 

( )
3

2
1 1 03

1
3
1

03
1

1
0
2

T

T

η τ υ ε υ
τ

τ
υ ε µ

τ

∂ ′ ′ ′ ′ ′= + ∆ ∆
∂

′∂
′ ′ ′+ ∆ ∆

∂

  

so that by following a similar analysis to that used for  

derivatives with respect to η ,

( )
3 3 3

2

3 3 3
0

τ η
η τ

τ τ τ

′′∂ ∂ ∂′ ′+ = = =
∂ ∂ ∂

.  Presence of a non-

zero quadratic terms in the expression integrals violates the 

unique Inverse Existence property, so  
2 2

2 2
0.

τ η

τ τ

′′∂ ∂
= =

∂ ∂
 

The second derivative of (21) with respect to
1
τ  is then: 
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2

1
0 0

1

T Tτ
υ ε υ υ ε υ

τ

 ′∂   ′ ′ ′∆ ∆ = ∆ ∆  ∂ 
  (26)  

 

Integrate the η ′  equations to get a g b hη τ η τη′ = + + +  

where , , ,a b g h  do not depend on τ  or η .  Since  τ  is a 

mean time with potential unbounded values that can be 

negative or positive, non-zero a  and b  allow a negative 

variance η ′  and invalid probability model.  Thus 

0a b= =  and g hη η′ = + .  Integrate the τ ′ derivatives 

to obtain q p s rτ τ τη η′ = + + +  where , , ,q p s r  do not 

depend on τ or η .  Substitute this expression for τ ′  into 

(21) and isolate the 2
1
η  and 2 2

1 1
η τ  terms which appear 

only on the right transformed side of the equation.  The 

resultant equation requires that 0p s= =  and 

q rτ τ′ = + ,  with ,q r   independent of  τ or η . A first 

derivative of (21) by 
1
τ results in 

( ) ( )1
0 1 0 1

1

T Tτ
υ ε µ τ υ υ ε µ τ υ

τ

′∂
′ ′ ′ ′ ′∆ ∆ + ∆ = ∆ ∆ + ∆

∂
 and 

implies 0q
τ

τ

′∂
= ≠

∂
. 

  Using results obtained so far, apply 
2

2
1
µ

∂

∂
 to (21) and then 

let 
1

P  approach 
0

P , 
1 0

P P P→ =    to get 

 

T

T

υ υ
ε η ε

µ µ

µ υ µ υ
τ ε τ

µ µ µ µ

′ ′∂ ∂′ ′=
∂ ∂

   ′ ′ ′ ′∂ ∂ ∂ ∂  ′ ′ ′ + + +     ∂ ∂ ∂ ∂   

  (27) 

   Differentiate by τ twice to obtain 

 

 

2

0

T
τ υ υ

ε
τ µ µ

 ′ ′ ′∂ ∂ ∂ ′=    ∂ ∂ ∂ 
  

which shows that 0
υ

µ

′∂
=

∂
and, with (20) that υ ′  is a 

function of only υ , ( )vυ υ′ ′= .   

  The derivative of (21) with respect to 
1ij
ε  is 

 

( )

1
0

1

1
0 1

1

1
0
2

T

ij

T

ij

η
υ ε υ

ε

τ
υ ε µ τ υ

ε

′∂
′ ′ ′= ∆ ∆

∂
′∂

′ ′ ′ ′ ′+ ∆ ∆ + ∆
∂

  (28) 

 

Adjust 
0
µ′  so that 

1
µ τ υ′ ′ ′∆ = − ∆ and use the procedure 

that follows (23) to get 0.
ij

η

ε

′∂
=

∂
  Then select 0µ′∆ =  to 

get 0
ij

τ

ε

′∂
=

∂
.  Next differentiate (21) by 

1
η  to get 

 1
0 0

1

T Tη
υ ε υ υ ε υ

η

′∂
′ ′ ′∆ ∆ = ∆ ∆

∂
  (29) 

The derivative of (29) by 
0
µ  is 1 0

1 0

0 Tη ε
υ υ

η µ

′ ′∂ ∂
′ ′= ∆ ∆

∂ ∂
 

and implies 0
ε

µ

′∂
=

∂
.  Differentiation by 

1
µ  is 

2
1

0
1 1

0 Tη
υ ε υ

η µ

′∂
′ ′ ′= ∆ ∆

∂ ∂
. The 

2

0
η

η µ

′∂
=

∂ ∂
 result, 

combined with the prior 
2

2
0

η

η

′∂
=

∂
result integrates to 

( ) ( )g hη υ η υ′ = +  for some positive functions ,g h . 

   Differentiate (21) first by 
0ab
ε  and then by 

0kl
ε to get 

  

 

( ) ( )

0
1

0 0

0
1 1

0 0

0 T

ab kl

T

ab kl

ε
η υ υ

ε ε

ε
µ τ υ µ τ υ

ε ε

′∂
′ ′ ′= ∆ ∆ +

∂ ∂
′∂

′ ′ ′ ′ ′ ′∆ + ∆ ∆ + ∆
∂ ∂

  (30) 

  

With 0
0

0 0ab kl

Q
ε

ε ε

′∂
=
∂ ∂

, differentiation of (30) by 
1
η ′ as an 

independent variable yields 
0

0TQυ υ′ ′∆ ∆ = . Next select 

1
0τ ′ =  so that

0
0TQµ µ′ ′∆ ∆ = .  Then (30) becomes 

0
0TQµ υ′ ′∆ ∆ = .  Since 

1
µ ′  and 

1
υ ′ , and thus µ′∆ and 

υ′∆  can be arbitrarily and independently selected, only 

0
0Q = can satisfy the equation for all possible

1
P ′  

component values. Thus 0
ij

ab kl

ε

ε ε

′∂
=

∂ ∂
, each 

ij
ε′ depends 

linearly on the 
ab
ε components, and the inverse co-variance 

matrix has the form 

   

