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Abstract

We study an inhomogeneous linear q−difference differential Cauchy problem, with a complex perturbation
parameter ε, whose coefficients depend holomorphically on ε and on time in the vicinity of the origin in
C2 and are bounded analytic on some horizontal strip in C w.r.t the space variable. This problem is
seen as a q−analog of an initial value problem recently investigated by the author and A. Lastra in [9].
Here a comparable result with the one in [9] is achieved, namely we construct a finite set of holomorphic
solutions on a common bounded open sector in time at the origin, on the given strip above in space,
when ε belongs to a well selected set of open bounded sectors whose union covers a neighborhood of 0
in C∗. These solutions are constructed through a continuous version of a q−Laplace transform of some
order k ≥ 1 introduced newly in [6] and Fourier inverse map of some function with q−exponential growth
of order k on adequate unbounded sectors in C and with exponential decay in the Fourier variable.
Moreover, by means of a q−analog of the classical Ramis-Sibuya theorem, we prove that they share a
common formal power series (that generally diverge) in ε as q−Gevrey asymptotic expansion of order
1/k.

Key words: q−Laplace transform, q−Borel transform, perturbative expansion, q−Gevrey asymptotic

expansion, formal power series. 2000 MSC: 35C10, 35C20.

1 Introduction

The work of this paper follows in the footsteps of a series of results dedicated to the asymp-
totic study for holomorphic solutions to different kind of q−difference-differential Cauchy prob-
lems involving so-called irregular singularities investigated by the author and co-authors these
recent years, see [8], [10], [11], [12]. Recently, in this framework of mixed type equations,
another approach was highlighted by H. Tahara and H. Yamazawa for the construction of a
q−analog of summability for formal solutions to inhomogeneous linear q−difference-differential
which leans on Newton polygon procedures used in the context of partial differential equations
by S. Ouchi, see [19]. We mention also the novel contribution of H. Yamazawa dealing with
nonlinear q−analogs of Briot-Bouquet type PDE, [21]. These contributions take root in the
seminal analytic studies of linear meromorphic q−difference systems of the form

Y (qz) = A(z)Y (z)
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for q ∈ C with |q| > 1 performed by J-P. Ramis, J. Sauloy, C. Zhang et al. see for instance [4],
[5], [6], [14], [15], [16], [17], [18], [22]. Our main result will bring into play analytic tools such
as q−analogs of the classical Borel-Laplace transforms of some positive order k > 0 put forward
by C. Zhang and F. Marotte in their resummation theory of formal power series solutions to
q−difference equations, see [14], used more lately by L. Divizio and C. Zhang for confluence
problems in [5] and by T. Dreyfus in his construction of meromorphic solutions to q−difference
equations as iterated discrete q−Laplace transforms in [6].

In this work, we consider the following parameter depending inhomogeneous linear Cauchy
problems with the shape

(1) Q(∂z)σq,tu(t, z, ε) =
D∑
l=1

ε∆ltdlσδlq,t(cl(t, z, ε)Rl(∂z)u(t, z, ε)) + f(t, z, ε)

where D ≥ 3, ∆l, dl, 1 ≤ l ≤ D are non negative integers, δl ≥ 1 are rational numbers or integers,
Q(X), Rl(X) are polynomials with complex coefficients and where the coefficients cl(t, z, ε) and
the forcing term f(t, z, ε) define bounded holomorphic functions near the origin in C2 w.r.t (t, ε)
and on a horizontal strip Hβ = {z ∈ C/|Im(z)| < β} of width β > 0 w.r.t the space variable z.
The problem (1) involves q−difference operators σγq,t acting on the t variable in the form t 7→ tqγ

where q > 1 is some positive real number, γ are rational numbers and derivations with respect
to z. The equation (1) under study can be seen as a q−analog of the initial value problem
investigated in our previous work [9] in its linear version

(2) Q(∂z)(∂ty(t, z, ε)) =
D∑
l=1

ε∆ltdl∂δlt Rl(∂z)y(t, z, ε) + c0(t, z, ε)R0(∂z)y(t, z, ε) + f(t, z, ε)

for given vanishing initial data y(0, z, ε) ≡ 0, well chosen integers D ≥ 2, ∆l,dl, δl ≥ 0, 1 ≤
l ≤ D and where Q(X), Rl(X), 0 ≤ l ≤ D are complex valued polynomials and the coefficient
c0(t, z, ε) together with the forcing term f(t, z, ε) are holomorphic and bounded as in the main
problem (1) mentioned above. The problem (1) is a discretized version of (2) in the sense that
the derivative ∂t is replaced by the operator (f(qt) − f(t))/(qt − t) for q > 1 (which formally
tends to ∂t as q tends to 1). In [9], for a given suitable set of open bounded sectors {Ep}0≤p≤ς−1

whose union covers a full neighborhood of 0 in C∗, for some integer ς ≥ 2 and for well selected
directions µp ∈ R, one constructs a family of holomorphic bounded functions yp(t, z, ε), solutions
of (2) on products T ×Hβ × Ep, where T stands for a fixed bounded sector centered at 0 with
small aperture, that can be written as Laplace transforms of some adequate order k ≥ 1 in
direction µp and Fourier inverse transform

yp(t, z, ε) =
k

(2π)1/2

∫ +∞

−∞

∫
Lµp

ωp(u,m, ε)e
−( u

εt
)keizm

du

u
dm,

where the inner integration is made along some halfline Lµp = R+e
√
−1µp and where ωp(u,m, ε)

denotes a function with at most exponential growth of order k in u/ε and with exponential
decay in m ∈ R. Moreover, all these functions yp(t, z, ε) turn out to share a common formal
power series ŷ(t, z, ε) =

∑
m≥0 gm(t, z)εm ∈ G[[ε]], where G is the Banach space of bounded

holomorphic functions on T × Hβ endowed with the L∞ norm, as asymptotic expansion of
Gevrey order 1/k on Ep.

In this work, we will explain and present a similar result for the problem (1). Namely, we build
a set of actual holomorphic solutions up(t, z, ε) to the problem (1) on domains T ×Hβ×Ep similar
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to the ones mentioned above, which can be expressed as a continuous version of a q−analog of
a Laplace transform described in [6] of a well chosen order k ≥ 1 and Fourier inverse transform

up(t, z, ε) =
1

(2π)1/2

∫ +∞

−∞

∫
Lγp

ωk(u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm,

where Θq1/k(x) stands for the Jacobi Theta function of order k given by its Laurent expansion

(34), the inner integration is made along a halfline Lγp = R+e
√
−1γp and where wk(u,m, ε)

represents a function with at most q−exponential growth of order k w.r.t u on unbounded
sectors, exponential decay w.r.t m on R and depends analytically on ε near 0. Furthermore, these
functions up, 0 ≤ p ≤ ς−1, possess a common formal power series û(t, z, ε) =

∑
m≥0 hm(t, z)εm ∈

G[[ε]], where G stands, as above, for the Banach space of bounded holomorphic functions on
T × Hβ with L∞ norm, as q−Gevrey asymptotic expansion of order 1/k on Ep, meaning that
for any closed sector W ⊂ Ep centered at 0, there exist two constants C,M > 0 with

sup
t∈T ,z∈Hβ

|up(t, z, ε)−
n∑

m=0

hm(t, z)εm| ≤ CMn+1q
n(n+1)

2k |ε|n+1

for all n ≥ 0, all ε ∈ W.
The paper is organized as follows. In Section 2, we introduce some weighted Banach spaces of

continuous functions with q−exponential growth on unbounded sectors in C and with exponen-
tial decay on R. We study the continuity of q−difference operators with polynomial coefficients
and q−analogs of the convolution of order k acting on these spaces. In Section 3, we recall
the definition of the q−Borel transform of order k and we provide commutation formulas w.r.t
products and q−differential operators with polynomial coefficients. We state also several ana-
lytic properties of a q−Laplace transform of order k. In Section 4, we introduce an auxiliary
q−difference and convolution problem for which we supply a formal solution. We show that its
q−Borel transform of order k satisfies a convolution equation. Under appropriate constraints,
one can solve uniquely this latter equation within the Banach spaces described in Section 2 with
the help of some fixed point theorem argument. Applying a q−Laplace transform, we can settle
an actual solution of the former auxiliary problem having the given formal solution as q−Gevrey
asymptotic expansion. In Section 5, using the construction of Section 4, we can provide a set
of actual holomorphic solutions to our initial Cauchy problem (1) on bounded sectors w.r.t the
perturbation parameter ε. We show that the difference of any two neighboring solutions tends
to 0 as ε tends to 0 faster than a function with q−exponential decay of order k (Theorem 1).
In Section 6, we show the existence of a common asymptotic expansion of q−Gevrey order 1/k
for these actual solutions as ε goes to 0 on sectors (Theorem 2). The result leans on a q−analog
of the classical Ramis-Sibuya theorem introduced in a recent contribution of A. Lastra and the
author in [10].

2 Some Banach spaces of functions

2.1 Banach spaces of functions with q-exponential growth and exponential
decay

Let Sd be an open unbounded sector with bisecting direction d ∈ R centered at 0 in C. By
convention, all the sectors considered in this paper do not contain the origin in C.
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Definition 1 Let k, β, µ > 0, q > 1 and α be real numbers. We denote Expq(k,β,µ,α) the vector

space of complex valued continuous functions (τ,m) 7→ h(τ,m) on S̄d×R, which are holomorphic
with respect to τ on Sd and such that

||h(τ,m)||(k,β,µ,α) = sup
τ∈S̄d,m∈R

(1 + |m|)µeβ|m| exp(−k
2

log2(|τ |)
log(q)

− α log(|τ |))|h(τ,m)|

is finite. One can check that the normed space (Expq(k,β,µ,α), ||.||(k,β,µ,α)) is a Banach space.

Remark: These norms are built in order that all entire functions h(τ) on C with q−exponen-
tial growth of order k studied in the work [15] by J-P. Ramis belong to these spaces. Notice that
similar norms have already been used by A. Lastra and the author in a previous joint work [8].

Throughout the whole section, we assume k, β, µ > 0 and α are fixed. In the next lemma,
we check the continuity property for the multiplication operation with bounded functions.

Lemma 1 Let (τ,m) 7→ a(τ,m) be a bounded continuous function on S̄d × R, which is holo-
morphic with respect to τ on Sd. Then, we have

(3) ||a(τ,m)h(τ,m)||(k,β,µ,α) ≤

(
sup

τ∈S̄d,m∈R
|a(τ,m)|

)
||h(τ,m)||(k,β,µ,α)

for all h(τ,m) ∈ Expq(k,β,µ,α).

In the next proposition, we study the continuity property for the multiplication operation by
functions with at most polynomial growth and contraction operators acting on the latter Banach
spaces. For any real number γ ≥ 0, the contraction operator σ−γq,τ is defined as σ−γq,τ h(τ,m) =
h(τ/qγ ,m) for any complex valued function h on S̄d × R.

Proposition 1 Let γ1, γ2, γ3 ≥ 0 be real numbers such that

(4) γ2 ≥ kγ3 , γ1 + kγ3 ≥ γ2.

Let aγ1(τ) be a holomorphic function on Sd, continuous on S̄d with

(5) |aγ1(τ)| ≤ 1

(1 + |τ |)γ1

for all τ ∈ S̄d. Then, there exists a constant C1 > 0 (depending on k, q, α, γ1, γ2, γ3) with

(6) ||aγ1(τ)τγ2σ−γ3q,τ f(τ,m)||(k,β,µ,α) ≤ C1||f(τ,m)||(k,β,µ,α)

for all f(τ,m) ∈ Expq(k,β,µ,α).

