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Abstract. We discuss spectral properties of a charged quantum particle
confined to a chain graph consisting of an infinite array of rings under
influence of a magnetic field assuming a δ-coupling at the points where
the rings touch. We start with the situation when the system has a
translational symmetry and analyze spectral consequences of perturba-
tions of various kind, such as a local change of the magnetic field, of the
coupling constant, or of a ring circumference. A particular attention is
paid to weak perturbations, both local and periodic; for the latter we
prove a version of Saxon-Hutner conjecture.
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1. Introduction

Quantum graphs are a subject both mathematically rich and useful in ap-
plications; we refer to the recent monograph [BK13] for a broad panorama
of this theory. One class of interest in this category are chain graphs hav-
ing the form of an array of rings to which a quantum particle is confined.
At the touching points of rings the wave functions are connected by suit-
able matching conditions, one of the simplest possibilities being the so-called
δ-conditions described below.

As long as such a chain is periodic, the spectrum of the corresponding
Hamiltonian has a band structure, however, some of the band may be flat
since the unique continuation principle of the usual Schrödinger theory in
general does not hold for operators on graphs with a nontrivial topology.
The picture changes when the periodicity is lost, local perturbation may give
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rise to eigenvalues in the gap of the unperturbed spectrum associated with
localized states, see e.g. [DET08].

The picture becomes even more intriguing if the particle in question
is charged and exposed to a magnetic field, even in the simplest situation
when the chain graph Γ is planar, the field is perpendicular to the graph
plane, and no other potential is present. The Hamiltonian then acts as a one-
dimensional magnetic Schrödinger operator on each edge. Its domain consists
of all functions from the Sobolev space H2

loc(Γ) and we assume that they obey
the δ-coupling at the graph vertices which are characterized by conditions

ψi(0) = ψj(0) =: ψ(0) , i, j = 1, . . . , n ,

n∑
i=1

Dψi(0) = αψ(0) , (1.1)

in a vertex where n edges meet. In our case we will have n = 4; the meaning
of the quasiderivative D in the formula will be explained in the next section.

In our previous paper [EM15] we discussed properties of a straight mag-
netic chain and eigenvalues coming from local changes of the coupling con-
stant α in (1.1). Our aim here is to analyze a broader class of perturbations
including local variations of the magnetic field and edge lengths. We shall
also discuss weak perturbation, not necessarily of local character. If those are
periodic we are going to prove an analogue of the well-known Saxon-Hutner
conjecture [AGHH05, Sec. III.2.3].

Let us briefly describe the contents of the paper. As we have mentioned,
the periodic magnetic chain was analyzed in [EM15] and we recall here the
results only to the degree needed to make the present paper self-contained.
Our main technical tool will be a conversion of the problem into a difference
equation. Such a duality trick is well known [Ca97, Ex97, Pa13], however, we
have to work it out for our purposes; this will be done in Sec. 3. The results
are contained in the next two sections. First we show how the discrete spec-
trum coming from compactly supported perturbations of various sorts can
be found and discuss in detail several examples. Next, in Sec. 5, we analyze
the weak-perturbation situation, first for compactly supported variations of
the magnetic field and coupling constants, then for periodic perturbations.

2. Preliminaries

Let us start with the unperturbed system which is a ring chain Γ of the form
sketched in Fig. 1; choosing the units appropriately we may suppose without
loss of generality that the circumference of each ring is 2π. We also suppose
that the particle is exposed to a magnetic field generated by a vector potential
A; the field is assumed to be perpendicular to the graph plane and homoge-
neous1. The corresponding vector potential can be thus chosen tangential to
each ring and constant; since the coordinates we use to parametrize Γ refer to

1In fact, the only quantity of importance will be in the following the magnetic flux through
the rings, hence in general the field must be just invariant with respect to the group of
discrete shifts along the chain.
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different orientations in the upper and lower part of the chain, respectively,
we choose −A as the potential value on the upper halfcircles and A on the
lower ones.

Figure 1. The chain graph Γ

Furthermore, in what follows we exclude integer values of A from the
consideration. This is possible due to the fact that the spectral properties
of the system are invariant with respect to the change of A by an integer
which reflects the existence of a simple gauge transformation between such
cases. We note that in the chosen units the magnetic flux quantum is 2π and
A = 1

2B = 1
2πΦ; we can then rephrase the above claim saying the systems

differing by an integer number of flux quanta through each ring are physically
equivalent. In this sense the case of an integer A is thus equivalent to the
non-magnetic chain treated in [DET08].