  

 ( ) ( )ij ijkl kl ij
T Dε υ ε υ′ = +   (31) 
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for some ,T D . Substitute (31) into (21) and let 

components of matrix 
0
ε  approach zero, 

0
0ε → , or 

equivalently isolate terms with no 
kl
ε  factors, to get 

 

 
( )

( ) ( )( )

1
0

1 0 1

0
2
1

2

T

T

D

D

η
υ υ υ

µ τ υ υ µ τ υ

′
′ ′= ∆ ∆

′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆
  (32) 

 

Variation of 
1
η ′ gives ( )0 0TDυ υ υ′ ′∆ ∆ = , selection of 

1
0τ ′ =  gives ( )0 0TDµ υ µ′ ′∆ ∆ = .  As 

1
µ′  does not 

depend on
1
τ ′ , then the only term that remains is 

( )0 0TDµ υ υ′ ′∆ ∆ = . µ′∆ and υ′∆ can be selected 

arbitrarily and independently, so ( )0 0D υ = and 

( )ij ijkl kl
Tε υ ε′ = . Any linear transformation of a 

covariance matrix can take the form TU Uε for some 

orthogonal matrix, so there exists matrix ( )U υ  such that 

 ( ) ( )T
U Uε υ ε υ′ =   (33) 

   Substitute the derived form for η ′ , ( ) ( )g hη υ η υ′ = + , 

into (21) , remove the 
1
η  factor terms, select 

0
µ ′  so that 

1
µ τ υ∆ =− ∆  to get 

 

( )

( ) ( )
0

1 0 1

2
1

0
2

T

T

h υ
υ ε υ

µ τ υ ε µ τ υ

′ ′ ′∆ ∆

′ ′ ′ ′ ′ ′ ′+ ∆ + ∆ ∆ + ∆ =
  (34) 

 

The almost positive definite property of 
0
ε′  in (34) implies 

( ) 0h υ ≤ .  Negative ( )h υ allows negative η ′ in an 

improper probability model so that ( ) 0h υ =  and 

( ) ( )2gη υ η φ υ η′ = = .  

   Multiply (29) by 
1
η  to get 

 ( )

1
1 0 0

1

2

1 0

1 0

1 1

2 2

1

2
1

2

T T

T

T

η
η υ ε υ υ ε υ

η

η φ υ υ ε υ

η υ ε υ

′∂
′ ′ ′∆ ∆ = ∆ ∆

∂

′ ′ ′= ∆ ∆

′ ′ ′ ′= ∆ ∆

  (35) 

Take the second derivatives of (35) by components of 
1
υ  

and let 
1 0

P P P→ = to get 

 ( )2
T
υ υ

ε φ υ ε
υ υ

′ ′∂ ∂′=
∂ ∂

  (36) 

 

Subtract (35) from (21) to get 

 
( ) ( )

( ) ( )
1 0 1

1 0 1

1

2
1

2

T

T

µ τ υ ε µ τ υ

µ τ υ ε µ τ υ

∆ + ∆ ∆ + ∆ =

′ ′ ′ ′ ′ ′ ′∆ + ∆ ∆ + ∆
  (37) 

 

  Let 
1

P  approach
0

P , 
1 0

P P P→ = in the second 

derivative of (37) with respect to components of µ  to get 

 

 ( ) ( )
T T

T
U U

µ µ µ µ
ε ε υ ε υ

µ µ µ µ

′ ′ ′ ′∂ ∂ ∂ ∂′= =
∂ ∂ ∂ ∂

  (38) 

Then  

 ( ) ( )
2

2
2 0

T
T

U U
µ µ

ε υ ε υ
µ µµ

′ ′∂ ∂ ∂
= =

∂ ∂∂
  

so that 
2

2
0

µ

µ

′∂
=

∂
, and µ′  is linear in µ ,

( ) ( ) ( ), S lµ µ υ υ µ υ′ = + for some matrix ( )S υ  and vector  

( )l υ . 

Apply 
2

2
1
µ

∂

∂
to (37) to get 

 

( )
2
1

0 0 12
1

1 1 1 1
0

1 1 1 1

T

T

τ
ε υ ε µ τ υ

µ

µ τ µ τ
υ ε υ

µ µ µ µ

′∂
′ ′ ′ ′ ′= ∆ ∆ + ∆

∂

   ′ ′ ′ ′∂ ∂ ∂ ∂   ′ ′ ′ + + ∆ + ∆      ∂ ∂ ∂ ∂   

  (39) 

Variation 
1
δµ′ gives 

2

2
0

τ

µ

′∂
=

∂
so that τ ′ depends linearly 

on µ .  

Since every co-variance inverse co-variance matrix is 

almost positive definite and symmetric, there exists matrix 

Ζ  such that Tε = Ζ Ζ , and (38) can be written 

 

 ( ) ( )1 11

T

U U
µ µ

υ υ
µ µ

− −
   ′ ′∂ ∂   = Ζ Ζ Ζ Ζ     ∂ ∂   

  (40) 

Then ( ) ( ) ( ) 1U O
µ

ε υ ε
µ

−′∂
Ζ Ζ =

∂
 for some orthogonal 

matrixO .   

