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Abstract. Systems of second-order ordinary differential equations admitting a

Lagrangian formulation are deformed requiring that the extended Lagrangian preserves

a fixed subalgebra of Noether symmetries of the original system. For the case

of the simple Lie algebra sl(2,R), this provides non-linear systems with two

independent constants of the motion quadratic in the velocities. In the case of scalar

differential equations, it is shown that equations of Pinney-type arise as the most

general deformation of the time-dependent harmonic oscillator preserving a sl(2,R)-

subalgebra. The procedure is generalized naturally to two dimensions. In particular,

it is shown that any deformation of the time-dependent harmonic oscillator in two

dimensions that preserves a sl(2,R) subalgebra of Noether symmetries is equivalent

to a generalized Ermakov-Ray-Reid system that satisfies the Helmholtz conditions of

the Inverse Problem of Lagrangian Mechanics. Application of the procedure to other

types of Lagrangians is illustrated.
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1. Introduction

The Lie symmetry analysis of differential equations, originally applied to physical

problems mainly in the context of (quantum) mechanical systems, constitutes nowadays

a standard method in a wide spectrum of physical situations, ranging from quantum

phenomena or non-linear optics to cosmological problems (see e.g. [1–5] and references

therein). Among the systems of ordinary differential equations (ODEs) analyzed for

their symmetry properties and relevant to physical applications, Ermakov systems

occupy a distinguished position, because of their various interesting structural

properties, such as the existence of a conserved quantity or a non-linear superposition

principle. This has motivated that such systems have been intensively studied [6–14].

Besides the classical Ermakov systems, deeply related to the (time-dependent) harmonic

oscillator, various types of generalizations have been proposed, nowadays known as

Ermakov-Ray-Reid systems or ERR systems in short. Multidimensional analogues of

Ermakov systems, which have been proven to be of interest in soliton theory, have also

been established and inspected in detail [15]. In the context of symmetry analysis,

it has been shown that point symmetries of ERR-systems are closely related to the

simple Lie algebra sl(2,R) [16, 17]. Further, the existence of a Lagrangian formalism

for ERR-systems has been analyzed in [18], showing that the Noether approach is not

yet exhausted. All these approaches connect with recent work on generic symmetries of

systems of ODEs and their relation to certain types of integrable systems [2, 4, 19–24].

In this work we develop a somewhat inverse procedure, basing on a “symmetry-

preservation” procedure applied to Lie algebras of Noether symmetries. More

specifically, starting with a Lagrangian L associated to a generic linear homogeneous

second order ODE, we determine the most general forcing term G(t,x) such that

the extended Lagrangian preserves a subalgebra of Noether symmetries with identical

generators. This enables to write a constant of the motion as a combination of

the invariant of the original equation and a part corresponding to the forcing term.

It follows from this approach that the Pinney-type equation ẍ + p(t)ẋ + q(t)x +

C
(
exp(

∫
p(t)dt)

)−2
x−3 = 0 can be characterized as the most general deformation of the

ODE ẍ+p(t)ẋ+q(t)x = 0 that preserves a subalgebra of Noether symmetries isomorphic

to sl(2,R). For the former non-linear equations, the algebra of point symmetries

coincides with that of Noether symmetries. For the special case g1(t) = 0, this

further provides an additional explanation for the relation between the time-dependent

harmonic oscillator and the Pinney equation [6, 12, 25], hence suggesting a connexion

with Ermakov systems.

The procedure is generalized naturally to systems in two dimensions, starting with an

uncoupled system of damped oscillators ẍi + g1 (t) ẋi + g2 (t)xi = 0, i = 1, 2. In contrast

to the scalar case, the forcing terms for these systems can depend on the velocities, giving

rise to a more ample class of deformed non-linear systems. It is further shown that for

the subclass determined by the constraints g1(t) = 0, g2(t) = ω2(t), the most general

deformation of the time-dependent harmonic oscillator in two dimensions that preserves
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a sl(2,R)-subalgebra of Noether symmetries actually corresponds to a Ermakov-Ray-

Reid system (with velocity-dependent potential) that satisfies the Helmholtz conditions

of the Inverse Problem in Lagrangian Mechanics [26, 27].

The main difference with respect to previous approaches resides in the fact that we do

not merely impose the existence of one or more Noether symmetries, but that we require

that the symmetry generators are identical for the original and deformed equations, as

well as the fact that they generate a copy of sl(2,R). This ensures the existence of two

independent constants of the motion generally quadratic in the velocities. In the general

case, the algebra of point symmetries will also be isomorphic to sl(2,R).

1.1. Point symmetries of second-order ordinary differential equations

To describe point symmetries of differential equations, we use the standard formulation

in terms of differential operators [28,29]. It is well known that a system of second-order

ordinary differential equations

ẍi = ωi (t,x, ẋ) , 1 ≤ i ≤ N (1)

is formulated in equivalent form in terms of the partial differential equation

Af =

(
∂

∂t
+ ẋi

∂

∂xi
+ ω (t,x, ẋ)

∂

∂ẋi

)
f = 0. (2)

We call a vector field X = ξ (t, x) ∂
∂t

+ ηj (t, x) ∂
∂xj
∈ X

(
RN+1

)
a Lie point symmetry of

the equation(s) (1) if the prolongation Ẋ = X + η̇j (t,x, ẋ) ∂
∂ẋj

satisfies the commutator[
Ẋ,A

]
= −dξ

dt
A, (3)

where η̇j = −dξ
dt
ẋj +

dηj
dx

.