The particle Hamiltonian −∆α,A acts as (−i∇ − A)2 on each graph
edge, with the domain consisting of all functions from the Sobolev space
H2

loc(Γ) which satisfy the boundary conditions (1.1) at the vertices of Γ,
where the quasiderivatives are equal to the sum of the derivative and the
function value multiplied by the tangential component of eA as usual [KS03].
The peculiarity of the present model is that we have two pairs of vectors
of opposite orientation so their contributions cancel and the left-hand side
of (1.1) is in fact nothing else than the sum of the derivatives taking into
account different coordinate orientations, in other words, (1.1) is the standard
δ coupling. In contrast to [EM15] we assume throughout this paper that the
coupling constant α is the same at each vertex and we are going to determine
the band-and-gap structure of the spectrum.

Figure 2. Elementary cell of the periodic system

In view of the periodicity the band-and-gap structure of the spectrum of
−∆α,A can be computed using Bloch-Floquet decomposition [BK13, Sec. 4.2].
Consider an elementary cell with the wave function branches denoted as in
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Fig. 2 and inspect the spectrum of the Floquet components of −∆α,A. Since

the operator acts as −D2 := (i d
dx − A)2 on the upper halfcircles and as

−D2 := (i d
dx + A)2 on the lower ones, each component of the eigenfunction

with energy E := k2 ̸= 0 is a linear combination of the functions e−iAxe±ikx

on the upper graph links and of eiAxe±ikx on the lower ones. In what follows
we conventionally employ the principal branch of the square root, that is, the
momentum k is positive for E > 0, while for E negative we put k = iκ with
κ > 0. For a given E ̸= 0, the wave function components on the elementary
cell are therefore given by

ψ(x) = e−iAx
(
C+eikx + C−e−ikx

)
, x ∈ [0, π) ,

φ(x) = eiAx
(
D+eikx +D−e−ikx

)
, x ∈ [0, π) .

(2.1)

As we have said, at the contact point the δ-coupling is assumed, i.e. we have

ψ(−0) = ψ(+0) = φ(−0) = φ(+0) ,

−Dψ(−0) + Dψ(+0)− Dφ(−0) + Dφ(+0) = αψ(0) ,
(2.2)

where the left limits, ψ(−0) etc., refer to values on the left-neighbor circle
parametrized by x ∈ [−π, 0). On the other hand, the function values at the
‘endpoints’ of the cell are related the Floquet conditions,

ψ(0) = eiθψ(π) , Dψ(−0) = eiθDψ(π − 0) ,

φ(0) = eiθφ(π) , Dφ(−0) = eiθDφ(π − 0) ,
(2.3)

with θ running through [−π, π); alternatively we may say that the quasimo-
mentum 1

2π θ runs through [− 1
2 ,

1
2 ), the Brillouin zone of the problem. In both

cases the vector potential contributions subtract and D in (2.2) and (2.3) can
be replaced by the usual derivative.

Using the explicit structure of the wave function (2.1), its continuity at
the graph vertices as well as Floquet conditions (2.3), one easily deduces that

C+ = µ(A)C− , D+ = µ(−A)D− , (2.4)

where

µ(A) = −1− ei(θ−Aπ−kπ)

1− ei(θ−Aπ+kπ)
.

Thus from the first line in (2.2) we conclude that

D− =
1 + µ(A)

1 + µ(−A)
C− , (2.5)

while from the second one we find after simple manipulations the character-
istic equation for −∆α,A, namely

sin kπ cosAπ
(
e2iθ − 2ξ(k)eiθ + 1

)
= 0 (2.6)

with

ξ(k) :=
1

cosAπ

(
cos kπ +

α

4k
sin kπ

)
.

The special cases A − 1
2 ∈ Z and k ∈ N lead to infinitely degenerate eigen-

values. Assume that none of this possibilities occur, then we get a quadratic
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equation for the phase factor eiθ having real coefficients for any k ∈ R∪iR\{0}
and the discriminant

D = 4(ξ(k)2 − 1) .