Proof Let f(τ,m) ∈ Expq(k,β,µ,α). By definition, we can write

||aγ1(τ)τγ2σ−γ3q,τ f(τ,m)||(k,β,µ,α) = sup
τ∈S̄d,m∈R

(1 + |m|)µeβ|m| exp(−k
2

log2(|τ |)
log(q)

− α log(|τ |))

× |aγ1(τ)τγ2 ||f(τ/qγ3 ,m)| exp(−k
2

log2(|τ/qγ3 |)
log(q)

− α log(|τ/qγ3 |))

× exp(
k

2

log2(|τ/qγ3 |)
log(q)

+ α log(|τ/qγ3 |)).
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Hence, using the fact that the contractive map τ 7→ τ/qγ3 keeps the sector S̄d invariant

(7) ||aγ1(τ)τγ2σ−γ3q,τ f(τ,m)||(k,β,µ,α) ≤ Ĉ1||f(τ,m)||(k,β,µ,α)

with

Ĉ1 = sup
τ∈S̄d
|aγ1(τ)||τ |γ2 exp(−k

2

log2(|τ |)
log(q)

− α log(|τ |)) exp(
k

2

log2(|τ/qγ3 |)
log(q)

+ α log(|τ/qγ3 |)).

We can rewrite

k

2

log2(|τ/qγ3 |)
log(q)

=
k

2 log(q)
(log2(|τ |)− 2γ3 log(|τ |) log(q) + (γ3 log(q))2),

α log(|τ/qγ3 |) = α(log(|τ |)− γ3 log(q))

from which we deduce that

(8) Ĉ1 ≤ exp(
k

2
γ2

3 log(q)− αγ3 log(q)) sup
x≥0

xγ2−kγ3

(1 + x)γ1

which is finite provided that (4) holds. Gathering the estimates (7), (8), we see that (6) holds.
2

Definition 2 Let β, µ ∈ R. We denote E(β,µ) the vector space of continuous functions h : R→
C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) equipped with the norm ||.||(β,µ) is a Banach space.

We recall that (E(β,µ), ||.||(β,µ)) can be equipped as a Banach algebra for some noncommu-
tative product introduced below (see Proposition 5 of Section 2 in [9]).

Proposition 2 Let Q(X), R(X) ∈ C[X] be polynomials such that

(9) deg(R) ≥ deg(Q) , R(im) 6= 0,

for all m ∈ R. Let m 7→ b(m) be a continuous function on R such that

|b(m)| ≤ 1/|R(im)|.

Assume that µ > deg(Q)+1. Then, there exists a constant C2 > 0 (depending on Q(X), R(X), µ)
such that

(10) ||b(m)

∫ +∞

−∞
f(m−m1)Q(im1)g(m1)dm1||(β,µ) ≤ C2||f(m)||(β,µ)||g(m)||(β,µ)

for all f(m), g(m) ∈ E(β,µ). In the sequel we will use the notation

f(m) ∗Q g(m) :=

∫ +∞

−∞
f(m−m1)Q(im1)g(m1)dm1

for all m ∈ R, which extends the classical convolution product ∗ in the case Q ≡ 1. As a result,
(E(β,µ), ||.||(β,µ)) becomes a Banach algebra for the product ?b,Q defined by f(m) ?b,Q g(m) :=

b(m)f(m) ∗Q g(m).
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In the next proposition, we study the continuity property of some q-analog of a convolution
operator acting on the Banach spaces mentioned above.

Proposition 3 Let β, µ and b(m),Q(X), R(X) chosen as in Proposition 2. Let ch(m) be a
sequence of functions belonging to E(β,µ) such that there exist two positive constants C > 0 and

T > q
1
2k /qα/k such that

(11) ||ch(m)||(β,µ) ≤ C(
1

T
)h

for all h ≥ 0. Let ϕk(τ,m) be the power series

ϕk(τ,m) =
∑
h≥0

ch(m)
τh

(q1/k)h(h−1)/2

which defines an entire function w.r.t τ with values in the Banach space E(β,µ). For any function
f(τ,m) belonging to the Banach space Expq(k,β,µ,α), we define a q-analog of the convolution of

order k of ϕk(τ,m) with f(τ,m) as

(12) ϕk(τ,m) ∗Qq;1/k f(τ,m) :=
∑
h≥0

τh

(q1/k)h(h−1)/2
ch(m) ∗Q (σ

−h
k

q,τ f)(τ,m).

Then, the function b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m) belongs to the space Expq(k,β,µ,α) and moreover

there exists a constant C3 > 0 (depending on µ, q, α, k,Q(X), R(X), T ) such that

(13) ||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(k,β,µ,α) ≤ C3C||f(τ,m)||(k,β,µ,α)

Proof Let f(τ,m) ∈ Expq(k,β,µ,α). From the very definition, we know that

||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(k,β,µ,α)

= sup
τ∈S̄d,m∈R

(1 + |m|)µeβ|m| exp(−k
2

log2(|τ |)
log(q)

− α log(|τ |))|b(m)|

×

∣∣∣∣∣∣
∑
h≥0

τh

(q1/k)
h(h−1)

2

∫ +∞

−∞
ch(m−m1)Q(im1)f(

τ

qh/k
,m1)dm1

∣∣∣∣∣∣ .
By inserting terms that correspond to the ||.||(β,µ) norm of ch(m) and to the ||.||(k,β,µ,α) norm of

f(τ/qh/k,m), we can give the bound estimates

||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(k,β,µ,α)

≤ sup
τ∈S̄d,m∈R

(1 + |m|)µeβ|m| exp(−k
2

log2(|τ |)
log(q)

− α log(|τ |))|b(m)|

×
∑
h≥0

∫ +∞

−∞

(
(1 + |m−m1|)µeβ|m−m1| ch(m−m1)

(q1/k)h(h−1)/2
|τ |h

)

×

(
|f(

τ

qh/k
,m1)|(1 + |m1|)µeβ|m1| exp(−k

2

log2(|τ/qh/k|)
log(q)

− α log(|τ/qh/k|))

)

×

(
e−β|m−m1|

(1 + |m−m1|)µ
|Q(im1)|

(1 + |m1|)µ
e−β|m1| exp(

k

2

log2(|τ/qh/k|)
log(q)

+ α log(|τ/qh/k|))

)
dm1.
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Using the fact that the contractive map τ 7→ τ/qh/k keeps the sector S̄d invariant, for all h ≥ 0
and by means of the triangular inequality |m| ≤ |m−m1|+ |m1|, we deduce that

(14) ||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(k,β,µ,α) ≤ Ĉ3||f(τ,m)||(k,β,µ,α)

where

(15) Ĉ3 = sup
τ∈S̄d,m∈R

(1 + |m|)µ exp(−k
2

log2(|τ |)
log(q)

− α log(|τ |))|b(m)|

×
∑
h≥0

||ch||(β,µ)
|τ |h

(q1/k)h(h−1)/2

∫ +∞

−∞

|Q(im1)|
(1 + |m−m1|)µ(1 + |m1|)µ

dm1

× exp(
k

2

log2(|τ/qh/k|)
log(q)

+ α log(|τ/qh/k|).

By construction, there exist two constants Q,R > 0 such that

(16) |Q(im1)| ≤ Q(1 + |m1|)deg(Q) , |R(im)| ≥ R(1 + |m|)deg(R)

for all m ∈ R. Using (16) and from Lemma 4 in [13] (see also Lemma 2.2 from [3]), we get a
constant C̃3 > 0 with

(17) (1 + |m|)µ|b(m)|
∫ +∞

−∞

|Q(im1)|
(1 + |m−m1|)µ(1 + |m1|)µ

dm1 ≤ sup
m∈R

Q

R
(1 + |m|)µ−deg(R)

×
∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1 ≤ C̃3

provided that µ > deg(Q) + 1. On the other hand, we can write

(18)
k

2 log(q)
log2(|τ/qh/k|) =

k

2 log(q)
(log2(|τ |)− 2

h

k
log(|τ |) log(q) + (

h

k
)2 log2(q)),

α log(|τ/qh/k|) = α(log(|τ |)− h

k
log(q))

From (15) and gathering the estimates (11), (17) and the identities (18), we get that

(19) Ĉ3 ≤ CC̃3

∑
h≥0

(
q

1
2k

Tqα/k
)h

which is finite provided that T > q
1
2k /qα/k. Finally, taking into account (14) together with (19)

yields the result. 2

2.2 Banach spaces of bounded functions with exponential decay

We denote D(0, ρ) the open disc centered at 0 with radius ρ > 0 in C and D̄(0, ρ) its closure.

Definition 3 Let β, µ, ρ > 0 be real numbers. We denote B(β,µ,ρ) the vector space of continuous
functions (τ,m) 7→ h(τ,m) on D̄(0, ρ)× R, holomorphic w.r.t τ on D(0, ρ) such that

||h(τ,m)||(β,µ,ρ) = sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µeβ|m||h(τ,m)|

is finite. One can check that (B(β,µ,ρ), ||.||(β,µ,ρ)) is a Banach space.
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Lemma 2 Let γ ≥ 0 be a real number and a(τ,m) be a bounded continuous function on D̄(0, ρ)×
R, holomorphic on D(0, ρ) w.r.t τ . Then,

(20) ||a(τ,m)σ−γq,τ f(τ,m)||(β,µ,ρ) ≤ sup
τ∈D̄(0,ρ),m∈R

|a(τ,m)|||f(τ,m)||(β,µ,ρ)

for all f(τ,m) ∈ B(β,µ,ρ).

Proof Let f(τ,m) ∈ B(β,µ,ρ). Since the transformation τ 7→ τ/qγ keeps the disc D̄(0, ρ) invariant,
we can write

(21) ||a(τ,m)σ−γq,τ f(τ,m)||(β,µ,ρ) = sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µeβ|m||a(τ,m)||f(
τ

qγ
,m)|

≤ sup
τ∈D̄(0,ρ),m∈R

|a(τ,m)| sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µeβ|m||f(τ,m)|

which yields the lemma. 2

Proposition 4 Let β, µ and b(m), Q(X), R(X) chosen as in Proposition 2. Let ch(m) be a
sequence of functions belonging to E(β,µ) such that there exist two positive constants C, T > 0
such that

(22) ||ch(m)||(β,µ) ≤ C(
1

T
)h

for all h ≥ 0. Let ϕk(τ,m) be the power series

ϕk(τ,m) =
∑
h≥0

ch(m)
τh

(q1/k)h(h−1)/2

which defines an entire function w.r.t τ with values in the Banach space E(β,µ). For any function
f(τ,m) belonging to the Banach space B(β,µ,ρ), we define as in Proposition 3 the q-analog of the
convolution of order k of ϕk(τ,m) with f(τ,m) as

(23) ϕk(τ,m) ∗Qq;1/k f(τ,m) :=
∑
h≥0

τh

(q1/k)h(h−1)/2
ch(m) ∗Q (σ

−h
k

q,τ f)(τ,m).