Given arbitrary functions g1(t), g2(t), it is straightforward to verify that a second order

linear homogeneous differential equation

ẍ+ g1 (t) ẋ+ g2 (t)x = 0 (4)

possesses an algebra of point symmetries L isomorphic to sl (3,R) (see e.g. [28, 29]).

Three of the symmetry generators of L are immediate, and can be taken as

Y1 = x
∂

∂x
, Y2 = U1 (t)

∂

∂x
, Y3 = U2 (t)

∂

∂x
, (5)

where the general solution of (4) is given by

x (t) = λ1U1 (t) + λ2U2 (t) ; λ1, λ2 ∈ R. (6)

1.2. Noether symmetries and constants of the motion

As follows from the Inverse Problem in Lagrangian Mechanics, any scalar second-order

ODE ẍ = ω (t, x, ẋ) follows from a variational principle, i.e., there exist functions

f (t, x, ẋ) and L (t, x, ẋ) such that the Helmholtz conditions

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= fi (t,x, ẋ) (ẍi − ωi (t,x, ẋ)) , 1 ≤ i ≤ N (7)
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hold [26,27]. In the case of the ODE (4), an admissible Lagrangian L is given by

L (t, x, ẋ) = eµ(t)
(
ẋ2 − g2 (t)x2

)
/2, (8)

where µ (t) =
∫
g1 (t) dt. The ODE (4) corresponds to the equation of motion of a

one-dimensional time-dependent damped oscillator [30].

Recall that a point symmetry X is a Noether symmetry if there exists a function V (t,x)

such that the identity

Ẋ (L) + A (ξ)L− A (V ) = 0 (9)

is satisfied. As a consequence, the quantity

ψ = ξ (t,x, ẋ)

[
ẋi
∂L

∂ẋi
− L

]
− ηi (t,x, ẋ)

∂L

∂ẋi
+ V (t,x) (10)

is a constant of the motion of the equation (system) [4, 31,32].

We now justify how the subalgebra LNS of Noether symmetries of the equation (4)

can be described generically in terms of two arbitrary independent solutions. As the

ODE (4) possesses maximal symmetry sl(3,R), it has exactly five independent Noether

symmetries [29]. It is immediate to verify that the symmetries Y2 and Y3 of (5) satisfy

the Noether symmetry condition (9) for the function V (t, x) = eµ(t)xU̇k(t), k = 1, 2.

The conserved quantities deduced from them are Ik = eµ(t)
(
xU̇k(t)− ẋUk (t)

)
.

It is convenient to introduce an auxiliary function ϕ(t) that will allow us, jointly with the

general solution (6) of the ODE, to describe generically the remaining Noether symmetry

generators of LNS. To this extent, we consider the Wronskian W = W {U1 (t) , U2 (t)}
and define the function ϕ(t) W = −1. Using the properties of the Wronskian [33], it is

straightforward to verify that ϕ satisfies the first order equation

R2 :=
dϕ

dt
− g1 (t)ϕ (t) = 0. (11)

It follows in particular that ϕ(t) = exp(µ (t)).

Proposition 1 For arbitrary functions g1 (t) , g2 (t), the vector fields

Xk = ϕ (t)U2
k (t)

∂

∂t
+ xϕ (t)Uk(t)U̇k (t)

∂

∂x
, k = 1, 2 (12)

are independent Noether symmetries of the linear homogeneous ODE (4).

We prove the assertion by direct computation. For k = 1, 2, we define the quantities

R2+k := Ük(t) + g1(t)U̇k(t) + g2 (t)Uk (t) , (13)

recalling that they are identically zero for the ODE (4). Taking into account equation

(11), evaluation of the symmetry condition (9) and reordering with respect to the powers

of ẋ leads to the equation(
xϕ2(t)

(
Uk (t) Ük(t) + Uk (t) U̇k(t)g1 (t) + U̇k(t)

2
)
− ∂V

∂x

)
ẋ− ∂V

∂t
− x2ϕ (t)2

2
Uk(t)×(

2g1 (t) g2 (t)Uk (t) +

(
Uk (t)

dg2
dt

+ 4g2 (t) U̇k(t)

))
= 0. (14)
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From the term in ẋ we immediately obtain V (t, x) as

V (t, x) =
1

2
x2ϕ(t)2

(
Uk (t) Ük(t) + g1(t)Uk (t) U̇k(t) + U̇k(t)

2
)
. (15)

Inserting the latter into the free term of (14) and simplifying gives(
U2
k (t) (1− g2 (t)) + 2U̇k(t)

2
)
R2 −

(
2Uk (t)

dϕ

dt
+ 3ϕ (t) U̇k(t)

)
R2+k

+Uk (t) U̇k(t)
dR2

dt
− ϕ (t)Uk (t)

dR2+k

dt
= 0, (16)

proving that X1 and X2 are Noether symmetry of (4). As Noether symmetries generate

a subalgebra of the Lie algebra L of point symmetries [29], we conclude that [X1, X2] is

also a Noether symmetry of the ODE. It is given explicitly by:‡

X3 := [X1, X2] = −2ϕ(t)U1(t)U2(t)
∂

∂t
− ϕ(t)

(
U1 (t) U̇2(t) + U2 (t) U̇1(t)

)
x
∂

∂x
(17)

These three symmetries generate a subalgebra isomorphic to sl (2,R), with the

two remaining Noether symmetries Y2, Y3 transforming according to the irreducible

representation of sl (2,R) of dimension two. The complete commutators are given by

[·, ·] X1 X2 X3 Y2 Y3
X1 0 X3 2X1 0 −Y2
X2 0 −2X2 Y3 0

X3 0 −Y2 Y3

(18)

We observe that the structure constants of LNS do not depend on the form of the

solutions Uk(t) chosen for the general solution of (4).