One has to determine the values of k2 for which there is a θ ∈ [−π, π) such
that (2.6) is satisfied, in other words, those k2 for which it has, as an equation
for the unknown eiθ, at least one root of modulus one. Note that a pair of
solutions of (2.6) always gives one when multiplied, regardless the value of k,
hence either both roots are complex conjugated numbers of modulus one, or
one is of modulus greater than one and the other has the modulus smaller than
one. Obviously, the latter situation corresponds to a positive discriminant,
and the former one to the discriminant less or equal to zero. We shall not
repeat the discussion which the reader can find in [EM15] and limit ourselves
to quoting its conclusions.

Theorem 2.1. If A − 1
2 ∈ Z; then the spectrum of −∆α,A consists of two

series of infinitely degenerate eigenvalues, namely {k2 ∈ R : ξ(k) = 0} and
{k2 ∈ R : k ∈ N}. If k2 ∈ R is such that ξ(k) = 0, then the corresponding jth
eigenfunction is given by

ψj(x) = −e−iAx sin kx , ψj+1(x) = eiA(π−x) sin k(π − x) , x ∈ [0, π] ,

φj(x) = eiAx sin kx , φj+1(x) = eiA(x−π) sin k(x− π) , x ∈ [0, π] ,

on the jth and (j+1)st circles and vanishes elsewhere for all j ∈ Z. If k2 ∈ R
is such that k ∈ N, then the corresponding jth eigenfunction is given by

ψj(x) = e−iAx sin kx , ψj+1(x) = (−1)k+1eiA(π−x) sin kx , x ∈ [0, π] ,

φj(x) = −eiAx sin kx , φj+1(x) = (−1)keiA(x−π) sin kx , x ∈ [0, π] ,

on the jth and j + 1st circles and vanishes elsewhere.
On the other hand, suppose that A− 1

2 /∈ Z; then the spectrum of −∆α,A

consists of infinitely degenerate eigenvalues equal to k2 with k ∈ N and with
the above eigenfunctions, and absolutely continuous spectral bands with the
following properties:

Every spectral band except the first one is contained in an interval
(n2, (n + 1)2) with n ∈ N. The position of the first spectral band depends
on α, namely, it is included in (0, 1) if α > 4(| cosAπ|−1)/π or it is negative
if α < −4(| cosAπ|+ 1)/π, otherwise the first spectral band contains zero.

We finish the section with calculating (for each circle) the quantum flux
of particle going through upper and lower semicircles, which are obtained
from the formulæ Jψ = −i(ψ∗Dψ− (Dψ)∗ψ) and Jφ = −i(φ∗Dφ− (Dφ)∗φ)
with wave functions (1). Direct calculations give us

Jψ = 2k
(
|C+|2 − |C−|2

)
,

Jφ = 2k
(
|D+|2 − |D−|2

)
.

Notice that from the Bloch-Floquet theorem it follows that the above prob-
ability currents are conserved along the chain. On the other hand, exploiting
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formulæ (2.4), (2.5), one concludes that

Jψ
Jφ

=
|µ(A)|2 − 1

|µ(−A)|2 − 1
·
∣∣∣∣µ(−A) + 1

µ(A) + 1

∣∣∣∣2 .
As a result, in the non-magnetic case the probability current has a mirror
symmetry, Jψ/Jφ = 1. On the other hand, if a nontrivial magnetic field,
A ̸∈ Z, is applied, the transport becomes in general asymmetric – cf. also
Rem. 3.2(ii) below.

3. Dual discrete operators

In this section we consider more general system, namely, we assume that
the chain graph under consideration has circles of different lengths, and the
coupling constants as well as the values of the magnetic field could be different
on different circles. Denote by α = {αj}j∈Z and A = {Aj}j∈Z arbitrary but
fixed sequences of real values for coupling constants and magnetic fields;
both semicircles of the jth graph circle could be associated with the interval
Ij = (xj , xj+1) of the length ℓj and we require that the following condition
holds

inf
ℓ∈ℓ

ℓ > 0 , (3.1)

where ℓ = {ℓj}j∈Z. Consider the corresponding magnetic Laplacian −∆α,ℓ,A

on such a chain graph, that is, the operator acting as −D2
j = (i d

dx ± A)2

on the jth graph ring with the domain consisting of those functions from
the appropriate Sobolev space that satisfy the δ boundary conditions at the
graph vertices,

ψj(xj) = φj(xj) = ψj−1(xj) = φj−1(xj) , (3.2)