Analysis performed to this point implies the equivalence 

transformation components show the following 

dependencies:  
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2
,

,

,

, ,

T

S d

U U

l b

η η η υ φ υ η

µ µ µ υ υ µ υ

ε ε ε υ υ ε υ

τ τ τ υ µ φ υ τ υ µ υ

υ υ υ

′ ′= =
′ ′= = +

′ ′= =
′ ′= = + +
′ ′=

  (41) 

with the sign of φ  chosen to make φ+ be the τ  co-

efficient of τ ′ .  
 Using (41), equations (38) , (36)  become, for some 

orthogonal matrices 
a

R ,
b

R . 

  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1

1

T

a a a

T

b b b

U S R R R

U R R R

ε υ υ ε

υ
φ υ ε υ ε

υ

−

−

Ζ Ζ = =
′∂

Ζ Ζ = =
∂

  (42) 

Using index notation with double index summation 

convention, the first of these equations can be written as 

 

 ( ) ( ) ( ) ( )il lm mj ail lj
U S Rε υ υ εΖ = Ζ   (43) 

    
Any non-singular matrix Ζ results in a non-singular almost 

positive definite matrix ε .  As there are no limitations on 

possible values of ε in the model beyond those required of 

an inverse covariance matrix, Ζ can be any non-singular 

3x3 matrix. Variation of 
ij
Ζ in (43) shows that  

 ( ) ( ) 1
a

U S R rυ υ = =   

is the product of scalar and the identity matrix.  Since

1T

a a
R R = , 1

a
r = ± .   Similar analysis of the second 

equation of (42) shows that 

 ( ) ( ) 1U
υ

φ υ υ
υ

′∂
= ±

∂
  

and thus 

 ( ) ( )S
υ

φ υ υ
υ

′∂
= ±

∂
  (44).  

   Differentiate (37) by
1
µ  and then by

0
µ  to get 

  

 1 1 0
0 0

1 1 0

T
µ τ µ

ε υ ε
µ µ µ

 ′ ′ ′∂ ∂ ∂ ′ ′= + ∆   ∂ ∂ ∂ 
  (45) 

  

so that  

 ( ) ( ) ( )1 1
1 1 1 0 1

1 1

T TT S l l
µ τ

υ υ υ υ υ υ
µ µ

′ ′∂ ∂
′ ′ ′+ ∆ = + −

∂ ∂
  

must not depend on any component of 
1

P .  This requires 

that l  be constant and that for some constant matrixL ,  

 

 

( )
( ) ( )
( ) ( )

T

T

T

S L l

L l d

l b

υ υ

µ υ µ υ

τ φ υ τ µ υ

′= −

′ ′= − +

′ = + +

  

 

Differentiate (37) by
1
µ  , then by

1
τ  and finally by 

1
υ and 

re-arrange terms  to get

( )
1

1 1 1 1
0 0 0 1 1 0

1 1 1

T T

T TL lv
υ φ φ

ε ε φ υ υ
υ υ υ

−
−

 ′ ∂ ∂ ∂  ′ ′ ′ ′− = + −   ∂ ∂ ∂  
 

The right side of this equation must not depend on 

components of 
1

P , which requires that there exist constant 

vectorκ and constant matrix Q   such that 

 
Tw w Q

φ υ
κ φ υ κ

υ υ

′∂ ∂ ′= − − =
∂ ∂

  

with solutions 

 ( ) ( ) ( )
1

1 1

T

T T

u j s
w v Q

w v w v

υ υ
φ κ υ

κ κ

+ −′= − = =
− −

  

  

with constant scalar w  and constant vector j Qs= −  .  

And since  

 ( ) ( ) ( )T TQ w S L l
υ

φ υ υ κ υ υ
υ

′∂ ′ ′= + = ± = ± −
∂

  

,Q L= ±  l wκ= ∓ .  

  In (37) set 
1 0

0µ µ= =  and 
1
0τ =  so that the equation 

becomes 

 ( ) ( )1 0 1

1
0
2

T
d b d bυ ε υ′ ′ ′= ∆ + ∆ ∆ + ∆   

which requires  

 ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 0 1 0

0d b

d b d b

υ

υ υ υ υ υ υ υ υ

′∆ + ∆ =
′ ′+ = +

  

Since the right side cannot depend on
0

P , ( )b rυ = for 

some constant scalarr and ( ) ( )d u rυ υ υ′= − for some 

constant vector u .  

     With these results the 
1
τ  term of (37)  is 

 
( ) ( )( ) ( )( )

1 0

1 1 0 1

T

T TS l

τ υ ε µ

φ υ τ υ ε υ µ µ υ

∆ ∆ =

′ ′ ′∆ ∆ + ∆
  

The 
1
µ  derivative of the 

1
τ factors is 

 
( ) ( )( )
( ) ( )

0 1 0 1

1 0 0

T T T

T

S l

S

υ ε φ υ υ ε υ υ

φ υ υ ε υ

′ ′ ′∆ = ∆ +∆

′ ′= ∆
  

and a subsequent 
1
υ  derivative is 
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( )( ) ( )
( ) ( )

( )( ) ( ) ( ) ( )

1 1
0 0 0 1 0 0

1 1

1

0 0 1 0 0
1

T T

T

T

TT

S S

S S S

φ υ υ
ε υ ε υ φ υ ε υ

υ υ

φ υ
υ ε υ υ ε υ

υ

 ∂ ′ ∂ ′ ′ ′= ∆ +  ∂ ∂  
 ∂  ′ ′ ′= ∆ +±  ∂  

  

Let 
1

P  approach
0

P to get ( ) ( )T
S Sε υ ε υ′= ± .  Since ε  

and ε′  are positive definite, only the positive sign is valid 

and  ( ) ( )T
S Sε υ ε υ′= . 