Then, b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m) belongs to the space B(β,µ,ρ) and moreover there exists a con-

stant C4 > 0 (depending on µ, q, ρ,Q(X), R(X), T ) such that

(24) ||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(β,µ,ρ) ≤ C4C||f(τ,m)||(β,µ,ρ)

Proof Let f(τ,m) ∈ B(β,µ,ρ). By definition, we have

||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(β,µ,ρ) ≤ sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µeβ|m||b(m)|

×

∣∣∣∣∣∣
∑
h≥0

τh

(q1/k)
h(h−1)

2

∫ +∞

−∞
ch(m−m1)Q(im1)f(

τ

qh/k
,m1)dm1

∣∣∣∣∣∣ .
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By enclosing terms related to the ||.||(β,µ) norm of ch(m) and ||.||(β,µ,ρ) norm of f(τ/qh/k,m),
we can provide bounds estimates

(25) ||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(β,µ,ρ) ≤ sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µeβ|m||b(m)|

×
∑
h≥0

∫ +∞

−∞

(
(1 + |m−m1|)µeβ|m−m1||ch(m−m1)| |τ |h

(q1/k)h(h−1)/2

)

×
(
|f(

τ

qh/k
,m1)|(1 + |m1|)µeβ|m1|

)(
e−β|m−m1|

(1 + |m−m1|)µ
|Q(im1)|e−β|m1|

(1 + |m1|)µ

)
dm1.

Using the fact that the map τ 7→ τ/qh/k keeps the disc D̄(0, ρ) invariant for all h ≥ 0 and due
to the triangular inequality |m| ≤ |m−m1|+ |m1|, we get that

(26) ||b(m)ϕk(τ,m) ∗Qq;1/k f(τ,m)||(β,µ,ρ) ≤ Ĉ4||f(τ,m)||(β,µ,ρ)

where

(27) Ĉ4 = sup
τ∈D̄(0,ρ),m∈R

(1 + |m|)µ|b(m)|
∑
h≥0

||ch(m)||(β,µ)
|τ |h

(q1/k)h(h−1)/2

×
∫ +∞

−∞

|Q(im1)|
(1 + |m−m1|)µ(1 + |m1|)µ

dm1

From the assumption (22) and the estimates (17), we get that

(28) Ĉ4 ≤ CC̃3

∑
h≥0

1

(q1/k)h(h−1)/2
(

1

T
)hρh

which is finite for any T, ρ > 0. Finally, gathering (26) and (28) yields the result. 2

In Section 4, we will need the following Banach space

Definition 4 Let k, β, µ, ρ > 0, q > 1 and α be real numbers. Let Sd be an open unbounded
sector with bisecting direction d ∈ R centered at 0 in C. We denote BExpq(k,β,µ,α,ρ) the vector

space of complex valued continuous functions (τ,m) 7→ h(τ,m) on (D̄(0, ρ)∪S̄d)×R, holomorphic
w.r.t τ on D(0, ρ) ∪ Sd such that

||h(τ,m)||(k,β,µ,α,ρ) = ||h(τ,m)||(k,β,µ,α) + ||h(τ,m)||(β,µ,ρ)

is finite, where ||.||(k,β,µ,α) (resp. ||.||(β,µ,ρ)) is the norm defined in Definition 1 (resp. Definition
3). One can check that BExpq(k,β,µ,α,ρ) endowed with the norm ||.||(k,β,µ,α,ρ) is a Banach space.

3 q−Borel, q−Laplace and Fourier transforms

Throughout the whole section we consider a complex Banach space E equipped with the norm
||.||E. Let q > 1 be a real number and k ≥ 1 be an integer. We first recall the definition of
formal q−Borel transform of order k as introduced in [15], Section 4, p. 66.
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Definition 5 Let â(T ) =
∑

n≥0 anT
n ∈ E[[T ]] be a formal series with coefficients an ∈ E. We

define the formal q−Borel transform of order k of â(T ) as the formal series

B̂q;1/k(â(T ))(τ) =
∑
n≥0

an
τn

(q1/k)n(n−1)/2
∈ E[[τ ]].

When γ ∈ Q is some rational number, the operator σγq,T is acting on E[[T ]] as (σγq,T â)(T ) :=
â(Tqγ) for any formal series â(T ) ∈ E[[T ]]. In the next definition, we recall the q−analog of the
convolution of order k of formal series as set forth in [14], Section 1.4.3 p. 1868.

Definition 6 Assume that the Banach space (E, ||.||E) has an additional structure of a Banach
algebra for some product ? (that may be noncommutative). Let Â(τ) =

∑
n≥0Anτ

n and B̂(τ) =∑
n≥0Bnτ

n be two formal power series with coefficients in E. We define the q−convolution

operator of order k of B̂ and Â by the formal series

(29) B̂(τ) ?q;1/k Â(τ) =
∑
m≥0

Bmτ
m ? (σ

−m
k

q,τ Â)(τ) ∈ E[[τ ]].

In the next proposition, we recall also some identities for the q−Borel transform of order k
that will be useful in the sequel. The point 1) may be easily deduced from [6], Lemma 1.2. The
point 2) originates from [14], Section 2.4.3 p. 1877.

Proposition 5 1) Let σ ≥ 0 be an integer and let j ≥ 0 be a rational number. Then, the
identity

(30) B̂q;1/k(T σσ
j
q,T â(T ))(τ) =

τσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q,τ

(
B̂q;1/k(â(T ))(τ)

)
holds.
2) Let â(T ) =

∑
n≥0 anT

n and b̂(T ) =
∑

n≥0 bnT
n be two formal series in E[[T ]], where E is

equipped with a product ? as in Definition 6. Then, the next identity

(31) B̂q;1/k(b̂(T ) ? â(T ))(τ) = B̂q;1/k(b̂(T ))(τ) ?q;1/k B̂q;1/k(b̂(T ))(τ)

holds.

Proof 1) By definition, we can write

(32) B̂q;1/k(T σσ
j
q,T â(T ))(τ) =

∑
n≥0

anq
jn

(q1/k)(n+σ)(n+σ−1)/2
τn+σ

=
∑
n≥0

an

(q1/k)n(n−1)/2
τn
(
τσ

qjn

(q1/k)(n+σ)(n+σ−1)/2
(q1/k)n(n−1)/2

)
Since

qjn

(q1/k)(n+σ)(n+σ−1)/2
(q1/k)n(n−1)/2 =

1

(q1/k)σ(σ−1)/2
(qj−

σ
k )n

we deduce from (32) that

(33) B̂q;1/k(T σσ
j
q,T â(T ))(τ) =

τσ

(q1/k)σ(σ−1)/2

∑
n≥0

an

(q1/k)n(n−1)/2
(τqj−

σ
k )n

=
τσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q,τ

(
B̂q;1/k(â(T ))(τ)

)
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2) The second identity (31) is a direct consequence of the formula (30) by taking j = 0. 2

We give a definition of a q−Laplace transform of order k that extends the q−Laplace trans-
form of order 1 which was already used by the author and A. Lastra in [8]. This definition can
be seen as a continuous analog of the discrete q−Laplace transform of order k used in [6].

Let us first recall some properties of the Jacobi Theta function of order k defined as the
Laurent series

(34) Θq1/k(x) =
∑
n∈Z

q−
n(n−1)

2k xn

for all x ∈ C∗. This analytic function can be factorized as a product known as the Jacobi’s triple
product formula,

Θq1/k(x) =
∏
n≥0

(1− q
−n−1
k )(1 + xq−

n
k )(1 +

q
−n−1
k

x
)

for all x ∈ C∗, from which we deduce that its zeros is the set of real numbers {−qm/k/m ∈ Z}.
We remind that Θq1/k(x) solves the q−difference equation

(35) Θq1/k(q
m
k x) = q

m(m+1)
2k xmΘq1/k(x)

for all m ∈ Z, all x ∈ C∗. We recall the next lower bounds estimates on a domain bypassing the
set of zeroes of Θq1/k(x), from [8], Lemma 4.1, which are essential in the sequel

Lemma 3 Let δ > 0. There exists a constant Cq,k > 0 depending on q, k and independent of δ
such that

(36) |Θq1/k(x)| ≥ Cq,kδ exp(
k

2

log2(|x|)
log(q)

)|x|1/2

for all x ∈ C∗ satisfying |1 + xq
m
k | > δ, for all m ∈ Z.

The following definition of q−Laplace transform of order k enhances the one (of order 1) intro-
duced in [22], see also [5], p. 384.

Definition 7 Let ρ > 0 be a real number and Sd be an unbounded sector centered at 0 with
bisecting direction d ∈ R. Let f : D(0, ρ) ∪ Sd → E be a holomorphic function, continuous on
D̄(0, ρ), such that there exist constants K > 0 and α ∈ R with

(37) ||f(x)||E ≤ K exp(
k

2

log2(|x|)
log(q)

+ α log |x|)

for all x ∈ Sd, |x| ≥ ρ and

(38) ||f(x)||E ≤ K

for all x ∈ D̄(0, ρ). Let γ ∈ R with eiγ ∈ Sd. We put πq1/k = log(q)
k Πn≥0(1− 1/q(n+1)/k)−1. We

define the q−Laplace transform of order k of f in direction γ as

Lγq;1/k(f(x))(T ) =
1

πq1/k

∫
Lγ

f(u)

Θq1/k( uT )

du

u

where Lγ = R+e
iγ is a halfline in the direction γ.
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Lemma 4 The integral transform Lγq;1/k(f(x))(T ) defines a bounded holomorphic function on

the domain Rγ,δ ∩D(0, r1) for any radius 0 < r1 ≤ q( 1
2
−α)/k/2 where

Rγ,δ = {T ∈ C∗/|1 +
eiγ

T
r| > δ, for all r ≥ 0}.

Notice that the value Lγq;1/k(f(x))(T ) does not depend on γ ∈ R such that eiγ ∈ Sd due to the
Cauchy formula.

Proof From (36), we deduce that

(39) ||
∫
Lγ

f(u)

Θq1/k( uT )

du

u
||E ≤

K

Cq,kδ
(I1(|T |) + I2(|T |))

where

I1(|T |) =

∫ ρ

0

1

exp(k2
log2(r/|T |)

log(q) )( r
|T |)

1/2

dr

r
, I2(|T |) =

∫ +∞

ρ

exp(k2
log2(r)
log(q) + α log(r))

exp(k2
log2(r/|T |)

log(q) )( r
|T |)

1/2

dr

r
.

for all T ∈ Rγ,δ∩D(0, r1). The first integral I1(|T |) can be rewritten using the change of variable
r′ = r/|T | as

I1(|T |) =

∫ ρ
|T |

0

1

exp(k2
log2(r′)
log(q) )(r′)1/2

dr′

r′

which exists and is bounded w.r.t |T | on R+ since

lim
r′→0+

1

exp(k2
log2(r′)
log(q) )r′

= 0 , exp(
k

2

log2(r′)

log(q)
) ≥ 1

for all r′ ≥ 1. For the second integral, we notice that

exp

(
k

2

log2(r)

log(q)
− k

2

log2( r
|T |)

log(q)

)
= r

k
log(|T |)
log(q) exp(− k

2 log(q)
log2(|T |)).

Therefore, I2(|T |) is bounded w.r.t |T | on [0, q( 1
2
−α)/k/2]. 2

In the subsequent proposition, we present some commutation formulas between the q−Laplace
transform and q−difference operator together with multiplication by polynomials.