Djψj(xj) + Djφj(xj)− Dj−1ψj−1(xj)− Dj−1φj−1(xj) = αjψj(xj) ; (3.3)

the derivatives are naturally meant as one-sided ones. As before the wave-
function component ψj corresponds to the upper halfcircle of the jth ring
while φj stands for the lower one. Our aim in this section is to describe
a bijective correspondence between the operator −∆α,ℓ,A in L2(Γ) and a
certain operator in ℓ2(Z). We are going to write a difference equation every
bounded (square summable) solution of which gives rise to a bounded (square
integrable) solution of the Schrödinger equation corresponding to −∆α,ℓ,A,
and vice versa, every bounded (square integrable) solution of the Schrödinger
equation produces a bounded (square summable) solution of the said differ-
ence equation. This connection plays a crucial role in the following sections,
where we will study the spectrum of −∆α,ℓ,A for specifically chosen sets α,
ℓ and A.

Denote by
(
ψ
φ

)
the general solution of the Schrödinger equation

(−∆α,ℓ,A − k2)

(
ψ(x, k)

φ(x, k)

)
= 0, ℑk ≥ 0 ,
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which can be rewritten componentwise on the upper and lower semicircles as
follows

(−D2
j − k2)ψ(x, k) = 0 , ℑk ≥ 0 , x ∈ Ij ,

(−D2
j − k2)φ(x, k) = 0 , ℑk ≥ 0 , x ∈ Ij .

(3.4)

Recalling that the wavefunction should satisfy the continuity condition (3.2),
we see that the solutions ψ and φ and their quasiderivatives are given by

ψ(x, k) = eiAj(xj−x)
(
ψ(xj , k) cos k(x− xj) + Djψ(xj+, k)

sin k(x− xj)

k

)
,

Djψ(x, k) = eiAj(xj−x)(−ψ(xj , k) k sin k(x− xj) + Djψ(xj+, k) cos k(x− xj))

(3.5)

and

φ(x, k) = eiAj(x−xj)

(
φ(xj , k) cos k(x− xj) + Djφ(xj+, k)

sin k(x− xj)

k

)
,

Djφ(x, k) = eiAj(x−xj)(−φ(xj , k) k sin k(x− xj) + Djφ(xj+, k) cos k(x− xj))

(3.6)

for ℑk ≥ 0, x ∈ Ij . Next, let us introduce the vector

Ψj(k, τ) =

(
eτψ(xj , k) + e−τφ(xj , k)

eτDj−1ψ(xj−, k) + e−τDj−1φ(xj−, k)

)
,

and the matrix

K(k) =

(
cos kℓj +

αj

2k sin kℓj
1
k sin kℓj

−k sin kℓj + αj

2 cos kℓj cos kℓj

)
,

then taking into account condition (3.3), we conclude that

K(k)Ψj(k, 0) = Ψj+1(k, iAjℓj) , ℑk ≥ 0, j ∈ Z .

In a similar spirit we next introduce the vector

Φj(k) =

(
ψ(xj , k) + φ(xj , k)

ψ(xj−1, k) + φ(xj−1, k)

)
to obtain, by virtue of (3.5) and (3.6), the relations

cos(Aj−1ℓj−1)Φj(k) =Mj−1(k)Ψj(k, 0)

= Lj−1(k)Ψj(k, iAj−1ℓj−1) ,

where the matrices are defined as follows

Mj(k) =

(
cos(Ajℓj) 0

cos kℓj − 1
k sin kℓj

)
,

Lj(k) =

(
1 0

cos(Ajℓj) cos kℓj − 1
k cos(Ajℓj) sin kℓj

)
.
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Finally, we define the matrix

Nj(k) =
cos(Aj−1ℓj−1)

cos(Ajℓj)
Lj(k)K(k)(Mj−1(k))

−1

=
1

cos(Ajℓj)

(
α
2k sin(kℓj) +

sin k(ℓj−1+ℓj)
sin(kℓj−1)

− sin(kℓj) cos(Aj−1ℓj−1)
sin(kℓj−1)

cos(Ajℓj) 0

)
,

where k ∈ K := {z : ℑz ≥ 0 ∧ z /∈ Z}, to get the relation

Nj(k)Φj(k) = Φj+1(k) , k ∈ K ,

which by continuity of the wavefunction at the graph vertices can be rewritten
as

Nj(k)

(
ψj(k)

ψj−1(k)

)
=

(
ψj+1(k)

ψj(k)

)
, k ∈ K ,

or equivalently as

sin(kℓj−1) cos(Ajℓj)ψj+1(k) + sin(kℓj) cos(Aj−1ℓj−1)ψj−1(k)

=
( α
2k

sin(kℓj−1) sin(kℓj) + sin k(ℓj−1 + ℓj)
)
ψj(k) , k ∈ K , (3.7)

where ψj(k) := ψ(xj , k). Now we can summ up the above calculations.