  These results allow (41) to be written as 

 

 

( )
( )
( )

( )
( )

( ) ( )
( )

2
2

1 1

1

1

1
1

1

T

T

T

T

T
T T

T T

w v

s
Q

w v

s
Q u r

v

Q w Q w

w v w r

η κ η

υ
υ

κ

υ
µ κ µ υ

κ

ε υ κ ε υ κ

τ κ τ κ µ

− −

′ = −

−
′ =

−
  −  ′ ′= + + −   −  

′ ′ ′= + +

′ = − − +

  (46) 

Restoration of the original parameter representation makes 

the solution of the invariance equation be 

 

 

( )

( )
( )
( ) ( )

( )

22 2 2

2

t t

T
T T

T

w V

V s
V

V

X w X st u

C w V C V

t w t X r

σ θ σ

θ

κ κ

κ

′ =

−′ =

′ = − +

′ ′ ′= + +

′ = − +

P

P

P P

  (47) 

with P  defined by 
Q

w
=P  and ( ) 1 TV Vθ κ= −  .  The 

transformations given by selection of values of , , , ,w k s rP  

and u  in (47)  are transformations that keep K  invariant 

and satisfy the Invariant Excess Identity Discrimination 

property of equivalence transformations under stated 

assumptions of continuity of derivatives.  If w γ= , 

2k s cγ −=− , 1=P , 0r =  and 0u =  are selected, with 

( )
1

2 2 21 s cγ
−

−= −  , then the  X ′ and t ′ transformations of 

(47) correspond to a simple instance of the Lorentz 

transformation with moving frame velocity s .  The set of 

transformations defined by (47) contains but is larger than 

the Poincare group.  Invariance of  K  produces not only 

space and time parameter transformations, but also 

transformations of velocity, time variance and position 

given time co-variance from an invariant that is 

conceptually simpler than the Minkowski space-time 

separation.  To see this consider that for the case 
2
0
1,

c
C σ=  the invariant is 

 ( ) ( )2 22 2 2
0 0 1 0

1 1
.

2 2c t c
K X V t Vσ σ σ− −= ∆ − ∆ + ∆   

Analysis leading up to transformation  (47) shows that K is 

the sum of two invariant terms, namely 

 
( )

( )

22
0 0

22 2
1 0

1

2
1

2

X c

V t c

K X V t

K V

σ

σ σ

−

−

= ∆ − ∆

= ∆
  

  

A Lorentz transformation extended to include 

transformation of , ,
t c
σ σ and V  keeps these terms 

invariant, and so maintains an elliptic, rather than a 

hyperbolic invariant, although in a parameter space of up to 

21 dimensions. 

E. Transformation Selectors 

a. Transitivity, Inverse and Composition 

   ( ), , , , ,w s u rκ=S PPPP  is a transformation selector, which 

picks a single transformation from the set of all 

transformations defined by  (47), and acts as an index of 

transformations that preserve identity discrepancy.  

Remaining equivalence transformation properties determine 

the allowed selectors contained within equivalent observer 

collections, along with allowed domain and range 

parameter sets.  There is a one to one correspondence 

between selectors and invariant preserving transformations, 

so an equivalent observer collection set of transformations 

EEEE can be represented by a set of selectors SSSS .  This also 

implies that { }, , ,
ζ

= ΑD RC EC EC EC E  can be represented by 

{ }, , ,
ζ

= ΑD RC SC SC SC S .   

  Exclusion of invalid probability models is implicitly 

required by the Maximally Inclusive properties.  In (47), 

valid probability models require non-zero time variance and 

non-zero covariance matrix determinant, so that 

 

 ( )
0

1 0

1

T

T

w

V V

V

θ κ

κ

≠

= − ≠

≠

  (48) 

 and 

  



LORENTZ TRANSFORMATION FROM INFORMATION  

( ) ( )
( )

( )

( )

det det det 0

det 0

1
det 1 0

1 1

1

T T

T
T T

T T

T

V s
V

V

V s V s s

V V V

s

κ κ
θ

κ
κ κ

θ κ κ

κ

  − ′ + = + ≠    
≠

  − − − + = + = ≠    − − 
≠

P P 1

P

1

 (49) 

 

  In the selector representation, the Transitivity property 

requires that if { }, , ,
ζ

= ΑD RC SC SC SC S  and 

{ }, , ,
ζ

′ ′= ΑR HC SC SC SC S  are equivalent observer collections, 

then { }, , ,
ζ

′′ ′′= ΑD HC SC SC SC S is an equivalent observer 

collection with selectors  formed from all compositions of 

′SSSS and SSSS .  This implies that given selector 

( ), , , , ,w s u rκ′ ′ ′ ′ ′ ′ ′=S PPPP  with associated invariant 

transformation ′E , and selector ( ), , , , ,w s u rκ=S PPPP  with 

E , the transformation P P′ ′′=E E E for P ∈D  must be 

of the form of (47) with selector 

( ), , , , ,w s u rκ′′ ′′ ′′ ′′ ′′ ′′ ′′=S PPPP . Define 
Tsε κ′= +P and 

1 T sλ κ′= + P . Work through the algebra to get 

 

 

( )

( )
( )
( )

1

1

1

T

T

w w w

s s s

u w u rs u

r r w r u

λ

κ λ κ κ

λ ε

ε

κ

−

−

−

′′ ′=

′′ ′= +

′′ ′=

′′ ′= +
′′ ′ ′ ′ ′= − +

′′ ′ ′ ′= + −

P

P P

P

P

  (50) 

as the selector formed by the composition of equivalence 

transformations. 