Proposition 6 Let f : D(0, ρ) ∪ Sd 7→ E be a holomorphic function that fulfills the conditions
(37), (38). Then, the following formula

(40) T σσjq,T (Lγq;1/k(f(x))(T )) = Lγq;1/k(
xσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q,x f(x))(T )

holds for all T ∈ Rγ,δ ∩D(0, r1) where 0 < r1 ≤ q( 1
2
−α)/k/2.
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Proof Using the change of variable u′ = qj−
σ
k u in the integral, we can write

(41) Lγq;1/k(
xσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q,x f(x))(T ) =

1

πq1/k

∫
Lγ

uσf(qj−
σ
k u)

(q1/k)σ(σ−1)/2Θq1/k( uT )

du

u

=
1

πq1/k

∫
Lγ

q(σ
k
−j)σf(u′)(u′)σ

(q1/k)σ(σ−1)/2Θq1/k( q
σ
k
−ju′

T )

du′

u′

On the other hand, from the functional equation (35), the next identity

(42)
q(σ

k
−j)σ(u′)σ

(q1/k)σ(σ−1)/2Θq1/k(q
σ
k ( u′

qjT
))

=
T σ

Θq1/k( u′

qjT
)

holds. Gathering (41) and (42) yields that

Lγq;1/k(
xσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q,x f(x))(T ) =

T σ

πq1/k

∫
Lγ

f(u′)

Θq1/k( u′

qjT
)

du′

u′
= T σσjq,T (Lγq;1/k(f(x))(T ))

2

In the following we recall some well known properties of the Fourier transform already given in
[9].

Proposition 7 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is defined
by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic function on the strip

(43) Hβ = {z ∈ C/|Im(z)| < β}.

Let φ(m) = imf(m) ∈ E(β,µ−1). Then, we have

(44) ∂zF−1(f)(z) = F−1(φ)(z)

for all z ∈ Hβ.
Let g ∈ E(β,µ) and let ψ(m) = 1

(2π)1/2
f ∗g(m), the convolution product of f and g, for all m ∈ R.

From Proposition 2, we know that ψ ∈ E(β,µ). Moreover, we have

(45) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.

4 Formal and analytic solutions to some auxiliary convolution
initial value problems with complex parameters

Let k ≥ 1 and D ≥ 3 be integers. Let q > 1 be a real number. Let dD ≥ 1 be an integer. For
1 ≤ l ≤ D − 1, let dl, δl ≥ 1 and ∆l ≥ 0 be nonnegative integers. We make the assumption that

(46) 1 = δ1 , δl < δl+1,
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for all 1 ≤ l ≤ D − 2. We make also the assumption that

(47) ∆l ≥ dl ,
dl
k

+ 1 ≥ δl ,
dD
k

+ 1 > δl

for all 1 ≤ l ≤ D − 1. Let Q(X), Rl(X) ∈ C[X], 1 ≤ l ≤ D, be polynomials such that

(48) deg(Q) ≥ deg(RD) ≥ deg(Rl) , Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 1 ≤ l ≤ D − 1. We consider sequences of functions m 7→ Cl,n(m, ε) and
m 7→ Fn(m, ε) for all n ≥ 0, 1 ≤ l ≤ D − 1 that belong to the Banach space E(β,µ) for some
β > 0 and µ > deg(RD) + 1 and which depend holomorphically on ε ∈ D(0, ε0) for some ε0 > 0.
We assume that there exist constants C̃l, CF , T0 > 0 such that

(49) ||Cl,n(m, ε)||(β,µ) ≤ C̃l(
1

T0
)n , ||Fn(m, ε)||(β,µ) ≤ CF (

1

T0
)n

for all 1 ≤ l ≤ D − 1, for all n ≥ 0, for all ε ∈ D(0, ε0). We define

Cl(T,m, ε) =
∑
n≥0

Cl,n(m, ε)Tn , F (T,m, ε) =
∑
n≥0

Fn(m, ε)Tn

which are convergent series on D(0, T0/2) with values in E(β,µ). We consider the following initial
value problem

(50) Q(im)σq,TU(T,m, ε) = T dDσ
dD
k

+1

q,T RD(im)U(T,m, ε)

+
D−1∑
l=1

ε∆l−dlT dlσδlq,T

(
1

(2π)1/2

∫ +∞

−∞
Cl(T,m−m1, ε)Rl(im1)U(T,m1, ε)dm1

)
+σq,TF (T,m, ε)

Proposition 8 There exists a unique formal power series

Û(T,m, ε) =
∑
n≥0

Un(m, ε)Tn

solution of (50) where the coefficients Un(m, ε) belong to E(β,µ), for β > 0 and µ > deg(RD) + 1
given above and depend holomorphically on ε ∈ D(0, ε0).

Proof From Proposition 2 and the conditions (48), we deduce that all the coefficients Un(m, ε)
are well defined and belong to E(β,µ), for all ε ∈ D(0, ε0) since they satisfy the next recursion
relation

(51) Q(im)Un(m, ε)qn = RD(im)Un−dD(m, ε)q(
dD
k

+1)(n−dD)

+
D−1∑
l=1

ε∆l−dlq(n−dl)δl

 ∑
n1+n2=n−dl

1

(2π)1/2

∫ +∞

−∞
Cl,n1(m−m1, ε)Rl(im1)Un2(m1, ε)dm1


+ Fn(m, ε)qn

for all n ≥ max1≤l≤D dl. 2
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In the next step, we rewrite the equation (50) in multiplying its left and right handside by T k

in order to get corresponding equations for the formal q−Borel transform of Û(T,m, ε) w.r.t T ,
namely

(52) Q(im)T kσq,TU(T,m, ε) = T dD+kσ
dD
k

+1

q,T RD(im)U(T,m, ε)

+
D−1∑
l=1

ε∆l−dlT dl+kσδlq,T

(
1

(2π)1/2

∫ +∞

−∞
Cl(T,m−m1, ε)Rl(im1)U(T,m1, ε)dm1

)
+ T kσq,TF (T,m, ε).

We denote ωk(τ,m, ε) the formal q−Borel transform of order k of Û(T,m, ε) with respect to
T , ϕk,l(τ,m, ε) the formal q−Borel transform of order k of Cl(T,m, ε) with respect to T and
ψk(τ,m, ε) the formal q−Borel transform of order k of F (T,m, ε) with respect to T , written as

ωk(τ,m, ε) =
∑
n≥0

Un(m, ε)
τn

(q1/k)n(n−1)/2
, ϕk,l(τ,m, ε) =

∑
n≥0

Cl,n(m, ε)
τn

(q1/k)n(n−1)/2

ψk(τ,m, ε) =
∑
n≥0

Fn(m, ε)
τn

(q1/k)n(n−1)/2

Lemma 5 Let T0 > 0 be fixed as in (49). We take a real number α ∈ R such that

(53) T0 > q
1
2k /q

α
k .

Let k, β, µ be chosen as above. Then, the function ψk(τ,m, ε) belongs to the Banach space
BExpq(k,β,µ,α,ρ) for any unbounded sector Sd and any disc D(0, ρ).

Proof Using (49), we get

(54) ||ψk(τ,m, ε)||(k,β,µ,α) ≤
∑
n≥0

||Fn(m, ε)
τn

(q1/k)n(n−1)/2
||(k,β,µ,α)

≤
∑
n≥0

CF (
1

T0
)n

(
sup
τ∈S̄d
|τ |n exp(−k

2

log2 |τ |
log(q)

− α log |τ |)

)
1

(q1/k)n(n−1)/2

Now, we observe that

(55) sup
τ∈S̄d
|τ |n exp(−k

2

log2 |τ |
log(q)

− α log |τ |) = sup
x∈R

exp

(
x(n− α)− k

2

x2

log(q)

)
≤ q

(n−α)2
2k

by using the change of variable x = log |τ | and the fact that the function h(x) = x(n−α)− k
2

x2

log(q)

gets its maximum value log(q)
2k (n−α)2 at x = log(q)

k (n−α). From (54) and (55), we deduce that

(56) ||ψk(τ,m, ε)||(k,β,µ,α) ≤ CF q
α2

2k

∑
n≥0

(
q

1
2k

T0q
α
k

)n

which converges provided that T0 > q
1
2k /q

α
k . In the second part of the proof, we show that

ψk(τ,m, ε) also belongs to the space B(β,µ,ρ). Namely, taking again (49) into account yields

(57) ||ψk(τ,m, ε)||(β,µ,ρ) ≤
∑
n≥0

||Fn(m, ε)
τn

(q1/k)n(n−1)/2
||(β,µ,ρ) ≤ CF

∑
n≥0

(ρ/T0)n

(q1/k)n(n−1)/2



16

that converges for any given ρ > 0. In consequence, we see that ψk(τ,m, ε) belongs to the space
BExpq(k,β,µ,α,ρ). 2

Applying the commutation rules (30) and (31) in Proposition 5 in the framework of the Banach
algebra products ?b,Q introduced in Proposition 2, applied to (52) yields the following equation
for ωk(τ,m, ε),

(58) Q(im)
τk

(q1/k)k(k−1)/2
ωk(τ,m, ε) = RD(im)

τdD+k

(q1/k)
(dD+k)(dD+k−1)

2

ωk(τ,m, ε)

+
D−1∑
l=1

ε∆l−dl τdl+k

(q1/k)
(dl+k)(dl+k−1)

2

σ
δl−

dl
k
−1

q,τ (
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k ωk(τ,m, ε))

+
τk

(q1/k)
k(k−1)

2

ψk(τ,m, ε)

We make the further assumption that there exists an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some radius rQ,RD > 0 such that

(59)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R. We factorize the polynomial

(60) Pm(τ) =
Q(im)

(q1/k)k(k−1)/2
− RD(im)

(q1/k)
(dD+k)(dD+k−1)

2

τdD

in the form

(61) Pm(τ) = − RD(im)

(q1/k)
(dD+k)(dD+k−1)

2

ΠdD−1
l=0 (τ − ql(m))

where

(62) ql(m) =

(
|Q(im)|
|RD(im)|

(q1/k)
(dD+k)(dD+k−1)−k(k−1)

2

)1/dD

× exp

(√
−1

(
1

dD
arg(

Q(im)

RD(im)
(q1/k)

(dD+k)(dD+k−1)−k(k−1)

2 ) +
2πl

dD

))
for all 0 ≤ l ≤ dD − 1. We choose an unbounded sector Sd centered at 0, a small closed disc
D̄(0, ρ) and we prescribe the sector SQ,RD in such a way that the following conditions hold.

1) There exists a constant M1 > 0 such that

(63) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ dD − 1, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, from (59) and the explicit
expression (62) of ql(m), we first observe that |ql(m)| > 2ρ for every m ∈ R, all 0 ≤ l ≤ dD − 1
for an appropriate choice of rQ,RD and of ρ > 0. We also see that for all m ∈ R, all 0 ≤ l ≤ dD−1,
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the roots ql(m) remain in a union U of unbounded sectors centered at 0 that do not cover a
full neighborhood of the origin in C∗ provided that ηQ,RD is small enough. Therefore, one can
choose an adequate sector Sd such that Sd ∩U = ∅ with the property that for all 0 ≤ l ≤ dD − 1
the quotients ql(m)/τ lay outside some small disc centered at 1 in C for all τ ∈ Sd, all m ∈ R.
This yields (63) for some small constant M1 > 0.

2) There exists a constant M2 > 0 such that

(64) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , dD − 1}, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, for the sector Sd and the
disc D̄(0, ρ) chosen as above in 1), we notice that for any fixed 0 ≤ l0 ≤ dD − 1, the quotient
τ/ql0(m) stays outside a small disc centered at 1 in C for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R. Hence
(64) must hold for some small constant M2 > 0.

By construction of the roots (62) in the factorization (61) and using the lower bound estimates
(63), (64), we get a constant CP > 0 such that

(65) |Pm(τ)| ≥MdD−1
1 M2

|RD(im)|

(q1/k)
(dD+k)(dD+k−1)

2

(
|Q(im)|
|RD(im)|

(q1/k)
(dD+k)(dD+k−1)−k(k−1)

2

)1/dD

× (1 + |τ |)dD−1 ≥ CP (rQ,RD)1/dD |RD(im)|(1 + |τ |)dD−1

for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R.