Theorem 3.1. Suppose that αj , ℓj , Aj ∈ R for j ∈ Z and that (3.1) holds.
Then any solutions ψ(x, k) and φ(x, k), k2 ∈ R, k ∈ K, of (3.4) satisfy
relation (3.7). Conversely, any solution of difference equation (3.7) defines
via

ψ(x, k) = eiAj(xj−x)
{
ψj(k) cos k(x− xj)

+ (ψj+1(k)e
iAjℓj − ψj(k) cos kℓj)

sin k(x− xj)

sin kℓj

}
,

φ(x, k) = eiAj(x−xj)

{
ψj(k) cos k(x− xj),

+ (ψj+1(k)e
−iAjℓj − ψj(k) cos kℓj)

sin k(x− xj)

sin kℓj

}
,

(3.8)

x ∈ Ij, solutions of equations (3.4) satisfying δ-coupling conditions (3.2), (3.3).
In addition,

(
ψ(·,k)
φ(·,k)

)
∈ Lp(Γ) if and only if {ψj(k)}j∈Z ∈ ℓp(Z) for p ∈ {2,∞}.

Proof. It remains to prove the last statement (in both directions). Let k2 ∈ R,
k ∈ K, and assume all the solutions ψ(·, k), φ(·, k) and ψj(k) to be real. If
ψ,φ ∈ Lp(R) and thus D2

j ψ,D
2
j φ ∈ Lp(R) we infer Djψ,Djφ ∈ Lp(R) for all

1 ≤ p ≤ ∞ and j ∈ Z. Then {ψj(k)}j∈Z ∈ ℓp(Z) follows from

ψ(xj , k) = eiAj(x−xj)

(
ψ(x, k) cos k(x− xj)− Djψ(x, k)

sin k(x− xj)

k

)
,



Spectral Properties of Magnetic Chain Graphs 9

x ∈ Ij , for p = ∞, and from

(ψ(xj , k))
2 +

1

k2
(Djψ(x

+
j , k))

2

= e2iAj(x−xj)

(
(ψ(x, k))2 +

1

k2
(Djψ(x, k))

2

)
, x ∈ Ij ,

for p = 2. Conversely, assume {ψj(k)}j∈Z ∈ ℓp(Z) holds for p = ∞ or p = 2.
The case p = ∞ directly results from (3.8) and the case p = 2 follows from
(3.8) in combination with

e2iAj(x−xj)

(
(ψ(x, k))2 +

1

k2
(Djψ(x, k))

2

)
= (ψ(xj , k))

2 +

(
ψj+1(k)e

iAjπ − ψj(k) cos kπ

sin kπ

)2

, x ∈ Ij ;

this completes the proof. �

Before proceeding further, let us note that using Theorem 3.1 one can
rewrite formulæ for probability current on the jth circle in terms of ψj(k),
specifically

Jψ(k) =
2k

sin kπ

{
ℜψj(k)(ℜψj+1(k) sinAjπ + ℑψj+1(k) cosAjπ)

−ℑψj(k)(ℜψj+1(k) cosAjπ −ℑψj+1(k) sinAjπ)
}
,

Jφ(k) = − 2k

sin kπ

{
ℜψj(k)(ℜψj+1(k) sinAjπ −ℑψj+1(k) cosAjπ

)
−ℑψj(k)(ℜψj+1(k) cosAjπ + ℑψj+1(k) sinAjπ)

}
.

Remarks 3.2. (i) Since we consider the above formulæ for k ∈ K, the corre-
sponding denominators never vanish. On the other hand, integer values
of k lead to a ‘compact’ sequences {ψj(k)}j∈Z with a finite number of
nonzero elements.

(ii) In the nonmagnetic case when Aj ∈ Z, the probability currents on upper
and lower edges with the same vertices are equal, namely,

Jψ(k) = Jφ(k) =
2k cosAjπ

sin kπ

(
ℜψj(k)ℑψj+1(k)−ℜψj+1(k)ℑψj(k)

)
.