    The    Inverse Existence Property of equivalent observer 

collections requires the inverse of an equivalence 

transformation to be an equivalence transformation within 

an associated inverse collection.  Then there must be a 

transformation selector for the inverse transformation.  Let

( ), , , , ,w s u rκ ɶɶ ɶ ɶ ɶ ɶ ɶS = P  represent an equivalence 

transformation E  from domain D to range R , and let 

( ), , , , ,w s u rκ′ ′ ′ ′ ′ ′ ′S = P  represent 
1−

E .  Using the form 

(47) for both transformations, and 
1− =E E 1 , work 

through the algebra to get 

 

 

( )

( )
( )

1 1

1

1

1 1

1 1 1

1

1

T

T

T

T

s

s

w w

s s

u w u r s

r w r u

ε κ

λ κ

λ

κ κ

λε

ε

λ κ

− −

−

−

− −

− − −

= −

= −

′ =

′ = −

′ =
′ = −

′ = − +

′ = − +

ɶɶ ɶɶ

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶɶ

ɶɶ

ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶɶ ɶɶ ɶ

P

P

P

P

P

P

  (51) 

as the inverse transformation selector.  The existence of an 

inverse (51) requires existence of 
1−ɶP  so ( )det 0≠ɶP . 

  Next form the composition of a transformation E from 

→D R , represented by ( ), , , , ,w s u rκ=S PPPP , with the 

inverse of any transformation ɶE  from →D G , 
1−ɶE  from 

→R D .  The composition 
1−′′ = ɶE E E  is an equivalence 

transformation from →D D .  With ( ), , , , ,w s u rκ ɶɶ ɶ ɶ ɶ ɶ ɶS = P  to 

represent ɶE  and ( ), , , , ,w s u rκ′′ ′′ ′′ ′′ ′′ ′′ ′′=S PPPP  to represent 

′′E , use (51) to form the inverse selector and (50)  to form 

the composition selector with result  

 

 

( ) ( )

( )

( )
( )( )

( )( )

1 1

1

1 1

1

1 1

1 1 1

ˆ1 1

ˆ1 1

ˆ

ˆ

ˆ ˆ

ˆ

T T

T T

T

s s

s s

w w w

s s s

u w u u r r s

r w r r u u

ε κ ε κ

λ κ λ κ

λλ

κ λ κ κ

λ λε ε

ε

ε

λ κ

− −

−

− −

−

− −

− − −

= − = −

= − = −

′′ =

′′ = −

′′ =

′′ = −

′′ = − + −

′′ = − + −

ɶɶ ɶɶ ɶ

ɶ ɶ ɶɶ

ɶ ɶ

ɶ

ɶɶ

ɶ

ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶɶ ɶɶ ɶ

P P

P

P

P

P

  (52) 

b. Range equals domain case 

  Consider the case R = D .  Then, given the same 

adjustable constraint so that all inputs into formation of the 

observer collection are identical, the Maximal 

Transformation Set property implies ɶS and S represent 

transformations in the same set.  Since =ɶS S is then 

possible, making (52) the identity transformation1 , the 

identity transformation is always an element of every 

equivalent observer collection for which range and domain 

are the same. 

  In (52) valid probability models require 
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( ) ( ) ( )
( )

( )( )
( )( )

( ) ( )
( ) ( )

( )
( )

3

1 1

3

3 3

33

2

2

ˆdet
ˆ ˆdet det

ˆ det

det 1 1 det

ˆˆ 1 detdet 1

det
0,

ˆ det

T T

TT

s s

ss

λ ε
λ λε ε

λ ε

λ κ λ κ

λ κλ κ

λ

λ

− −′′ = =

− −
= =

−−

= ≠ ±∞

ɶ
ɶɶ

ɶ

ɶ ɶɶ ɶ

ɶɶ ɶ ɶɶɶ

ɶ

ɶ

P

P P

PP

P

P

 (53) 

Since the inverse of (52) must exist, (53) can be neither 

zero nor infinite.  Thus 0λ ≠ɶ   and ˆ 0λ ≠ , or 

 

 
1

1

T

T

s

s

κ

κ

≠

≠

ɶ ɶ

ɶ

  (54) 

 

So if D = R then κ and sɶ  can be independently chosen 

from the same set of transformations.  This implies that the 

second inequality in (54)  is true for any κ  and any s  in 

the transformation set, even if from different 

transformations and an interdependence exists.  