The constants of the motion associated to the symmetriesX1, X2 andX3 are respectively

Jαβ =
1

2
IαIβ, α, β = 1, 2; (19)

thus they are obtained from the invariants associated to Y2 and Y3.

2. Deformations by means of symmetry-preserving forcing terms

The close relation between the time-dependent harmonic oscillator

ẍ+ ω2 (t)x = 0 (20)

and the Pinney equation

ρ̈+ ω2 (t) ρ =
1

ρ3
(21)

has been discussed extensively in the literature (see [7–9,24,34] and references therein),

from a geometrical point of view, where (20) arises as the projection of a two-

dimensional motion and (21) as its radial component, as well as in the context of the

physical interpretation of the (generalized) Lewis invariant [6,12,35]. Its derivation and

‡ The relations R2, R2+k are used to simplify the resulting expression.
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generalization to equations of type (4), as well as the analysis of higher dimensional

systems [30] are also well established facts.

In this section we provide another possible approach to the problem, considering

deformed Lagrangians that preserve exactly a fixed subalgebra of Noether symmetries.

More specifically, for a differential equation of type (4),§ we determine the most

general forcing term G (t, x) such that the sl (2,R)-subalgebra of Noether symmetries

is preserved, i.e., we require that the vector fields X1 and X2 of (12) are Noether

symmetries of the resulting deformed differential equation. This in particular implies

that the latter non-linear equation has an algebra of point symmetries that coincides

with that of Noether symmetries. As the symmetry generators are identical to those

of the homogeneous equation, in some sense we have “broken” the original symmetry

algebra to the subalgebra sl(2,R). In contrast to the homogeneous equation, two of

the constants of the motion quadratic in the velocities will be independent and not

obtainable from linear invariants, as these correspond to Noether symmetries that are

not preserved.

The starting point for the ansatz is to consider the extended Lagrangian

L̃(t, x, ẋ) = L0(t, x, ẋ) + Φ (t, x) = ϕ (t)

(
ẋ2

2
− g2 (t)

2
y2 −G(t, x)

)
, (22)

where L0(t, x, ẋ) is the Lagrangian given in (8) and Φ(t, x) = −ϕ (t)G(t, x) for some

function G (t, x). The corresponding equation of motion is given by

d

dt

(
∂L̃

∂ẋ

)
− ∂L̃

∂x
=

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
− ∂Φ

∂x
= ϕ (t)

(
ẍ+ g1 (t) ẋ+ g2 (t)x+

∂G

∂x

)
= 0.

Discarding the common term, the equation

ẍ+ g1 (t) ẋ+ g2 (t)x+
∂G

∂x
= 0 (23)

describes the motion of a particle with both damping and forcing terms.

Having in mind the relations R2 and (13) defined previously, we impose the conservation

of the Noether symmetries X1 and X2 for the (generally non-linear) equation (23).

Proposition 2 For k = 1, 2 the vector fields

Xk = ϕ (t)U2
k (t)

∂

∂t
+ xϕ (t)Uk (t) U̇k(t)

∂

∂x
(24)

are Noether symmetries of the equation of motion (23) only if the forcing term has the

form

G (x, y) =
α

ϕ (t)2 x2
, α ∈ R. (25)

§ More precisely, for the Lagrangian (8) associated to the equation.
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We again prove the assertion evaluating directly the symmetry condition (9).

For the Lagrangian L̃ and the prolongation Ẏk, the evaluation of the quantity(
Ẏk

(
L̃
)

+ A (ξ)−A (V )
)

reduces to the following expression

ϕ (t)

2
U2
k (t)R2 ẋ

2 + ẋ

{
xϕ2 (t)

(
U̇k(t)

2 + Ük(t)Uk (t) + g1 (t)Uk (t) U̇k(t)
)
− ∂V

∂x

}
−x

2

2
Uk (t)ϕ2 (t)

{
4g2 (t) U̇k(t) +

(
2g1 (t) g2 (t) +

dg2
dt

)
Uk (t)

}
− ϕ2 (t)U2

k (t)
∂G

∂t
(26)

−xϕ2 (t)Uk (t) U̇k(t)
∂G

∂x
− ∂V

∂t
− 2ϕ2 (t)Uk (t)

(
g1 (t)Uk (t) + U̇k(t)

)
G (t, x)

using the relations (13) and R2. As the latter is zero, the term in ẋ2 vanishes. Next we

obtain V (t, x) from the term in ẋ as

V (t, x) =
x2

2
ϕ (t)2

(
Ük(t)Uk (t) + U̇k(t)

2 + g1(t)Uk (t) U̇k(t)
)

+W (t) . (27)

Without loss of generality, we can take W (t) = 0. We observe that this function equals

identically that obtained in (15) for the homogeneous equation. Inserting this expression

of V (t, x) into (27) and simplifying, the Noether symmetry condition reduces to

−ϕ (t)x2

2

{
Uk (t)

(
ϕ (t)

dR2+k

dt
− U̇k(t)

dR2

dt

)
+ 2ϕ (t)

(
3U̇k(t) + 2g1 (t)Uk (t)

)
R2+k

}
+ϕ (t)

(
x2
{
U̇2
k (t)− g2 (t)

2
U2
k (t)

}
+G (t, x) U2

k (t)

)
R2 − ϕ2 (t)Uk (t)× (28)(

Uk (t)
∂G

∂t
+ xU̇k(t)

∂G

∂x
+ 2

(
Uk (t) g1(t) + U̇k(t)

)
G (t, x)

)
.