In the next proposition, we present sufficient conditions under which the equation (58) has
a unique solution in the Banach space BExpq(k,β,µ,α,ρ) where k, β, µ, α, ρ and the sector Sd are
prescribed as above.

Proposition 9 Under the assumptions (46) and (47) there exist a radius rQ,RD > 0, a constant
$ > 0 and constants ζl, ζψ > 0 such that if

(66) C̃l ≤ ζl , CF ≤ ζψ

for all 1 ≤ l ≤ D − 1, where C̃l are defined in (49), then the equation (58) has a unique
solution ωdk(τ,m, ε) in the space BExpq(k,β,µ,α,ρ) which satisfies ||ωdk(τ,m, ε)||(k,β,µ,α,ρ) ≤ $, for

all ε ∈ D(0, ε0).

Proof We start the proof with a lemma.

Lemma 6 One can choose a constant rQ,RD > 0 large enough, a constant $ > 0 small enough
and constants ζl, ζψ > 0 submitted to (66) for 1 ≤ l ≤ D − 1, the map Hε defined as

(67) Hε(w(τ,m)) :=
D−1∑
l=1

ε∆l−dl τdl

Pm(τ)(q1/k)
(dl+k)(dl+k−1)

2

× σδl−
dl
k
−1

q,τ

(
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k w(τ,m)

)
+

1

Pm(τ)(q1/k)k(k−1)/2
ψk(τ,m, ε)

satisfies the next two properties:
i) The following inclusion

(68) Hε(B̄(0, $)) ⊂ B̄(0, $)
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holds, where B̄(0, $) denotes the closed ball of radius $ > 0 centered at 0 in BExpq(k,β,µ,α,ρ), for

all ε ∈ D(0, ε0).
ii) The inequality

(69) ||Hε(w1(τ,m))−Hε(w2(τ,m))||(k,β,µ,α,ρ) ≤
1

2
||w1(τ,m)− w2(τ,m)||(k,β,µ,α,ρ)

holds for all w1(τ,m), w2(τ,m) ∈ B̄(0, $), for all ε ∈ D(0, ε0).

Proof We first check i). Let w(τ,m) ∈ BExpq(k,β,µ,α,ρ). We choose $, ζl, ζψ > 0, 1 ≤ l ≤ D − 1

such that ||w(τ,m)||(k,β,µ,α,ρ) ≤ $ and (66) hold for all ε ∈ D(0, ε0).
Bearing in mind the assumptions (46), (47), (48), (49) under the restriction (53) together

with the lower bounds (65), we make use of Proposition 1 and Proposition 3 in order to get the
estimates

(70) ||ε∆l−dl τdl

Pm(τ)(q1/k)
(dl+k)(dl+k−1)

2

× σδl−
dl
k
−1

q,τ

(
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k w(τ,m)

)
||(k,β,µ,α)

≤ ε∆l−dl
0 C̃l

C1C3

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
||w(τ,m)||(k,β,µ,α),

moreover, from Lemma 2 and Proposition 4, we also get

(71) ||ε∆l−dl τdl

Pm(τ)(q1/k)
(dl+k)(dl+k−1)

2

× σδl−
dl
k
−1

q,τ

(
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k w(τ,m)

)
||(β,µ,ρ)

≤ ε∆l−dl
0 C̃l

ρdlC4

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
||w(τ,m)||(β,µ,ρ).

Gathering (70) and (71) yields the norm estimates

(72) ||ε∆l−dl τdl

Pm(τ)(q1/k)
(dl+k)(dl+k−1)

2

× σδl−
dl
k
−1

q,τ

(
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k w(τ,m)

)
||(k,β,µ,α,ρ)

≤ ε∆l−dl
0 ζl

max(C1C3, ρ
dlC4)

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
$.

for all 1 ≤ l ≤ D − 1. On the other hand, from Lemma 1 and Lemma 2, and bearing in mind
the estimates (56) and (57) we deduce that

(73) || 1

Pm(τ)(q1/k)k(k−1)/2
ψk(τ,m, ε)||(k,β,µ,α,ρ)

≤ 1

(q1/k)k(k−1)/2CP (rQ,RD)1/dD
sup
m∈R

1

|RD(im)|
ζψ

q α22k ∑
n≥0

(
q

1
2k

T0q
α
k

)n +
∑
n≥0

(ρ/T0)n

(q1/k)n(n−1)/2

 .
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Now, we choose rQ,RD > 0 and $, ζl, ζψ > 0, 1 ≤ l ≤ D − 1 in order that

(74)
D−1∑
l=1

ε∆l−dl
0 ζl

max(C1C3, ρ
dlC4)

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
$

+
1

(q1/k)k(k−1)/2CP (rQ,RD)1/dD
sup
m∈R

1

|RD(im)|
ζψ

q α22k ∑
n≥0

(
q

1
2k

T0q
α
k

)n +
∑
n≥0

(ρ/T0)n

(q1/k)n(n−1)/2

 ≤ $.
Taking into account the above estimates (72) and (73) under the constraint (74), one obtains
(68).

In a second step, we check ii). Let w1, w2 ∈ BExpq(k,β,µ,α,ρ). Let $ > 0 such that

||wl(τ,m)||(k,β,µ,α,ρ) ≤ $, l = 1, 2. From the estimates (72) we see at once that

(75) ||ε∆l−dl τdl

Pm(τ)(q1/k)
(dl+k)(dl+k−1)

2

× σδl−
dl
k
−1

q,τ

(
1

(2π)1/2
ϕk,l(τ,m, ε) ∗Rlq;1/k (w1(τ,m)− w2(τ,m))

)
||(k,β,µ,α,ρ)

≤ ε∆l−dl
0 ζl

max(C1C3, ρ
dlC4)

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
||w1(τ,m)− w2(τ,m)||(k,β,µ,α,ρ)

Now we select rQ,RD > 0 and ζl > 0, 1 ≤ l ≤ D − 1, such that

(76)

D−1∑
l=1

ε∆l−dl
0 ζl

max(C1C3, ρ
dlC4)

(q1/k)
(dl+k)(dl+k−1)

2 CP (rQ,RD)1/dD(2π)1/2
≤ 1

2

Hence due to (75) under the constraint (76), we get that (69).
Finally, we single out constants $, ζl, ζψ > 0 and rQ,RD > 0 in such a way that both (74)

and (76) hold. This provides our lemma. 2

We consider the ball B̄(0, $) ⊂ BExpq(k,β,µ,α,ρ) determined in the lemma above, which defines

a complete metric space for the norm ||.||(k,β,µ,α,ρ). From the lemma 6, we get that Hε is a
contractive map from B̄(0, $) into itself. Due to the classical contractive mapping theorem we
deduce that Hε has a unique fixed point denoted ωdk(τ,m, ε) for all ε ∈ D(0, ε0). Moreover,
ωdk(τ,m, ε) depends holomorphically on ε on D(0, ε0). By construction, ωdk solves the problem
(58). 2

In the next proposition, we provide analytic solutions to our main convolution equation (50).

Proposition 10 Under the assumptions (46), (47), (48) and (49) together with (53), provided
that the sector Sd and the disc D(0, ρ) fulfill the constraints (63), (64) and under the restriction
of constants (66), the equation (50) gets a solution (T,m, ε) 7→ Ud(T,m, ε) that can be expressed
as a q−Laplace transform of order k in direction d,

(77) Ud(T,m, ε) =
1

πq1/k

∫
Ld

ωdk(u,m, ε)

Θq1/k( uT )

du

u
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where ωdk(u,m, ε) belongs to the Banach space BExpq(k,β,µ,α,ρ) for the sector Sd and the disc

D(0, ρ) specified above. This function Ud(T,m, ε) is holomorphic w.r.t T on a domain Rd,δ ∩
D(0, r1) for any radius 0 < r1 ≤ q( 1

2
−α)/k/2 and some δ > 0 where

Rd,δ = {T ∈ C∗/|1 +
eid

T
r| > δ, for all r ≥ 0},

continuous w.r.t m on R and holomorphic w.r.t ε on D(0, ε0).

Proof Under the requirements stated above in Proposition 10, we see that all the assumptions
of Proposition 9 are fufilled. As a result, the q−Borel transform of order k of the formal series
Û(T,m, ε) (constructed in Proposition 8) given by ωk(τ,m, ε) =

∑
n≥0 Un(m, ε)τn/(q1/k)n(n−1)/2

is convergent with respect to τ on D(0, ρ) as series in the Banach space E(β,µ). Moreover,
this function ωk(τ,m, ε) can be extended as an analytic function with respect to τ on the
unbounded sector Sd, denoted ωdk(τ,m, ε), that belongs to the Banach space BExpq(k,β,µ,α,ρ)

and with the bounds ||ωdk(τ,m, ε)||(k,β,µ,α,ρ) ≤ $d where $d is some constant independent of
ε ∈ D(0, ε0). From Definition 7, one can built the q−Laplace transform of order k of the function
τ 7→ ωdk(τ,m, ε) given by the formula (77) which is well defined on the domain described in the
statement of Proposition 10. Since ωdk(τ,m, ε) solves the convolution equation (58), we deduce
from the commutation rules (40) describes in Proposition 6, that Ud(T,m, ε) actually solves the
equation (52) and then also the initial convolution equation (50) we departed from. 2

5 Analytic solutions to a q-analog of an initial value Cauchy
problem with complex parameter

Let k ≥ 1 and D ≥ 3 be integers. Let q > 1 be a real number. Let dD ≥ 1 be an integer. For
1 ≤ l ≤ D − 1, let dl, δl ≥ 1 and ∆l ≥ 0 be nonnegative integers. We make the assumption that

(78) 1 = δ1 , δl < δl+1,

for all 1 ≤ l ≤ D − 2. We make also the assumption that

(79) ∆l ≥ dl ,
dl
k

+ 1 ≥ δl ,
dD
k

+ 1 > δl

for all 1 ≤ l ≤ D − 1. Let Q(X), Rl(X) ∈ C[X], 1 ≤ l ≤ D, be polynomials such that

(80) deg(Q) ≥ deg(RD) ≥ deg(Rl) , Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 1 ≤ l ≤ D − 1. We consider the following initial value Cauchy problem

(81) Q(∂z)σq,tu(t, z, ε) = (εt)dDσ
dD
k

+1
q,t RD(∂z)u(t, z, ε)

+

D−1∑
l=1

ε∆ltdlσδlq,t(cl(t, z, ε)Rl(∂z)u(t, z, ε)) + σq,tf(t, z, ε)

The coefficients cl(t, z, ε) and the forcing term f(t, z, ε) are constructed as follows. We consider
sequences of functions m 7→ Cl,n(m, ε) and m 7→ Fn(m, ε) for all n ≥ 0, 1 ≤ l ≤ D − 1 that
belong to the Banach space E(β,µ) for some β > 0 and µ > deg(RD) + 1 and which depend
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holomorphically on ε ∈ D(0, ε0). We assume that there exist constants C̃l, CF , T0 > 0 such that
(49) holds for all 1 ≤ l ≤ D − 1, all n ≥ 0, all ε ∈ D(0, ε0). We also take a real number α ∈ R
such that (53) holds. We introduce the functions

Cl(T, z, ε) =
∑
n≥0

F−1(m 7→ Cl,n(m, ε))(z)Tn , F (T, z, ε) =
∑
n≥0

F−1(m 7→ Fn(m, ε))(z)Tn

which define bounded holomorphic functions on D(0, T0/2)×Hβ′ ×D(0, ε0) for any 0 < β′ < β,
for all 1 ≤ l ≤ D − 1 (where F−1 denotes the inverse Fourier transform defined in Proposition
7). We define the coefficients cl(t, z, ε), 1 ≤ l ≤ D − 1 and the forcing term f(t, z, ε) as

(82) cl(t, z, ε) = Cl(εt, z, ε) , f(t, z, ε) = F (εt, z, ε).