  The Maximal Transformation Set property implies that 

all possible κ  and s  be included in the selectors for the 

observer collection transformation set.  Since there is no 

imposition of a favored direction, there exist κ  and s  

vectors in all spatial directions in the set.  Assume that the 

magnitude κ  is unbounded in the set.  Given any κ  with 

magnitude at least 
1

s
−

,  since s can be in any direction, s  

can always be chosen close enough to perpendicular to κ
that  

 

 

( )

1
cos cos

1 cos 1
2

Ts s s s

s

κ κ θ δ κ θ

π
δ κ δθ

− = = +   
  = + + =   

  (55) 

which violates (54) .  Thus the magnitude of  κ  must be 

bounded in the transformation set.  Switch  κ  and s in the 

argument to show that s  must also be bounded in a 

transformation set.  Lack of any favored direction implies 

that the boundaries are spheres. Designate c  as the upper 

bound of  s  and a  as the upper bound of κ  in a 

transformation set.  Define 
s

s

c
β =  and 

aκ

κ
β = , with 

magnitudes less than 1.  Then (54) is written 

 

 1T T

s
s ac

κ
κ β β= ≠   (56) 

 

with upper bound of 1ac = .  Tsκ  can take any values 

with magnitude less than one,  including values very near 

one, and the largest value ac  must therefore equal 1: 

 

1

T T

s

a
c

s
κ

κ β β

=

=
  (57) 

 

   Reasoning similar to that used in (54) through (57) can be 

applied to (48), 1TVκ ≠ .  If the magnitude of V is  

V c> , and κ  of any magnitude 
1

c
κ <  , the angle 

formed by  κ  and V can be chosen close enough to 
2

π
 

radians to make the product equal 1.  Thus the magnitude of 

V is bounded by c : 

 V c<   (58) 

Different values of c  result in different parameter domain 

sets and therefore different equivalent observer collections. 

Transformations to a range not the same as the domain are 

to observers which use different values of c . The value of 

c acts as an index selector for equivalent observer 

collections, and is a meta selector, providing data about 

collections of transformations that primarily results from 

equivalence transformation properties other than 

invariance. 

c. Transformation of velocity bound 

  Assume R = D , so both V and V ′ are bounded by c . 

Define 
V

c
β =  and 

V

c
β

′
′ =  so 1β <  and 1β ′ < . The 

transformation of velocity in (47) is, in , ,
r

ς β β and c  

terms, 

 
1

s

T

κ

β β
β

β β

−
′ =

−
P   (59) 

   

  Let r  be the magnitude of 
s

β β− , and q̂  be the unit 

vector in the direction of
s

β β− , so  ˆ
s

rqβ β− =  with 

0r ≥ . Define the square magnitude of the transformed 

normalized velocity β ′  as a function ( ) Tβ β β′ ′Π =  so 

that ( ) 2 2r Rβ θ−Π =  with ˆ ˆT TR q q= P P  and 

ˆ1 1T T T

s
r q

κ κ κ
θ β β β β β= − = − − .    The minimum 

value of Π  is 0Π = , which occurs at 
s

β β= , a 

stationary point of Π .  Fix q̂  so that the derivative  
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( ) ( ) ( )
( )( )
( )( ) ( )( )

2 2 1 1 2

1 1 2

3 3

2

ˆ2

ˆ2 2 1

T

T T

s

d d d
r R r r R

dr dr dr

r r q R

r r q R r R

κ

κ κ

θ
β θ θ θ θ

θ θ θ β

θ θ β θ β β

− − − −

− − −

− −

  Π = = −   
= +

= + = −

Since 0R > , 0r > , 1T

sκ
β β < , and T

κ
β β , the 

derivative ( ) 0
d

dr
βΠ >  for all possible directions q̂ .  Thus 

there can be no other stationary points besides 
s

β β= .    

  Then the maximum value of Π , which must equal 1 if 

R = D , must occur for β   with velocity at the boundary of 

D , where also 1Tβ β =   is a maximum.   Therefore the 

boundary of  D    maps into the boundary of  R , which by 

assumptionR = D , is also the boundary of D , and (59) 

must map all magnitude one β  to magnitude one β ′ . 
   Every range R  can also be a domain, so if ≠R D , R  

and  D  are characterized by different values of the velocity 

bound (58).  Designate the bound for D  by c  and for R  

by c ′ .  Define 
c

c
ζ

′
= .  Then (59) becomes 

 
1

s

T

V V

c c
κ

β ββ

ζ ζ β β

−′ ′ ′
= = =

′ −
P   (60) 

The maximum value of the magnitude right side of (60) is 

the maximum value of Π , which equals 1,  so the 

maximum value of the magnitude of β ′ is ζ .  Since the 

maximum magnitude of Π  occurs at the boundary of D , 

the boundary of D maps into the boundary of R . 

 

F. Lorentz Transformation 

 

  Since the analysis of the domain structure shows that an 

equivalence transformation maps any velocity on the 

boundary of D ,V c= ϒ , with unit vector ϒ , to a velocity 

also  magnitude  c cζ′ =  on the boundary of R .   

 
1 1

V s c s
V c

V V
ζ

κ κΤ Τ

− ϒ−′ ′= = = ϒ
− −

P P   (61)  

   

for some unit vector ′ϒ . From this equation form the 

squared magnitude of the transformed velocity as

 ( )
( )

( ) 2 2

2

1

c s c s c

κ

ζ

β

ΤΤ

Τ
ϒ− ϒ− =

− ϒ

P P
  

which can be written as 

 ( ) ( ) ( )
2

1
s sκ

β β β
ΤΤ− ϒ = ϒ− ϒ−A   (62) 

with 
Τ=A S S , and 1ζ−=S P . Since (61) restricts only 

the velocity magnitude and not direction, equation (62) 

must be true for all directions of unit vectorϒ . Reverse the 

direction of the unit vector to obtain

( ) ( ) ( )
2

1
s sκ

β β β
ΤΤ+ ϒ = ϒ + ϒ +A .  These two 

equations imply that 

 
( )( )

( )
1 0

0

1
s s

s

κ κ

κ

β β β β

β β

Τ Τ Τ

Τ Τ

ϒ − − − ϒ =

− ϒ =

A A

A

 

Since these equations must be true for any unit vectorϒ , 

 
( )

( )( )
1

1

1

1

s s

s s s s

κ κ

κ κ κ

β β β β

β β β β β β β

Τ Τ

Τ Τ

= + −

= = + −

A A

A A
  (63) 

Re-arrange the second equation to get  

 
( ) ( )

( )
1 1

1

s s s

s s s

κ κ κ
β β β β β β

β β β

Τ Τ

Τ

− = −

= −

A

A
  (64) 

If the expressions in parenthesis in (63)  were to vanish, 

then 
κ κ
β β Τ=A for which ( )det 0=A  and therefore,

( )det 0=P , in violation of the Inverse Existence 

Property. Thus the terms in parenthesis do not vanish.  