Because of R2 = R2+k = 0 for Uk (t), the only surviving term is the last one,

corresponding to the partial differential equation that must be satisfied by the forcing

term G (t, x) if it preserves the symmetry Xk:

Uk (t)
∂G

∂t
+ xU̇k(t)

∂G

∂x
+ 2

(
Uk (t) g1 (t) + U̇k(t)

)
G (t, x) = 0. (29)

As the latter equation should be satisfied simultaneously for the independent solutions

U1 (t) and U2 (t), in order to obtain a common solution we separate the PDE as follows:

Uk (t)

(
∂G

∂t
+ 2g1 (t)G (t, x)

)
= 0, U̇k(t)

(
x
∂G

∂x
+ 2G (t, x)

)
= 0. (30)

The solution to this system is easily found to be

G (t, x) =
α

ϕ2 (t)x2
, α ∈ R. (31)

Therefore the nonlinear ODE

ẍ+ g1 (t) ẋ+ g2 (t)x− 2α

ϕ2 (t) x3
= 0 (32)

possesses at least the three Noether symmetries X1, X2 and X3 inherited from the

associated homogeneous equation (4).‖ As these symmetries generate a sl(2,R) algebra,

‖ Equation (32) should not be confused with the so-called “damped Pinney” equation [36].
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the ODE (32) either has an algebra L of point symmetries isomorphic to sl(2,R) or

sl(3,R).¶

Lemma 1 For arbitrary functions g1 (t) and g2 (t), the Lie algebra L of point

symmetries of the ODE (32) is isomorphic to sl (2,R) and coincides with the algebra of

Noether symmetries.

Evaluating the symmetry condition (3) for point symmetries, a routine computation

shows that a symmetry generator X must have the shape

X = ξ (t)
∂

∂t
+

1

2

ξ̇ (t)ϕ (t)− ξ (t) ϕ̇ (t)

ϕ (t)
x
∂

∂x
. (33)

In order to satisfy the symmetry condition, the function ξ (t) must be a solution to the

third-order ODE

d3ξ

dt3
+

(
4g2 (t)− g21 (t)− 2

dg1
dt

)
dξ

dt
+

(
2
dg2
dt
−
(
dg1
dt

)2

− g1 (t)
dg1
dt

)
ξ = 0. (34)

Now, as the vector fields X1, X2 and [X1, X2] are point symmetries of (32) for being

Noether symmetries, for any constants λ1, λ2, λ3 the function

ξ (t) = ϕ(t)
(
λ1U

2
1 (t) + λ2U1 (t)U2 (t) + λ3U

2
2 (t)

)
. (35)

is a solution of (34), and since U1 (t) and U2 (t) are independent, it follows that (35) is

the general solution of the equation, proving the assertion.

The relevant point in this approach is that the homogeneous ODE (4) and the non-

linear equation (32) share the same subalgebra of Noether symmetries with identical

generators. In addition, the function V (t, x) of the symmetry condition (9) can be

chosen simultaneously for both equations and an arbitrary linear combination of X1, X2

and [X1, X2], implying that the corresponding constant of the motion satisfies

ψ = ξ

[
ẋ
∂L̃

∂ẋ
− L̃

]
− η∂L̃

∂ẋ
+ V (t, x) = ξ

[
ẋ
∂L0

∂ẋ
− L0

]
− η∂L0

∂ẋ
+ V (t, x) +

αξ

ϕ(t) x2
. (36)

Now ψ0 = ξ
[
ẋ∂L0

∂ẋ
− L0

]
− η ∂L0

∂ẋ
+ V (t, x) corresponds to the constant of the motion of

the homogeneous equation (4) with the Lagrangian (8), while the last term of (36) is

the genuine contribution of the forcing term. In particular, we can use the well-known

Lewis invariant [6, 12, 34] to express (36) in compact form. Taking into account that x

is a solution of equation (32), ψ can be simplified to

ψ = ϕ2 (t) (ρ̇x− ρẋ)2 +
βx2

ρ2
− 2αρ2

x2
. (37)

In particular, for g1(t) = 0 and g2(t) = ω(t)2, this method shows how the Pinney

equation arises as the only deformation of the (time-dependent) harmonic oscillator

¶ It should be observed that no forcing terms G(t, x, ẋ) with ∂G
∂ẋ 6= 0 can exist. This follows at once

from the symmetry condition (3).
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that preserves a sl(2,R)-subalgebra of Noether symmetries. To a certain extent, this

fact suggests the origin of the non-linear superposition principle for non-linear equations

of the form (32).

It is to be observed that there is a certain ambiguity in the notion of deformation, as

the latter depends essentially on the Lagrangian L and not on the resulting equations

of motion. An alternative Lagrangian is likely to provide different symmetry-preserving

forcing terms and hence, different deformations. In this sense, it would be more precise to

speak of “deformations with respect to a fixed Lagrangian” or L-deformations. However,

whenever there is no ambiguity on the Lagrangian L used, we will simply use the term

deformation.

3. Deformations in N = 2 dimensions and Ermakov-Ray-Reid systems

As a natural generalization of the scalar case, we can consider the deformation problem

for (linear) systems of ODEs possessing at least a sl(2,R)-subalgebra of Noether

symmetries. The novelty with respect to the scalar case will be the possibility of forcing

terms depending on the velocities, providing a more ample class of non-linear systems.