By construction, the functions cl(t, z, ε), 1 ≤ l ≤ D − 1 and f(t, z, ε) are bounded holomorphic
functions on D(0, r)×Hβ′ ×D(0, ε0) where rε0 < T0/2.

We make the additional requirement that there exists an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some radius rQ,RD > 0 such that

(83)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R.

Definition 8 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς − 1, we consider open sectors Ep
centered at 0, with radius ε0 such that Ep ∩ Ep+1 6= ∅, for all 0 ≤ p ≤ ς − 1 (with the convention
that Eς = E0). Moreover, we assume that the intersection of any three different elements in
{Ep}0≤p≤ς−1 is empty and that ∪ς−1

p=0Ep = U \{0}, where U is some neighborhood of 0 in C. Such
a set of sectors {Ep}0≤p≤ς−1 is called a good covering in C∗.

Definition 9 Let {Ep}0≤p≤ς−1 be a good covering in C∗ and let T be an open bounded sector
centered at 0 with radius rT > 0. We make the assumption that

(84) 0 < ε0 < 1 , 0 < rT < 1 , α+
k

log(q)
log(rT ) ≤ 0 , ε0rT ≤ q( 1

2
−α)/k/2

and consider a family of open domains Rdp,δ ∩D(0, ε0rT ) where

Rdp,δ = {T ∈ C∗/|1 +
eidp

T
r| > δ, for all r ≥ 0}

such that dp ∈ R, 0 ≤ p ≤ ς − 1 are directions which satisfy the next constraints. Let ql(m)
be the roots of the polynomials Pm(τ) given by (62), Sdp, 0 ≤ p ≤ ς − 1, be unbounded sectors
centered at 0 with bisecting direction dp, with small aperture and a disc D(0, ρ) chosen in such
a way that the next three constraints hold :
1) There exists a constant M1 > 0 such that

(85) |τ − ql(m)| ≥M1(1 + |τ |)

for all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), all 0 ≤ p ≤ ς − 1 and all 0 ≤ l ≤ dD − 1.
2) There exists a constant M2 > 0 with

(86) |τ − ql0(m)| ≥M2|ql0(m)|
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for all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), all 0 ≤ p ≤ ς − 1 and some l0 ∈ {0, . . . , dD − 1}.
3) For all 0 ≤ p ≤ ς − 1, all t ∈ T and all ε ∈ Ep, we have that εt ∈ Rdp,δ ∩D(0, ε0rT ).

The family {(Rdp,δ)0≤p≤ς−1, D(0, ρ), T } is said to be associated to the good covering
{Ep}0≤p≤ς−1.

In our next main result, we build a family of actual holomorphic solutions to the equation
(81) defined on the sectors Ep with respect to the complex parameter ε. We can also control the
difference between any two neighboring solutions on the intersections Ep ∩ Ep+1 and show that
it is q−exponential flat of order k.

Theorem 1 Assume that the conditions (78), (79), (80) and (83) hold. We take for granted
that the coefficients cl(t, z, ε) and the forcing term f(t, z, ε) are given by the expressions (82).
Let {Ep}0≤p≤ς−1 be a given good covering in C∗ for which a family {(Rdp,δ)0≤p≤ς−1, D(0, ρ), T }
associated to it can be considered.

Then, there exist a radius rQ,RD > 0 large enough and constants ζl, ζψ > 0 small enough
such that if

C̃l ≤ ζl , CF ≤ ζψ
for all 1 ≤ l ≤ D − 1, then for every 0 ≤ p ≤ ς − 1, one can construct a solution up(t, z, ε) of
(81) which defines a bounded holomorphic function on the domain T ×Hβ′ × Ep for any given
0 < β′ < β. Moreover, there exist constants K1

p ∈ R, K2
p > 0 such that

(87) sup
t∈T ,z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)| ≤ K2
p exp(− k

2 log(q)
log2(|ε|))|ε|K1

p

for all ε ∈ Ep+1 ∩ Ep, for all 0 ≤ p ≤ ς − 1 (where by convention uς = u0).

Proof From the statement of Proposition 10 and under the hypotheses of Theorem 1, for each
direction dp chosen as in Definition 9, one can construct a function Udp(T,m, ε) which solves the
convolution equation

(88) Q(im)σq,TU
dp(T,m, ε) = T dDσ

dD
k

+1

q,T RD(im)Udp(T,m, ε)

+
D−1∑
l=1

ε∆l−dlT dlσδlq,T

(
1

(2π)1/2

∫ +∞

−∞
Cl(T,m−m1, ε)Rl(im1)Udp(T,m1, ε)dm1

)
+σq,TF (T,m, ε)

where
Cl(T,m, ε) =

∑
n≥0

Cl,n(m, ε)Tn , F (T,m, ε) =
∑
n≥0

Fn(m, ε)Tn

are convergent power series on D(0, T0/2) with values in E(β,µ), for all ε ∈ D(0, ε0). This function

Udp(T,m, ε) is holomorphic w.r.t T on a domain Rdp,δ ∩ D(0, r1) where 0 < r1 ≤ q( 1
2
−α)/k/2

and some δ > 0 (as described in Proposition 10). Additionally, Udp(T,m, ε) can be written as a
q−Laplace transform of order k in direction dp

Udp(T,m, ε) =
1

πq1/k

∫
Lγp

ω
dp
k (u,m, ε)

Θq1/k( uT )

du

u
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where Lγp = R+e
iγp ∈ Sdp ∪ {0}, where ω

dp
k (τ,m, ε) defines a continuous function on (D̄(0, ρ) ∪

S̄dp) × R × D(0, ε0), holomorphic w.r.t (τ, ε) on (D(0, ρ) ∪ Sdp) × D(0, ε0) for any m ∈ R and
satisfies the next estimates: there exists a constant $dp > 0 such that

(89) |ωdp
k (τ,m, ε)| ≤ $dp(1 + |m|)−µe−β|m| exp(

k

2

log2(|τ |)
log(q)

+ α log |τ |)

for all τ ∈ Sdp , all m ∈ R, all ε ∈ D(0, ε0). Moreover, these functions τ 7→ ω
dp
k (τ,m, ε) are

analytic continuation on the sectors Sdp of a common function

(90) ωk(τ,m, ε) =
∑
n≥0

Un(m, ε)
τn

(q1/k)n(n−1)/2

which is a convergent power series on D(0, ρ) with coefficients Un(m, ε) in E(β,µ) with the prop-

erty that the series Û(T,m, ε) =
∑

n≥0 Un(m, ε)Tn formally solves the equation (88) as explained
in Proposition 8. Due to the estimates (89) and the assumption (84), one can see that the func-
tion

U dp(T, z, ε) = F−1(m 7→ Udp(T,m, ε))(z)

defines a bounded holomorphic function on (Rdp,δ ∩ D(0, ε0rT )) × Hβ′ × D(0, ε0), for any 0 <
β′ < β. For all 0 ≤ p ≤ ς − 1, we define

(91) up(t, z, ε) = U dp(εt, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
k (u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm.

From the requirement 3) of Definition 9, up(t, z, ε) defines a bounded holomorphic function on
the domain T ×Hβ′ ×Ep. Moreover, using the properties of the Fourier inverse transform out of
Proposition 7 and reminding that Udp(T,m, ε) solves (88), we deduce that up(t, z, ε) solves our
main problem (81) on T ×Hβ′ × Ep.

In the next step we proceed to the proof of the bounds estimates (87). Indeed, let 0 ≤ p ≤
ς − 1. From the lower bounds estimates (36), we deduce that the function

(92) u 7→ ωk(u,m, ε)

Θq1/k( uεt)u

is bounded and holomorphic on a domain Sdp,dp+1 ∩D(0, ρ) for some sector Sdp,dp+1 centered at
0 containing the union Sdp ∪Sdp+1 , for any ε ∈ Ep∩Ep+1, t ∈ T . Hence, the integral of (92) along
the union of a segment starting from 0 to (ρ/2)eidp+1 , an arc of circle with radius ρ/2 which
connects (ρ/2)eidp+1 and (ρ/2)eidp and finally a segment starting from (ρ/2)eidp to 0 is equal to
zero. As a result, we can write the difference up+1 − up as a sum of three integrals

(93) up+1(t, z, ε)− up(t, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1

k (u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm

− 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
k (u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm

+
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm
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where Lρ/2,γp+1
= [ρ/2,+∞)eiγp+1 , Lρ/2,γp = [ρ/2,+∞)eiγp and Cρ/2,γp,γp+1

is an arc of circle

with radius ρ/2 connecting (ρ/2)eiγp and (ρ/2)eiγp+1 for a well chosen orientation.

We show estimates for the first integral

I1 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1

k (u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm

∣∣∣∣∣
From the upper bounds (89) and lower bounds (36) estimates, we get

(94) I1 ≤
1

πq1/k(2π)1/2

∫ +∞

−∞

∫ +∞

ρ/2
$dp+1(1 + |m|)−µe−β|m|

×
exp(k2

log2(r)
log(q) + α log(r))

Cq,kδ exp(k2
log2( r

|εt| )

log(q) )( r
|εt|)

1/2

e−mIm(z)dr

r
dm

We can expand

(95)

exp

(
k

2

log2(r)

log(q)
+ α log(r)− k

2

log2( r
|εt|)

log(q)

)
= exp

(
k

2 log(q)
(− log2 |ε| − 2 log |ε| log |t| − log2 |t|)

)
× rα exp

(
k

log(q)
log(r) log |ε|+ k

log(q)
log(r) log |t|

)
From the assumption that 0 < ε0 < 1 and 0 < rT < 1, we deduce that

(96) exp(− k

log(q)
log |ε| log |t|) ≤ |ε|−

k
log(q)

log(rT )
, exp(

k

log(q)
log(r) log |ε|) ≤ |ε|

k
log(q)

log(ρ/2)

for all t ∈ T , ε ∈ Ep ∩ Ep+1, r ≥ ρ/2 and

(97) exp(
k

log(q)
log(r) log(|t|)) ≤ |t|

k
log(q)

log(ρ/2)
if ρ/2 ≤ r ≤ 1,

exp(
k

log(q)
log(r) log(|t|)) ≤ r

k
log(q)

log(rT )
if r ≥ 1

for all t ∈ T . On the other hand, we can check that there exists a constant Kk,ρ,q > 0 with

(98) sup
x>0

x
k

log(q)
log(ρ/2)

exp(− k

2 log(q)
log2(x)) ≤ Kk,ρ,q.

Taking into account the constraints (84) and gathering (96), (97) and (98), we deduce from (95)
that there exist two constants K̃1 ∈ R and K̃2 > 0 with

(99) exp

(
k

2

log2(r)

log(q)
+ α log(r)− k

2

log2( r
|εt|)

log(q)

)
≤ K̃2 exp(− k

2 log(q)
log2 |ε|)|ε|K̃1

for all t ∈ T , all r ≥ ρ/2, all ε ∈ Ep ∩ Ep+1. Hence, from (94) and (99) we deduce that

(100) I1 ≤
K̃2$dp+1(ε0rT )1/2

πq1/k(2π)1/2Cq,kδ

∫ +∞

−∞
e−(β−β′)|m|dm

∫ +∞

ρ/2

1

r3/2
dr exp(− k

2 log(q)
log2 |ε|)|ε|K̃1

≤
4K̃2$dp+1(ε0rT )1/2

πq1/k(2π)1/2Cq,kδ(β − β′)(ρ/2)1/2
exp(− k

2 log(q)
log2 |ε|)|ε|K̃1
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for all t ∈ T , all z ∈ Hβ′ , all ε ∈ Ep ∩ Ep+1.