Consequently (64) requires 
sκ

β β= , or 
2

s

c
κ = ,  and 

s
β  

is an eigenvector ofA .  The definition of A makes A a 

positive definite matrix, so it is possible to write 
Τ=A�M DM� for some diagonal matrix D  and some 

orthogonal matrixM , 1Τ Τ= =M M MM .  With A  

expressed in this manner the first line of (63) becomes 

 
( )( )

( )( ) ( )
1

1

1

1

s s s s

s s s s

β β β β

β β β β

Τ Τ Τ

Τ Τ

= + −

= + −

D M A M

M M

  (65) 

Define ( )
1

21
s s

γ β β
−

Τ= − .  Then the component 

equations of (65) are  

 ( ) ( ) 2
ii ij s s iji j
δ β β γ δ−= +D M M    

 which imply that only one of the three( )s i
βM  can be non-

zero.  Select the index of the non-zero component of 
s
βM  

as 1i = .  In the following use of either of the other two 

axis for the non-zero component yields the sameA .  Since 

the matrixM  is orthogonal, 
s s κ
β β β= =M , 

( ) 2
1s s s

β β βΤ=M  and 

 2 2
11 22 33

1
s s
β β γ γΤ − −= + = = =D D D   
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Selection of any other index as the non-zero component 

results in a corresponding permutation of the D  indices.  

Matrix M  rotates 
s
β  to align with a coordinate axis. The 

definition ofA  implies  

 ( ) ( )    
ΤΤ Τ= = = Λ ΛA S S�M DM M M  

with  

1

2
ij ij

Λ =
�
D . Consequently, = ΛɶS O M  for some 

orthogonal matrix ɶO , 1Τ =ɶ ɶO O� .  

  Define a position unit scale factor d  by reference to an 

axis perpendicular to 
s
β  as 

 ( ) 1
33

33
d w w wζ ζ ζγΤ Τ −= = Λ =ɶO SM   

Selector w  is then given by  

 γ
ζ
d

w
 

=  
 

  

  

  With d as position scale factor and ζ  as velocity scale 

factor, the equivalence transformation (47)  becomes  

  

 

( )

( ) ( )

2

2

22

2 2 2

2

2 2

2 2

1

1

T

T

T

t t

TT

T

T T

X d X st u

d s X
t t r

c

V s
V

s V

c

d s
V

c

V s s s V s
C d C

c s V c s V

γ

γ
ζ

ζ

σ γ σ
ζ

γ

′ = − +
  ′ = − +   

−′ =
   −    

    ′ = −       
   − −   ′ = + +      − −    

S

S

S S1 1

 (66) 

  

  

with
1

1

1 0 0

0 0

0 0

γ

γ

−

−

     =       

ɶS O M , and 

1

2

2
1

s s

c
γ

−
Τ  = −    

, for 

some orthogonal matrices ɶO  andM , such that matrix M  

rotates s  into a vector which lies on the x  axis

ˆs s x= +M .  Define = ɶO OM  so that 
T=ɶO�OM .  

Then 
1

1

1 0 0

0 0

0 0

T γ

γ

−

−

     = =      

S�OM M OW� with W  

defined by
1

1

1 0 0

0 0

0 0

T γ

γ

−

−

     =       

W M M . W  first rotates 

s  to lie along the x  axis, next multiplies the components 

of V perpendicular to s  by 
1γ−  and then returns s to the 

original orientation.  The matrixM� which rotates V  to  

the x axis is 

 

2 2 2 2 2

1 1

1

1 1 1

ˆ

1 0 0

0 0

0 0

0

1 (1 )

x y z y z

yx z

x y x z

yz

T
T

T

s x s s s s s s s

ss s

s s s

s ss s s

s s s s s

ss

s s s s

ss

s s

υ

γ

γ

γ γ

⊥

⊥ − −

−⊥ ⊥

⊥ ⊥

− − −

= = + + = +
             − −    = Γ =              −       

= Γ = + −

M

M

W M M

 

Application of W  to the velocity transformation term 

results in the traditional relativistic velocity transformation.

W is the same no matter which axis the frame velocity is 

first rotated into, and the matrix can be expressed as 

 1 1)1 (1
T

T

ss

s s
γ γ− −= + −W�   

With these results the equivalence transformation (66) is 

 

( )

2

1

2

22

2 2 2

2

2

1)

1)

1

1

)

1 (

1 (

1 ( 1

T

T

T

T

T T

T

t t

ss
X d X st q

s s

d s X
t t r

c

ss V s
V

s s s V

c

d s V

c

ss
C d

γ

γ
ζ

ζγ γ

σ γ σ
ζ

γ

−

  ′ = − +   
    ′ = − +       
  − ′ =        −    
    ′ = −       

′ =

+ −

+ −

+ −

O

O

O

( ) ( )
2 2

)1 ( 1

T

T

T T

T

T

s s

V s s s V s
C

c s V c s V

ss

s s
γ

ΤΤ

Τ

      
   − −    + +      − −    

      
+ − O

1 1

  (67) 
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 The first three equations of (67) are a combination 

of time and velocity units scaling transformations and 

Lorentz transformations in time and three spatial 

dimensions [9]. These are relativistic transformations which 

account for the possibility of different measurement scales. 