In this section we derive the most general deformations of the time-dependent harmonic

oscillator in two dimensions that preserve a sl (2,R)-subalgebra. It is further shown that

these deformations actually correspond to a subclass of (generalized) ERR-systems that

admit a Lagrangian formalism [18].

Let g1 (t) , g2 (t) be arbitrary functions and consider the uncoupled two-dimensional

damped oscillator

ẍi + g1 (t) ẋi + g2 (t)xi = 0, i = 1, 2 (38)

obtained from the time-dependent Lagrangian

L =
1

2
ϕ (t)

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

))
. (39)

Using the symmetry condition (9), a routine computation shows that a Noether

symmetry X = ξ (t,x) ∂
∂t

+ ηj (t,x) ∂
∂xj

has the following form (1 ≤ j ≤ 2, k 6= j):

ξ (t,x) = ξ (t) ,

ηj (t,x) = 1
2

(
ξ̇ (t)− g1 (t) ξ (t)

)
xj + λkjxk + ψj (t) ,

(40)

where ξ (t) satisfies equation (34) and ψj (t) is a solution of (4) for j = 1, 2. The Lie

algebra of Noether symmetries LNS has thus dimension 8. A basis of LNS can be easily

chosen as

Xk = ϕ (t)U2
k (t)

∂

∂t
+ ϕ (t)Uk (t) U̇k(t)

(
x1

∂

∂x1
+ x2

∂

∂x2

)
, k = 1, 2;

X3 = [X1, X2] ; X12 = x1
∂

∂x2
− x2

∂

∂x1
; Ykj = Uk (t)

∂

∂xj
, 1 ≤ j, k ≤ 2. (41)

Clearly the Levi subalgebra of LNS is isomorphic to s = sl (2,R) ⊕ so (2), while the

generators Yij transform according to the representation Λ ⊗ Γ 1
2

of s, where Λ is the
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standard representation of so (N) and Γ 1
2

the 2 dimensional irreducible representation

of sl (2,R). From this we easily conclude that LNS is isomorphic to the unextended

Schrödinger algebra S (2).+

For systems of this type, we compute the most general forcing term G(t,x, ẋ) that can

be added to the Lagrangian L in (39) and such that the resulting system preserves the

sl(2,R)-subalgebra of Noether symmetries. For technical reasons, it is convenient to

separate the case of forcing terms independent and dependent on the velocities.

3.1. Velocity-independent forcing terms

We require that the extended Lagrangian

L̃ = ϕ (t)

(
1

2

(
ẋ21 + ẋ22 − g2 (t) (x21 + x22)

)
− G (t,x)

)
(42)

preserves the Noether symmetries X1, X2, X3 of (41). In analogy with the scalar case,

the symmetry condition (9) for Xk is only satisfied if the forcing term G (t,x) is a

solution of the PDE

Uk (t)
∂G

∂t
+ U̇k(t)

(
x1

∂G

∂x1
+ x2

∂G

∂x2

)
+ 2

(
U̇k(t) + g1 (t)Uk (t)

)
G (t,x) = 0. (43)

Imposing that the latter PDE is satisfied simultaneously for k = 1, 2, separation of the

equation into two equations independent on Uk(t) leads to a system, the general solution

of which is easily seen to be

G (t,x) = F

(
x2
x1

)
x−21 ϕ−2 (t) . (44)

As in the preceding section, a short computation shows that for the non-linear system

ẍi + g1 (t) ẋi + g2 (t)xi +
∂G

∂xi
= 0, 1 ≤ i ≤ 2 (45)

the Lie algebra of point symmetries L coincides with that of Noether symmetries LNS,

isomorphic to sl(2,R). We further observe that for generic choices of F , the equations

are coupled non-trivially.

If we introduce two functions F1

(
x2
x1

)
, F2

(
x1
x2

)
that satisfy the constraint

x1

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
+ x2F

(
x2
x1

)
= 0, F

(
x2
x1

)
being the generic function from (44),

the solution of (43) can be written as

G (x1, x2) = − 1

x1x2ϕ2 (t)

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
. (46)

This enables to write the partial derivatives as

∂G

∂x1
=
x1x2

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
− x21F ′2

(
x1
x2

)
+ x22F

′
1

(
x2
x1

)
x31x

2
2ϕ

2 (t)
=

1

x21x2ϕ
2 (t)

H1

(
x2
x1

)
,(47)

+ This clearly follows from the fact that the equivalence class of (38) is that of the free particle system

and hence possesses sl(4,R)-symmetry [37].
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∂G

∂x2
=
x1x2

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
+ x21F

′
2

(
x1
x2

)
− x22F ′1

(
x2
x1

)
x21x

3
2ϕ

2 (t)
=

1

x1x22ϕ
2 (t)

H2

(
x1
x2

)
.(48)

The system possesses two independent constants of the motion quadratic in the

velocities. Either using the corresponding formula (10) for the Noether symmetries Xi

or the preceding equations of motion, a routine computation shows that one invariant

is given by

J1 =
ϕ2 (t)

2
(x2ẋ1 − x1ẋ2)2 +

∫ x2/x1

H1 (z) dz +

∫ x1/x2

H2 (z) dz, (49)

while the second can be expressed as

J2 = ϕ2 (t)

(
ẋ1ẋ2 +

∫ x1x2

g2(z)dz

)
−
∫ (

ϕ2 (t) g1 (t)

∫ x1x2

ω(z)2dz

)
dt+

K

x21

− 1

x21

∫ x2/x1 H1(z)

z
dz. (50)

The independence of J1 and J2 is straightforward, taking into account that J2 depends

explicitly on g1 (t) and g2 (t).