Note that this is related to the symmetry of the δ interaction involved.
If we replace it by an asymmetric coupling, interesting and [ possibly
important ‘switching’ patterns between the upper and lower parts of
the graph may occur [CP15]. As we have seen in the previous section,
a nontrivial magnetic field can lead to another asymmetry.

(iii) In what follows we will demonstrate that for those k which produce ℓ2-
sequences {ψj(k)}j∈Z, the latter can be chosen to be real, whence the
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probability currents read as follows

Jψ(k) = 2kψj(k)ψj+1(k)
sinAjπ

sin kπ
,

Jφ(k) = −2kψj(k)ψj+1(k)
sinAjπ

sin kπ
.

In other words, since the coefficients ψj(k)ψj+1(k) decay for a fixed k
as |j| → ∞, the probability current is ‘circling’ around such localized
solutions.

4. Local perturbations of periodic systems

After these preliminaries, let us pass to our proper topic. Let the Hamiltonian
of the periodic system −∆α,A be defined as in Sec. 2, and suppose that
the system suffers compactly supported perturbations of different types. In
particular, we consider systems with modified values of the magnetic field
on two adjacent rings, systems with modified values of the coupling constant
and the magnetic field on a fixed ring, and finally, systems with one ring of
a different length. Our goal here is to relate spectral properties of perturbed
and periodic Hamiltonians.

Let us start with the essential spectrum. We note that if we decouple
the straight chain by changing the matching condition to separation ones,
the essential spectrum will not be affected as the resolvents of corresponding
differ a finite-rank perturbation. This also means that the essential spectrum
of the halfchains is again the same, just its multiplicity is one instead of two.
Since we shall consider perturbations of a compact support, we may cut such
a perturbed chain at two points at both sides of perturbation support. Irre-
spective of the type of the perturbation, the middle part spectrum is discrete,
hence since cuts are associated with a finite rank, the essential spectrum is
again the same as for the straight chain. Our aim now is to look into the
properties of the discrete spectrum of each perturbed operator.

4.1. Perturbations of the magnetic field

Let us consider a periodic system with parameters α = {. . . , α, α, . . . }, ℓ =
{. . . , π, π, . . . } and A = {. . . , A,A, . . . }, and suppose that on the indicated
couple of neighboring rings we modify the values of the magnetic field, say,
to A1 and A2. Without loss of generality we may employ a ring numbering
starting from the chosen pair labeling it by the indices j = 1, 2. The perturbed
Hamiltonian representing the magnetic field A on each ring of the chain
except the first two and A1, A2 on the first and second rings, respectively,
will be then denoted by −∆A1,A2 . Our goal in this subsection is to find
spectral properties of this operator.
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According to our circle numeration the matrices Nj from the proof of
Theorem 3.1 take the form

N1(k) =

(
2ξ1(k) − cosAπ

cosA1π

1 0

)
, ξ1(k) =

1

cosA1π

(
cos kπ +

α

4k
sin kπ

)
,

N2(k) =

(
2ξ2(k) − cosA1π

cosA2π

1 0

)
, ξ2(k) =

1

cosA2π

(
cos kπ +

α

4k
sin kπ

)
,

N3(k) =

(
2ξ(k) − cosB2π

cosAπ

1 0

)
,

while for j ∈ Z \ {1, 2, 3} one infers that Nj(k) = N(k), where

N(k) :=

(
2ξ(k) −1

1 0

)
with ξ(k) being the quantity that appeared in (2.6). As before we have the
relations

Φj+1(k) = Nj(k)Φj(k) , j ∈ Z ,

from which it follows that

Φj+4(k) = (N(k))jΦ4(k) , j ∈ N , (4.1)

Φ4(k) = N3(k)N2(k)N1(k)Φ1(k) , (4.2)

Φj+1(k) = (N(k))jΦ1(k) , −j ∈ N . (4.3)

It is clear that the asymptotical behavior of the norms of Φj is determined
by spectral properties of the matrix N . Specifically, let Φ4 be an eigenvector
of N corresponding to an eigenvalue µ, then |µ| < 1 (or |µ| > 1, |µ| = 1)
means that ∥Φj∥ decays exponentially with respect to j > 4 (respectively, it
is exponentially growing, or independent of j). At the same time if Φ1 if an
eigenvector of N corresponding to an eigenvalue µ such that |µ| > 1, then
∥Φj∥ decays exponentially with respect to j < 1 (with similar conclusions for
|µ| < 1 and |µ| = 1).