In a similar manner, we can provide estimates for the second integral

I2 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
k (u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm

∣∣∣∣∣ .
Indeed, again from the q−exponential growth estimates (89) and following the same steps as
above yields

(101) I2 ≤
4K̃2$dp(ε0rT )1/2

πq1/k(2π)1/2Cq,kδ(β − β′)(ρ/2)1/2
exp(− k

2 log(q)
log2 |ε|)|ε|K̃1

for all t ∈ T , all z ∈ Hβ′ , all ε ∈ Ep ∩ Ep+1.

In the final step, we need to give estimates for the last integral

I3 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)

Θq1/k( uεt)
eizm

du

u
dm

∣∣∣∣∣ .
By construction of ωk(u,m, ε) in (90) and the lower bounds (36) estimates, we deduce the
existence of a constant $ > 0 with

(102) I3 ≤
1

πq1/k(2π)1/2

∫ +∞

−∞

∣∣∣∣∣∣∣
∫ γp+1

γp

$(1 + |m|)−µe−β|m|

Cq,kδ exp(k2
log2( ρ

2|εt| )

log(q) )( ρ
2|εt|)

1/2

e−mIm(z)dθ

∣∣∣∣∣∣∣ dm
As above, we can expand

(103) exp

(
−k

2

log2( ρ
2|εt|)

log(q)

)
= exp(− k

2 log(q)
log2(

ρ

2
))|ε|

k
log(q)

log( ρ
2

)|t|
k

log(q)
log( ρ

2
)

× exp(
k

2 log(q)
(− log2 |ε| − 2 log(|ε|) log(|t|)− log2(|t|)))

From the assumption 0 < ε0 < 1, we check that

(104) exp

(
− k

log(q)
log(|ε|) log(|t|)

)
≤ |ε|−

k
log(q)

log(rT )

for all t ∈ T , all ε ∈ Ep ∩ Ep+1. Gathering (104) and (98), we deduce from (103) two constants
K̂1 ∈ R and K̂2 > 0 such that

(105) exp

(
−k

2

log2( ρ
2|εt|)

log(q)

)
≤ K̂2 exp(− k

2 log(q)
log2 |ε|)|ε|K̂1

for all t ∈ T , all ε ∈ Ep ∩ Ep+1. From (102) and (105) we deduce that

(106) I3 ≤
$|γp+1 − γp|K̂2(ε0rT )1/2

πq1/k(2π)1/2Cq,kδ(ρ/2)1/2

∫ +∞

−∞
e−(β−β′)|m|dm exp(− k

2 log(q)
log2 |ε|)|ε|K̂1

≤ 2$|γp+1 − γp|K̂2(ε0rT )1/2

πq1/k(2π)1/2Cq,kδ(ρ/2)1/2(β − β′)
exp(− k

2 log(q)
log2 |ε|)|ε|K̂1

for all t ∈ T , all z ∈ Hβ′ , all ε ∈ Ep ∩ Ep+1.

Finally, gathering the estimates (100), (101) and (106), we deduce from the decomposition
(93) the promised estimates (87). 2
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6 q−Gevrey asymptotics of order 1/k for the analytic solutions
to the initial value Cauchy problem

6.1 Holomorphic functions on sectors with q−Gevrey asymptotic expansion

The following characterization is a slight modification of the Definition 5.1 given in [8].

Definition 10 Let V be a bounded open sector centered at 0 in C. Let (F, ||.||F) be a complex
Banach space. Let q > 1 be a real number and k ≥ 1 be an integer. We say that a holomorphic
function f : V → F admits a formal series f̂(ε) =

∑
n≥0 fnε

n ∈ F[[ε]] as its q−Gevrey asymptotic
expansion of order 1/k if for every open subsector U ⊂ V with Ū ⊂ V , there exist constants
A,C > 0 such that

||f(ε)−
N∑
n=0

fnε
n||F ≤ CAN+1q

(N+1)N
2k |ε|N+1

for all ε ∈ U , all N ≥ 0.

The next lemma is a reshaped version of Proposition 5.3 stated in [8]. This result is a
q−analog of the well known statement that a holomorphic function is exponentially flat of order
k on a sector S if and only if its has 0̂ as asymptotic expansion of Gevrey order 1/k on S, see
[7], Theorem XI-3-2.

Lemma 7 A holomorphic function f : V → F admits the null formal series 0̂ ∈ F[[ε]] as its
q−Gevrey asymptotic expansion of order 1/k if and only for any open subsector U ⊂ V with
Ū ⊂ V there exist two constants K1 ∈ R, K2 > 0 with

(107) ||f(ε)||F ≤ K2 exp(− k

2 log(q)
log2 |ε|)|ε|K1

for all ε ∈ U .

Proof Let A,C > 0 be positive constants. We consider the functions

G(x) = CAx+1q
(x+1)x

2k |ε|x+1 = C exp(H(x)),

H(x) = (x+ 1) log(A) +
log(q)

2k
(x2 + x) + (x+ 1) log |ε|

We need to compute minx∈RG(x). We see that G(x) reaches its minimum where H(x) gets its
minimum. An easy computation shows that H(x) gets its minimum at x0 = − k

log(q) log |ε| +
(− k

log(q) log(A)− 1
2) and we can observe that

(108) min
x∈R

G(x) = G(x0) = L exp(− k

2 log(q)
log2 |ε|)|ε|−

k
log(q)

log(A)+ 1
2

where L > 0 is a constant independent of ε. One can check that the lemma is a consequence of
(108) using standard computations. 2
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6.2 A q−analog of the Ramis-Sibuya theorem

The classical Ramis-Sibuya theorem is a cohomological criterion that ensures the k−summability
of a given formal series (see [2], Section 4.4 Proposition 2 or [7], Lemma XI-2-6). In this
subsection, we present a version of this theorem in the framework of q−Gevrey asymptotics of
order 1/k. Its statement is very much alike Theorem 25 given in [10] by A. Lastra and the
author. For the sake of clarity for the reader, we give a thorough proof of the result although
being very similar to the one given in [10].

Theorem (q-RS) Let (F, ||.||F) be a Banach space and {Ep}0≤p≤ς−1 be a good covering in C∗.
For all 0 ≤ p ≤ ς − 1, let Gp(ε) be a holomorphic function from Ep into F and let the cocycle
∆p(ε) = Gp+1(ε) − Gp(ε) be a holomorphic function from Zp = Ep+1 ∩ Ep into F (with the
convention that Eς = E0 and Gς = G0). We make further assumptions.

1) The functions Gp(ε) are bounded as ε tends to 0 on Ep, for all 0 ≤ p ≤ ς − 1.

2) The function ∆p(ε) is q−exponentially flat of order k on Zp for all 0 ≤ p ≤ ς − 1, meaning
that there exist two constants C1

p ∈ R and C2
p > 0 with

(109) ||∆p(ε)||F ≤ C2
p |ε|C

1
p exp(− k

2 log(q)
log2 |ε|)

for all ε ∈ Zp, all 0 ≤ p ≤ ς − 1.

Then, there exists a formal power series Ĝ(ε) ∈ F[[ε]] which is the common q−Gevrey asymp-
totic expansion of order 1/k of the functions Gp(ε) on Ep, for all 0 ≤ p ≤ ς − 1.

Proof We first start with an essential lemma.

Lemma 8 For all 0 ≤ l ≤ ς − 1, there exist bounded holomorphic functions Ψl : El → C such
that

(110) ∆l(ε) = Ψl+1(ε)−Ψl(ε)

for all ε ∈ Zl, where by convention Ψς(ε) = Ψ0(ε). Moreover, there exist coefficients ϕm ∈ F,
m ≥ 0, such that for each 0 ≤ l ≤ ς − 1 and any closed proper subsector W ⊂ El, centered at 0,
there exist two constants K̂l, M̂l > 0 with

(111) ||Ψl(ε)−
M∑
m=0

ϕmε
m||F ≤ K̂l(M̂l)

M+1q
(M+1)M

2k |ε|M+1

for all ε ∈ W, all M ≥ 0.

Proof We will be devoted to the same arguments as in Lemma XI-2-6 from [7] with suitable
modifications in the asymptotic expansions of the functions constructed with the help of the
Cauchy-Heine transform. For all 0 ≤ l ≤ ς − 1, we choose a segment

Cl = {te
√
−1θl , t ∈ [0, r]} ⊂ El ∩ El+1.

These ς segments divide the open punctured disc D(0, r) \ {0} into ς open sectors Ẽ0, . . . , Ẽς−1

where
Ẽl = {ε ∈ C∗/θl−1 < arg(ε) < θl, |ε| < r} , 0 ≤ l ≤ ς − 1,



28

where by convention θ−1 = θς−1. Let

Ψl(ε) =
−1

2π
√
−1

ς−1∑
h=0

∫
Ch

∆h(ξ)

ξ − ε
dξ

for all ε ∈ Ẽl, for 0 ≤ l ≤ ς − 1, be defined as a sum of Cauchy-Heine transforms of the functions
∆h(ε). By deformation of the paths Cl−1 and Cl without moving their endpoints and letting the
other paths Ch, h 6= l− 1, l untouched (with the convention that C−1 = Cς−1), one can continue
analytically the function Ψl onto El. Therefore, Ψl defines a holomorphic function on El, for all
0 ≤ l ≤ ς − 1.

Now, take ε ∈ El ∩ El+1. In order to compute Ψl+1(ε)−Ψl(ε), we write

(112) Ψl(ε) =
−1

2π
√
−1

∫
Ĉl

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ς−1∑
h=0,h6=l

∫
Ch

∆h(ξ)

ξ − ε
dξ,

Ψl+1(ε) =
−1

2π
√
−1

∫
Čl

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ς−1∑
h=0,h6=l

∫
Ch

∆h(ξ)

ξ − ε
dξ

where the paths Ĉl and Čl are obtained by deforming the same path Cl without moving its
endpoints in such a way that:
(a) Ĉl ⊂ El ∩ El+1 and Čl ⊂ El ∩ El+1,
(b) Γl,l+1 := −Čl + Ĉl is a simple closed curve with positive orientation whose interior contains
ε.