For the special case g1 (t) = 0 and g2 (t) = ω2 (t), ϕ(t) reduces to a constant. The

system (47)-(48) thus constitutes a special case of the generalized Ermakov systems

introduced in [10].∗ This shows that the deformations of the two-dimensional time-

dependent harmonic oscillator (with respect to the Lagrangian (39)) that preserve the

sl (2,R)-subalgebra correspond to a subclass of the generalized Ermakov systems with

velocity-independent potentials (hence this subclass admits a Hamiltonian [38]).

The two constants of the motion (49) and (50) reduce to

J1 =
1

2
(x2ẋ1 − x1ẋ2)2 +

∫ x2/x1

H1 (z) dz +

∫ x1/x2

H2 (z) dz (51)

and

J2 = ẋ1ẋ2 +
K

x21
+

∫ x1x2

ω(z)2dz − 1

x21

∫ x2/x1 H1(z)

z
dz. (52)

The first integral J1 corresponds to the well-known ERR-invariant, while J2 coincides

with the additional invariant deduced in [39].

3.2. Velocity-dependent forcing terms

We now analyze the more general case of deformations of the Lagrangian (39) with

forcing terms of the form G (t,x, ẋ). As usual, we start from the extension

L̃ = L− ϕ (t) G (t,x, ẋ) . (53)

∗ In fact, the constraint satisfied by F1 and F2 corresponds to the sufficiency condition for the ERR-

system to arise from a Lagrangian in 2 dimensions, i.e., to satisfy the Helmholtz conditions (7).
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Evaluating the Noether symmetry condition for the vector fields X1, X2 leads, after

some algebraic manipulation and simplification, to the following PDE

Uk(t)U̇k(t)

(
2∑
l=1

(
xl
∂G

∂xl
− ẋl

∂G

∂ẋl

)
+ 2G (t,x, ẋ)

)
+ U̇2

k (t)
2∑
l=1

xl
∂G

∂ẋl
+ U2

k (t)
∂G

∂t
+

U2
k (t)

(
2g1 (t) G (t,x, ẋ)− g1 (t)

2∑
l=1

ẋl
∂G

∂ẋl
− g2 (t)

2∑
l=1

xl
∂G

∂ẋl

)
= 0. (54)

Again, the appropriate strategy to obtain a common solution for k = 1, 2 is to separate

the equation into a set of equations not depending explicitly on the Uk(t) functions.

This yields the following equations:

x1
∂G

∂ẋ1
+ x2

∂G

∂ẋ2
= 0, (55)

x1
∂G

∂x1
+ x2

∂G

∂x2
− ẋ1

∂G

∂ẋ1
− ẋ2

∂G

∂ẋ2
+ 2G (t,x, ẋ) = 0, (56)

∂G

∂t
+ 2g1 (t) G (t,x, ẋ)− g1 (t)

(
ẋ1

∂G

∂ẋ1
+ ẋ2

∂G

∂ẋ2

)
= 0. (57)

We observe that in the third equation, we have skipped the term of (54) involving g2 (t),

as the sum
∑2

l=1 xl
∂G
∂ẋl

equals zero by the first equation (55). Solving successively these

equations, after a lengthy computation we find the general solution to this system as

G (t,x, ẋ) = F

(
x2
x1
, ϕ (t) (ẋ2x1 − ẋ1x2)

)
x−21 ϕ−2 (t) . (58)

We observe that if g1 (t) = 0, G simplifies to

G (x, ẋ) = F

(
x2
x1
, (ẋ2x1 − ẋ1x2)

)
x−21 . (59)

Introducing the auxiliary variables r = x2x
−1
1 and W = x1ẋ2 − ẋ1x2 as in [7], the

equations of motion for the deformed Lagrangian

L =
ϕ (t)

2

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

))
− 1

x21ϕ (t)
G (r, ϕ (t)W ) (60)

are explicitly given by

ẍ1 + g1 (t) ẋ1 + g2 (t)x1 +
2ṙ

ϕ (t)x1

∂G

∂W
+

r

ϕ (t)2 x31

(
ϕ (t)W

∂2G

∂r∂W
− ∂G

∂r

)
− 2G

ϕ (t)2 x31

+
r
(
Ẇ + g1 (t)W

)
x1

∂2G

∂W 2
= 0, (61)

ẍ2 + g1 (t) ẋ2 + g2 (t)x2 +
∂G
∂r
− ϕ (t)W ∂2G

∂r∂W

ϕ (t)2 x31
−

(
Ẇ + g1 (t)W

)
x1

∂2G

∂W 2
= 0. (62)

It is immediate to verify that this system is equivalent to the original 2-dimensional

oscillator if G is a linear function of W . For non-linear functions in W , the same

argument used for the scalar case shows that the Lie algebra L of point symmetries of
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(61)-(62) coincides with that of Noether symmetries, isomorphic to sl(2,R). In this case,

as expected from the presence of a damping term g1(t), the two constants of the motion

derived from the Noether symmetries X1 and X2 adopt in general a rather complicated

integral form, for which reason we skip their explicit expression.