By virtue of Theorem 3.1 the wavefunction components on the j-th
ring are determined by Φj , and thus, in view of (4.1) and (4.3), by Φ4 or
Φ1 depending on the sign of j. If Φ4 has a non-vanishing component related
to an eigenvalue of N of modulus larger than 1, or Φ1 has a non-vanishing
component related to an eigenvalue of modulus less than 1, then the corre-
sponding coefficients Φj determine neither an eigenfunction nor a generalized
eigenfunction of −∆A1,A2 . On the other hand, if Φ4 is an eigenvector, or a
linear combination of eigenvectors, of the matrix N with modulus less than
one (respectively, equal to one), and at the same time Φ1 is an eigenvector,
or a linear combination of eigenvectors, of the matrix N with modulus larger
than one (respectively, equal to one), then the coefficients Φj determine an
eigenfunction (respectively, a generalized eigenfunction) and the correspond-
ing energy E belongs to the point (respectively, continuous) spectrum of the
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operator −∆A1,A2 . To perform the spectral analysis of N(k), we employ its
characteristic polynomial at energy k2,

λ2 − 2ξ(k)λ+ 1; (4.4)

it shows that N(k) has an eigenvalue of modulus less than one iff the dis-
criminant of (4.4) is positive, i.e.

|ξ(k)| > 1 ,

and a pair of complex conjugated eigenvalues of modulus one iff the above
quantity is less than or equal to one. In the former case the eigenvalues of
N(k) are given by

λ1,2(k) = ξ(k)±
√
ξ(k)2 − 1, (4.5)

satisfying λ2 = λ−1
1 , hence |λ2| < 1 holds if ξ(k) > 1 and |λ1| < 1 if this

quantity is < −1. Moreover, the corresponding eigenvectors of N(k) are

u1,2(k) =

(
1

λ2,1(k)

)
. (4.6)

It is convenient to abbreviate

λ∗(k) = ξ(k)− sgn(ξ(k))
√
ξ(k)2 − 1 ,

λ∗(k) = ξ(k) + sgn(ξ(k))
√
ξ(k)2 − 1 .

The above functions coincide with λ1(k) and λ2(k) if ξ(k) < −1 or with λ2(k)
and λ1(k) if ξ(k) > 1, hence the absolute value of λ∗(k) is greater than 1
while the absolute value of λ∗(k) is less than 1 unless k2 ∈ σ(−∆α,A). We
also introduce the vectors

u∗(k) =

(
1

λ∗(k)

)
and u∗ =

(
1

λ∗(k)

)
,

which play the role of the corresponding eigenvectors.

Proposition 4.1. Assume that k2 ∈ R \ σ(−∆α,A); then k2 is an eigenvalue
of −∆A1,A2 iff the relation

ξ(k)λ∗(k) =
(cosA1π)

2 + (cosA2π)
2

2(cosAπ)2
. (4.7)

is valid for this k.

Proof. Observe that by virtue of Theorem 3.1 and formulæ (4.1) and (4.3) the
only possibility to construct an eigenfunction of −∆A1,A2 is by demanding
that

Φ4 ∼ u∗ and Φ1 ∼ u∗ .

We conclude from relation (4.2) that k2 is an eigenvalue of −∆A1,A2
iff

det[N3(k)N2(k)N1(k)u
∗(k), u∗(k)] = 0 ,
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where the symbol [a, b] here and in the following is used for a 2 × 2 matrix
with the columns a and b. Taking into account the explicit structure of the
matrices Nj , we obtain that

N3N2N1 =

8ξξ1ξ2 − 2ξ
(

cosB1π
cosB2π

+ cosB2π
cosB1π

)
−4ξ1ξ2 +

cosB2π
cosB1π

4ξ1ξ2 − cosB1π
cosB2π

−2ξ1
cosAπ
cosB2π

 .

Exploiting the identities ξj = ξ cosAπ
cosAjπ

, (λ∗)2 = 2ξλ∗ − 1 and the fact that

|λ∗| > 1, one can easily rewrite the above determinant in the form of (4.7),
completing thus the proof of the proposition. �

Recall that we consider those k2 from the real line that are not in the
spectrum of −∆α,A. For such values of the energy the function ξλ∗ is greater
than one, hence the equation (4.7) admits no solution unless

(cosA1π)
2 + (cosA2π)

2

2(cosAπ)2
> 1 . (4.8)

Let us note that condition (4.8) is also sufficient for eigenvalue existence. In
fact, if it holds, then the right-hand side of (4.7) takes values in (1, 1

(cosAπ)2 ].