Therefore, due to the residue formula, we can write

(113) Ψl+1(ε)−Ψl(ε) =
1

2π
√
−1

∫
Γl,l+1

∆l(ξ)

ξ − ε
dξ = ∆l(ε)

for all ε ∈ El ∩ El+1, for all 0 ≤ l ≤ ς − 1 (with the convention that Ψς = Ψ0).
In a second step, we derive asymptotic properties of Ψl. We fix an 0 ≤ l ≤ ς−1 and a proper

closed sector W contained in El. Let C̃l (resp. C̃l−1) be a path obtained by deforming Cl (resp.
Cl−1) without moving the endpoints in order that W is contained in the interior of the simple
closed curve C̃l−1 + γl− C̃l (which is itself contained in El), where γl is a circular arc joining the

two points re
√
−1θl−1 and re

√
−1θl . We get the representation

(114) Ψl(ε) =
−1

2π
√
−1

∫
C̃l

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

∫
C̃l−1

∆l−1(ξ)

ξ − ε
dξ

+
−1

2π
√
−1

ς−1∑
h=0,h6=l,l−1

∫
Ch

∆h(ξ)

ξ − ε
dξ

for all ε ∈ W. One assumes that the path C̃l is given as the union of a segment Ll = {te
√
−1wl/t ∈

[0, r1]} where r1 < r and wl > θl and a curve Γl = {µl(τ)/τ ∈ [0, 1]} such that µl(0) = r1e
√
−1wl ,

µl(1) = re
√
−1θl and r1 ≤ |µl(τ)| < r for all τ ∈ [0, 1). We also assume that there exists a

positive number σ < 1 with |ε| ≤ σr1 for all ε ∈ W. By construction of the path Γl, we get that

the function ε 7→ 1
2π
√
−1

∫
Γl

∆l(ξ)
ξ−ε dξ defines an analytic function on the open disc D(0, r1).
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It remains to give estimates for the integral 1
2π
√
−1

∫
Ll

∆l(ξ)
ξ−ε dξ. Let M ≥ 0 be an integer.

From the usual geometric series expansion, one can write

(115)
1

2π
√
−1

∫
Ll

∆l(ξ)

ξ − ε
dξ =

M∑
m=0

αl,mε
m + εM+1El,M+1(ε)

where

(116) αl,m =
1

2π
√
−1

∫
Ll

∆l(ξ)

ξm+1
dξ , El,M+1(ε) =

1

2π
√
−1

∫
Ll

∆l(ξ)

ξM+1(ξ − ε)
dξ

for all ε ∈ W.
Gathering (109) and (116), we get that

(117) ||αl,m||F ≤
C2
l

2π

∫ r1

0

τC
1
l exp(− k

2 log(q) log2(τ))

τm+1
dτ

We make the change of variable t = ( k
2 log(q))1/2 log(τ) into the right handside of (117) which

yields

(118)
C2
l

2π

∫ r1

0

τC
1
l exp(− k

2 log(q) log2(τ))

τm+1
dτ

=
C2
l (2 log(q)

k )1/2

2π

∫ ( k
2 log(q)

)1/2 log(r1)

−∞
exp((

2 log(q)

k
)1/2(C1

l −m)t− t2)dt

The use of the Gaussian identity

e
a2

4
√
π =

∫ +∞

−∞
e−x

2−axdx

for every a ∈ R (see for instance [1], Chapter 10, p. 498) together with (117) and (118) helps us
to get the estimates

(119) ||αl,m||F ≤
C2
l (2 log(q)

k )1/2

2π1/2
exp(

log(q)

2k
(C1

l −m)2)

=
C2
l (2 log(q)

k )1/2

2π1/2
q

(C1
l )

2

2k qm(−C
1
l
k
− 1

2k
)q

(m+1)m
2k .

On the other hand, one can choose a positive number η > 0 (depending on W) such that
|ξ − ε| ≥ |ξ| sin(η) for all ξ ∈ Ll and all ε ∈ W. Hence, using the same computations as above,
we get

(120) ||El,M+1(ε)||F ≤
C2
l

2π sin(η)

∫ r1

0

τC
1
l exp(− k

2 log(q) log2(τ))

τM+2
dτ

≤
C2
l (2 log(q)

k )1/2

2π1/2 sin(η)
exp(

log(q)

2k
(C1

l −M − 1)2)

=
C2
l (2 log(q)

k )1/2

2π1/2 sin(η)
q

(C1
l −1)2

2k qM(−C
1
l −1

k
− 1

2k
)q

(M+1)M
2k
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for all ε ∈ W.
Using comparable arguments, one can give estimates of the form (115), (116), (119) and

(120) for the other integrals

−1

2π
√
−1

∫
C̃l−1

∆l−1(ξ)

ξ − ε
dξ ,

−1

2π
√
−1

∫
Ch

∆h(ξ)

ξ − ε
dξ

for all h 6= l, l − 1.
As a consequence, for any 0 ≤ l ≤ ς − 1, there exist coefficients ϕl,m ∈ F, m ≥ 0 and two

constants K̂l, M̂l > 0 such that

(121) ||Ψl(ε)−
M∑
m=0

ϕl,mε
m||F ≤ K̂l(M̂l)

M+1q
(M+1)M

2k |ε|M+1

for all M ≥ 0, all ε ∈ W.
From (109) and (113), we have in particular that there exist two constants C1

l ∈ R and
C2
l > 0 with

(122) ||Ψl+1(ε)−Ψl(ε)||F ≤ C2
l |ε|C

1
l exp(− k

2 log(q)
log2 |ε|)

for all ε ∈ El+1∩El, all 0 ≤ l ≤ ς−1. From Lemma 7, we deduce that Ψl+1(ε)−Ψl(ε) has the formal
series 0̂ as q−Gevrey asymptotic expansion of order 1/k. From the unicity of the asymptotic
expansions on sectors, we deduce that all the formal series

∑
m≥0 ϕl,mε

m, 0 ≤ l ≤ ς − 1, are

equal to some formal series denoted Ĝ(ε) =
∑

m≥0 ϕmε
m ∈ F[[ε]]. The Lemma 8 follows. 2

We consider now the bounded holomorphic functions

ai(ε) = Gi(ε)−Ψi(ε)

for all 0 ≤ i ≤ ς − 1, all ε ∈ Ei. By definition, for any i ∈ {0, ..., ς − 1}, we have that

ai+1(ε)− ai(ε) = Gi+1(ε)−Gi(ε)−∆i(ε) = 0

for all ε ∈ Zi. Therefore, each ai(ε) is the restriction on Ei of a holomorphic function a(ε) on
D(0, r) \ {0}. Since a(ε) is moreover bounded on D(0, r) \ {0}, the origin turns out to be a
removable singularity for a(ε) which, as a consequence, defines a convergent power series on
D(0, r).

Finally, one can write
Gi(ε) = a(ε) + Ψi(ε)

for all ε ∈ Ei, all 0 ≤ i ≤ ς − 1. Moreover, a(ε) is a convergent power series, and Ψi(ε) has
the series Ĝ(ε) =

∑
m≥0 ϕmε

m as q−Gevrey asymptotic expansion of order 1/k on Ei, for all
0 ≤ i ≤ ς − 1. 2

6.3 q−Gevrey asymptotic expansion of order 1/k for the analytic solutions
constructed in Section 5

In this subsection, we describe the second main result of our work, namely the construction of
a formal power series in the complex parameter ε whose coefficients are bounded holomorphic
functions on the product of a sector with small radius centered at 0 and a strip in C2 which
formally solves our main problem (81) and which provides a common q−Gevrey asymptotic
expansion of order 1/k of the actual solutions up(t, z, ε) of (81) obtained in Theorem 1.

The second main outcome of this work reads as follows.
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Theorem 2 We take for granted that all the assumptions of Theorem 1 hold. Then, we can
construct a formal power series

û(t, z, ε) =
∑
m≥0

hm(t, z)
εm

m!

solution of (81) with coefficients hm(t, z) that belong to the Banach space F of bounded holo-
morphic functions on T ×Hβ′ endowed with the sup norm and which is the common q−Gevrey
asymptotic expansion of order 1/k of the solutions up(t, z, ε) of (81) viewed as holomorphic func-
tions from Ep into F, for all 0 ≤ p ≤ ς − 1. Namely, for all 0 ≤ p ≤ ς − 1, there exists two
constants Ap, Cp > 0 such that

(123) sup
t∈T ,z∈Hβ′

|up(t, z, ε)−
n∑

m=0

hm(t, z)
εm

m!
| ≤ CpAn+1

p q
(n+1)n

2k |ε|n+1

for all n ≥ 0, all ε ∈ Ep.

Proof We deal with the family of functions up(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theorem
1. For all 0 ≤ p ≤ ς − 1, we define Gp(ε) := (t, z) 7→ up(t, z, ε), which is by construction a
holomorphic and bounded function from Ep into the Banach space F of bounded holomorphic
functions on T ×Hβ′ equipped with the sup norm, where T is introduced in Definition 9 and
β′ > 0 is the width of the strip Hβ′ on which the coefficients cl(t, z, ε) and forcing term f(t, z, ε)
are holomorphic bounded with respect to z (see (82)). Bearing in mind the estimates (87), we
see that the cocycle Θp(ε) = Gp+1(ε)−Gp(ε) is q−exponentially flat of order k on Zp = Ep∩Ep+1,
for any 0 ≤ p ≤ ς − 1.

Regarding Theorem (q-RS) stated in subsection 6.2, we deduce the existence of a formal
power series Ĝ(ε) ∈ F[[ε]] such that the functions Gp(ε) admit Ĝ(ε) as their q−Gevrey asymptotic
expansion of order 1/k on Ep, for all 0 ≤ p ≤ ς − 1. We put

Ĝ(ε) =
∑
m≥0

hm(t, z)εm/m! =: û(t, z, ε).

In the last part of the proof we show that the formal series û(t, z, ε) solves the main equation
(81). Since Ĝ(ε) is the asymptotic expansion of the functions Gp(ε) on Ep, we get in particular
that

(124) lim
ε→0,ε∈Ep

sup
t∈T ,z∈Hβ′

|∂mε up(t, z, ε)− hm(t, z)| = 0

for all 0 ≤ p ≤ ς − 1, all m ≥ 0. Now, we choose some p ∈ {0, . . . , ς − 1}. By construction,
the function up(t, z, ε) is a solution of (81). We take the derivative of order m ≥ 0 with respect
to ε on the left and right handside of the equation (81). Using Leibniz rule, we deduce that
∂mε up(t, z, ε) solves the following equation

(125) Q(∂z)σq,t(∂
m
ε up)(t, z, ε) =

∑
m1+m2=m

m!

m1!m2!
∂m1
ε (εdD)tdDσ

dD
k

+1
q,t RD(∂z)(∂

m2
ε up)(t, z, ε)

+

D−1∑
l=1

∑
m1+m2+m3=m

m!

m1!m2!m3!
∂m1
ε (ε∆l)tdlσδlq,t ((∂m2

ε cl)(t, z, ε)Rl(∂z)(∂
m3
ε u)(t, z, ε))

+ σq,t(∂
m
ε f)(t, z, ε)
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for all m ≥ 0, all (t, z, ε) ∈ T ×Hβ′ × Ep. We let ε tend to zero in the last equality (125) and
use (124) in order to get the next recursion relation

(126) Q(∂z)σq,thm(t, z) =
m!

(m− dD)!
tdDσ

dD
k

+1
q,t RD(∂z)hm−dD(t, z)

+

D−1∑
l=1

∑
m2+m3=m−∆l

m!

m2!m3!
tdlσδlq,t ((∂m2

ε cl)(t, z, 0)Rl(∂z)hm3(t, z)) + σq,t(∂
m
ε f)(t, z, 0)

for all m ≥ maxD−1
l=1 {dD,∆l}, all (t, z) ∈ T × Hβ′ . For the reason that the functions cl(t, z, ε)

and f(t, z, ε) are analytic with respect to ε at 0, we see that

(127) cl(t, z, ε) =
∑
m≥0

(∂mε cl)(t, z, 0)

m!
εm , f(t, z, ε) =

∑
m≥0

(∂mε f)(t, z, 0)

m!
εm

for all ε ∈ D(0, ε0), all z ∈ Hβ′ , 1 ≤ l ≤ D − 1. On other hand, one can check by direct
inspection from the recursion (126) and the expansions (127) that the formal series û(t, z, ε) =∑

m≥0 hm(t, z)εm/m! solves the equation (81). 2
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