As an elementary example illustrating this situation, let g1 (t) = 1 and g2 (t) = 0. We

consider the forcing term given by the function G (t,x, ẋ) = W 2. The equations of

motion of the Lagrangian L = 1
2
et
(
ẋ21 + ẋ22 +W 2x−21

)
can be brought to the form

ẍ1 + ẋ1 −
6W 2

x31 (3 + 2r2)
= 0, (63)

ẍ2 + ẋ2 −
4rW 2

x31 (3 + 2r2)
= 0. (64)

A first invariant can be found easily. Multiplying the first equation by x2W
−1 and

the second by x1W
−1, the difference of the equations leads, after integration, to the

conserved quantity

I1 = etW
√

(3 + 2r2) = et (ẋ2x1 − x2ẋ1)x−21

√
(3x21 + 2x22) (65)

A second independent invariant is more complicated to find, although for this purpose

the explicit Noether symmetries can be used. With this method, and after some

computation, the following invariant can be found:

I2 =
et

2

(
ẋ21 + 3ẋ22 + x1ẋ1 + x2ẋ2 −

2x2ẋ1 (2ẋ2x1 − x2ẋ1)
x21

)
. (66)

We further observe that I1I
−1
2 provides an invariant that does not explicitly depend on

the time.

At this stage, the natural question that arises in this context is whether for the case

g1(t) = 0, the deformed system (61)-(62) also corresponds to a generalized Ermakov-

Ray-Reid system (with velocity-dependent potential) that allows a two-dimensional

Lagrangian. We prove this assumption to be correct.

Such a generalized ERR system, as first introduced in [11], has the generic form:]

ẍ1 + ω2 (t)x1 −
1

x32

∂F1

∂r
+
W

x32

∂2F1

∂r∂W
+
Ẇ

x2

∂2F1

∂W 2
= 0, (67)

ẍ2 + ω2 (t)x2 +
1

x22x1

∂G1

∂r
− W

x22x1

∂2G1

∂r∂W
− Ẇ

x1

∂2G1

∂W 2
= 0, (68)

where F1 and G1 are arbitrary function of r and W . Using the Helmholtz conditions

(7) (see also [26, 27]), a long but routine computation shows that (67)-(68) correspond

to the equations of motion of a two-dimensional Lagrangian if the following constraints

are satisfied:

∂2G1

∂W 2
− r2 ∂

2F1

∂W 2
= 0, (69)

] The only formal difference with respect to [11] is that we have skipped the explicit use of the variable

r̃ = r−1 in the equations of motion.
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3
∂F1

∂r
+

1

r2
∂G1

∂r
− 3w

∂2F1

∂r∂W
− W

r2
∂2G1

∂r∂W
+ r

∂2F1

∂r2
− 1

r

∂2G1

∂r2
− rw ∂3F1

∂r2∂W

+
W

r

∂3G1

∂r2∂W
= 0 (70)

Integrating the first equation and using the method of characteristics [40], the solution

to this system is found to be

F1 (r,W ) =
G1 (r, w)

r2
+ f1 (r)w +

C

r2
, (71)

where G1 (r,W ) is still an arbitrary function. Now, inserting the latter expression into

(67)-(68) and simplifying, the equations of motion adopt the form

ẍ1 + ω2 (t)x1 +
2G1

x31
− 2W

x31

∂G1

∂W
− 1

x21x2

∂G1

∂r
+

W

x21x2

∂2G1

∂r∂W
+
x2Ẇ

x21

∂2G1

∂W 2
= 0, (72)

ẍ2 + ω2 (t)x2 +
1

x22x1

∂G1

∂r
− W

x22x1

∂2G1

∂r∂W
− Ẇ

x1

∂2G1

∂W 2
= 0. (73)

These equations are rather similar to those in (61)-(62) with g1 (t) = 0 and ϕ (t) = 1.

In fact, if we define the forcing term as G (t,x, ẋ) = −G1

(
1
r
,−W

)
and consider the

Lagrangian

L =
1

2

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

))
+

1

x21
G

(
1

r
,−W

)
, (74)

it is immediate to verify that the equations of motion are exactly (72)-(73).

Jointly with the result obtained in the preceding paragraph for the velocity-independent

forcing terms, we conclude that deformations of the two-dimensional time-dependent

oscillator with respect to the Lagrangian (39) give rise to generalized ERR-systems.

This can be formulated in compact form as follows:

Proposition 3 For g1 (t) = 0 and g2 (t) = ω2 (t), any sl(2,R)-preserving deformation

of the two-dimensional time-dependent oscillator (38) corresponds to a generalized ERR-

system (67)-(68) satisfying the constraints (69)-(70).

For g1(t) 6= 0, the systems can be seen as a further possible generalization of ERR-

systems, albeit for generic choices of the forcing term, the Lagrangian of the system will

generally be explicitly depending on the time. The deformations provide, however, an

ample class of dissipative systems with two independent constant of the motion.

4. Conclusions

We have formulated a deformation problem for Lagrangian systems in one and two

dimensions with the requirement that the deformed Lagrangian preserves exactly a fixed

subalgebra of Noether symmetries. For the scalar case, the deformations of a generic

linear homogeneous ordinary differential equation ẍ + g1(t)ẋ + g2(t)x = 0 preserving a

subalgebra isomorphic to sl(2,R) have been obtained. This case is physically justified,

as it covers in particular the equations of damped and time-dependent oscillators. It
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follows in particular that Pinney-type equations constitute the most general deformation

of the oscillators that preserve a sl(2,R)-subalgebra. For the two-dimensional case, more

general types of deformations, specifically dependent on the velocities, are possible.

In this context, it has been shown that sl(2,R)-preserving deformations of the time-

dependent harmonic oscillator are characterized as generalized Ermakov-Ray-Reid

systems, as defined and studied in [11], that admit a Lagrangian (hence Hamiltonian)

formalism. Within the classical interpretation of Ermakov systems, this result was to

be expected. In the general case with damping terms, no such characterization is given,

as the deformed Lagrangians are usually explicitly time-dependent, a characteristic that

is carried over to the invariants.