In addition to conventional relativistic Lorentz 

transformations, the equivalence transformation defines 

precisely the transformation of the observation time 

variance and the spatial covariance given time. 

 

G. Small Parameter Shift 

  Consider a general continuous probability model with 

continuous derivatives, vector R  of real scalar responsive 

parameters, and vector W of real scalar constraint 

parameters.  Designate P  as the vector of parameters with 

components from ,X V  and W .  Under sufficiently small 

1 0i i i
P P P∆ = −  the discrimination information [10]  is, to 

second order in P∆ , 

 ( )1 0

1
,

2

TI P P P P≈ ∆ ∆F   (68) 

where F is the Fisher information matrix defined by 

 ( ) ( ) ( )0 0

0
0 0

ln : ln :
:

ij R

i jR

f R P f R P
dv f R P

P P
∀

∂ ∂
=

∂ ∂∫F  

 

F  in block matrix form is 

 RR RW

WR WW

  =    

F F
F

F F
  

which makes (68)  become 

  

 
( )1 0

1
,

2
1

2

T T

RR RW

T

WW

I P P R R R W

W W

≈ ∆ ∆ +∆ ∆

+ ∆ ∆

F F

F

  (69) 

The variational equation 

 ( )1 0
1

, 0I P P
R

∂
=

∂
  

defines the stationary point, and minimum, with solution 
*
1

R : 

 

 * * 1
1 0 RR RW

R R R W−∆ = − = − ∆F F   (70) 

 

Substitution into (69) with result 

 

 

 

( )* 1
1 0

1

1
,

2

1

2

T

RW RR RW

T

RW RR RW

T

WW

I P P W W

W W

W W

−

−

≈ ∆ ∆

−∆ ∆

+ ∆ ∆

F F F

F F F

F

  (71) 

Now the excess discrimination invariant is  

 

( ) ( ) ( )
( )
( )

*
1 0 1 0 1 0

1

1

, , ,

1

2

T

RR RW RR

RR RW

K P P I P P I P P

R W

R W

−

−

= −

= ∆ + ∆

∆ + ∆

F F F

F F

  (72) 

 

In the simple constant velocity probability model of (10) 

the response, or un-constrained component vector R  is 

composed of components of X  and V , while W  is 

composed of components of , ,
t

t Cσ .  The second order 

excess discrimination (72) for the constant velocity model 

is  

 
( ) ( ) ( )1
1 0 0 0 0

2 1
0 0

1
,

2
1

2

T

T

t

K P P X V t C X V t

V C Vσ

−

−

= ∆ − ∆ ∆ − ∆

+ ∆ ∆
 (73) 

The correct value of K given by (16) differs from (73) by 

replacement of 
0t
σ  with 

1t
σ .  Since 

1 0
/

t t
σ σ  is not 

invariant under the equivalence transformation, the 

transformation does not exactly keep (73) invariant, but 

only to a second order approximation.  The discrepancy 

also implies that the transformation that preserves 

invariance of  (73) is only an approximation to the correct 

transformation.  Extension of (68) to third order terms 

recovers (16). Despite initial appearances (16) is actually a 

third order invariant since 2 2 2
1 0t t t
σ σ σ= +∆  . 

H. Equivalence Transformations Recap  

 

  Equivalence transformations are defined on 

parameters of a probability model by properties which 

include invariance of information in a deviation from 

parameter values expected after a controlled parameter 

component shift.  The invariant information can be 

used to determine if parameter estimates confirm to 

expected system behavior, so equivalence 

transformations keep invariant related statistical 

decision processes.   

   Remaining properties of equivalence transformations 

define relations between the transformations and 

structures of transformation domain and range needed 

to generate valid probability models for all elements of 

the domain.  Some of the significant concepts, 

properties and mathematical tools developed to support 

them are 
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1. The property of independent observer 

scrutiny requires that collections of 

equivalence transformations contain 

transformations other than identity. 

Independent observers are needed to 

confirm a theory that does not support 

identification of the observed system 

independent of the applied model. 

 

2. Adjustable parameter constraints allow 

parameter shifts to be defined in an 

indexed set theory context.  A parameter 

value acts as index to an adjustable 

constraint set element, which is a 

constraint set and the value of a 

constraint.  

 

3. The time postulate requires that 

observation time parameters be 

constraints in an equivalent observer 

collection.  Under the postulate time as 

control is the essential characteristic 

which distinguishes time from other 

quantities.   

 

   Statistical samples on a high correlation coefficient 

probability model show that a multi-variate normal 

density in observed position and time random variables 

is a reasonable representation of uniform motion.  

Application of the properties of equivalence 

transformations to this probability model results in 

equivalence transformations which are  Lorentz 

transformations of mean observed position and time, 

Lorentz transformation of velocity, and specific 

transformations of the co-variance matrix and standard 

deviation of observation times. The elliptic information 

invariant is conceptually simpler than the Minkowski 

space-time interval, though in higher dimension than 

four since there are more parameter components.  

Structural properties on parameter domain and range 

require that velocity magnitude be bounded, without 

introduction of any external  light speed concept.    
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