Albeit our analysis has been focused on Euclidean Lagrangians related to the time-

dependent (damped) harmonic oscillator in one or two dimensions, the procedure is

by no means restricted to these Lagrangians. The symmetry-preserving deformation

problem can be applied to any ODE or system that possesses sl(2,R) as a subalgebra

of Noether symmetries, or even any other fixed algebra of symmetries of this type.

Consider for instance the system

ẍ1 +
α

x3
= 0, ẍ2 −

3αr

x31
= 0. (75)

An admissible Lagrangian is given by

L = ẋ1ẋ2 − αx2x−31 . (76)

This Lagrangian, which can be seen as a deformation of the free Lagrangian in the

pseudo-Euclidean plane, admits a sl (2,R) Lie algebra of Noether symmetries generated

by the vector fields X = ξ (t) ∂
∂t

+ 1
2
x1ξ̇ (t) ∂

∂x1
+ 1

2
x2ξ̇ (t) ∂

∂x2
, where ξ(3) (t) = 0. In

this case, the auxiliary function V (t,x) for the symmetry condition (9) is given by

V (t,x) = 1
2
ẋ1ẋ2ξ̈ (t). A routine computation shows that the most general potential

that preserves sl (2,R) is again given by G (t,x) = F
(
x2x

−1
1

)
x−21 = F (r)x−21 . The

equations of motion for the deformed Lagrangian L̂ = ẋ1ẋ2 − αx2x−31 + F (r)x−21 are

ẍ1 +
α

x3
− F ′ (r)

x31
= 0, ẍ2 −

3αr

x31
+

2F (r)

x31
+
r F ′ (r)

x31
= 0. (77)

It is immediate to see that the Hamiltonian H = ẋ1ẋ2 − α r
x21
− F (r)

x21
is a constant of the

motion. The second invariant has the form

I1 =
1

2
W 2 − 2αr2 + 2rF (r) . (78)

We observe that, incidentally, for F (r) = λ1 + λ2r, the (deformed) system is super-

integrable, as it admits the additional constant of the motion I2 = ẋ21 +(λ2−α)x−31 [41].

Some additional examples of two-dimensional Lagrangians and the most general

sl (2,R)-preserving deformations are given the the following table.

There is no formal difficulty in generalizing the results to systems in N dimensions. The

system

ẍi + g1 (t) ẋi + g2 (t)xi = 0, i = 1, · · · , N (79)
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Table 1. Most general sl (2,R)-preserving forcing terms.

LagrangianL G (t,x) G (t,x, ẋ)

ẋ1ẋ2 Ψ
(
x2x

−2
1

)
x−2
1 Ψ

(
x2x

−2
1 , ẋ2x1 − ẋ1x2

)
x−2
1

4
(
x2
1 + x2

2

) (
ẋ2
1 + ẋ2

2

)
Ψ
(
x2x

−2
1

)
x−4
1 Ψ

(
x2x

−2
1 , (ẋ2x1 − ẋ1x2)x2

1

)
x−4
1

1
2

(
ẋ2
1 + x2

1ẋ
2
2

)
Ψ (x2)x−2

1 Ψ
(
x2, ẋ2 x

2
1

)
x−2
1

1
2

(
ẋ2
1 − x2

1ẋ
2
2

)
Ψ (x2)x−2

1 Ψ
(
x1

√
ẋ2, x2

)
ẋ2

obtained from the Lagrangian L = 1
2
ϕ (t)

∑N
i=1 (ẋ2i − g2 (t)x2i ) is linearizable, hence the

subalgebra of Noether symmetries is isomorphic to S(N). In particular, the sl(2,R)

subalgebra is generated by the vector fields

Xk = ϕ (t)U2
k (t)

∂

∂t
+

N∑
l=1

ϕ (t)Uk (t) U̇k(t)xl
∂

∂xl
, k = 1, 2 (80)

As expected, the most general forcing term preserving the sl(2,R)-subalgebra is given

by

G (t,x, ẋ) = F

(
x2
x1
, · · · , xN

x1
, ϕ (t) (ẋ2x1 − ẋ1x2) , · · · , ϕ (t) (ẋNx1 − ẋ1xN)

)
x−21 ϕ−2 (t) .

In analogy to the treated cases, for generic choices of F , the point symmetry algebra of

the system is also isomorphic to sl(2,R).

Clearly the deformation problem is heavily dependent on the Lagrangian chosen, as

well as the fixed subalgebra of Noether symmetries. The form of symmetry-preserving

forcing terms for alternative Lagrangians giving rise to the same equations of motion

may differ radically, as can be expected from the existing ambiguities in the Lagrangian

formalism [42]. In this sense, it would be of interest to classify these deformations

according to their equivalence class as systems of ODEs [37]. The imposition of the

generators of the subalgebra to remain unaltered by the deformation, although not

explicitly stated, constitutes a constraint that could be used for such a classification.

From the physical perspective, however, it seems more relevant to determine a precise

interpretation of the conservation laws of the resulting non-linear system. For the case of

systems admitting time-dependent invariants, their asymptotic behaviour could provide

useful information on the intrinsic structural properties of the system. Both problems

present interesting features that deserve to be inspected more closely.
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Verlagsgesellschaft: Leipzig)

[41] Campoamor-Stursberg R 2014 J. Math. Phys. 55 042904

[42] Marmo G, Saletan E J 1977 Nuovo Cimento 40B 67