Exploiting the explicit structure of the functions ξ, we see that the interval
(1, 1

(cosAπ)2 ] is in the range of ξλ∗ on every spectral gap, since

(ξλ∗)(n) =
1

(cosAπ)2
+

1

| cosAπ|

√
1

(cosAπ)2
− 1 >

1

(cosAπ)2
.

Thus we get the following claim.

Theorem 4.2. The spectrum of −∆A1,A2 coincides with the one for −∆α,A

unless condition (4.8) holds. On the other hand, if (4.8) holds, then the essen-
tial spectrum of −∆A1,A2 coincides with σ(−∆α,A), and moreover, −∆A1,A2

has precisely one simple eigenvalue in every gap of its essential spectrum.

As a direct consequence of the theorem is the following

Corollary 4.3. Suppose that some Aj, say, A2, equals A. The spectrum of
−∆A1 := −∆A1,A coincides with the one for −∆α,A unless the following
condition holds

| cosA1π|
| cosAπ|

> 1 .

On the other hand, if this is the case, then the essential spectrum of −∆A1 co-
incides with σ(−∆α,A) and, moreover, −∆A1 has precisely one simple eigen-
value in every gap of its essential spectrum.

4.2. Mixed perturbations

We again start with a periodic system and suppose that on a certain circle one
has a new value of the magnetic field as well as the ‘left’ coupling constant,
denoted by A1 and α1 respectively; we introduce ring numbering starting
from the chosen one. The Hamiltonian representing this mixed perturbation
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will be denoted by −∆α1,A1 and our goal in this subsection is to demonstrate
spectral properties of −∆α1,A1 .

As above we employ the recurrent relations Φj+1 = NjΦj with the
matrices Nj defined as follows

N1(k) =

(
2ξ1(k) − cosAπ

cosA1π

1 0

)
,

N2(k) =

(
2ξ(k) − cosA1π

cosAπ

1 0

)
, Nj(k) = N(k)

for j ∈ Z \ {1, 2}. Here

ξ1(k) =
1

cosA1π

(
cos kπ +

α1

4k
sin kπ

)
.

Using the same ideas as in the previous subsection we conclude that the
characteristic equation is of the form det[N2(k)N1(k)u

∗(k), u∗(k)] = 0. Thus
substituting the explicit expression for the matrices Nj and the function ξ1
we find that k2 is an eigenvalue of −∆α1,A1 if and only if

α1−α =
2k cosAπ

sin kπ

(
λ∗(k)

(
cosA1π

cosAπ

)2

− 2 sgn(ξ(k))
√
(ξ(k))2 − 1−λ∗(k)

)
.

(4.9)
holds for this k. Let f stand for the right-hand side of the above relation.
Then, as k2 varies from the lower end of a gap in −∆α,A to the upper end,
f(k) is continuous with respect to k and strictly increasing with respect to k2.
In particular, if | cosA1π| > | cosAπ|, f(k) alternately increases from −∞ to
some positive number or from some negative number to ∞, starting with the
increase from −∞ in the first gap (the one below the continuum spectrum
threshold). The sequence of local maxima (that are positive) is increasing with
respect to the gap number, at the same time, the sequence of local minima
(that are negative) is decreasing. On the other hand, for | cosA1π| < | cosAπ|,
f(k) alternately increases from −∞ to some negative number or from some
positive number to ∞, starting with the increase from −∞ in the first gap.
In this case the sequence of local maxima (that are negative) is decreasing
with respect to the gap number, while the sequence of local minima (that are
positive) is increasing.

Theorem 4.4. For | cosA1π| > | cosAπ| and α1 > α, the operator −∆α1,A1

has precisely one simple eigenvalue in every gap of its essential spectrum, ex-
cept possibly a finite number of odd gaps. On the other hand, for | cosA1π| >
| cosAπ| and α1 < α, it has precisely one simple eigenvalue in every gap of its
essential spectrum, except possibly a finite number of even gaps. In particular,
for sufficiently small α1 − α positive or negative, there is an eigenvalue in
every gap. For | cosA1π| < | cosAπ| and α1 > α, there is precisely one simple
impurity state in a finite number of even gaps; for | cosA1π| < | cosAπ| and
α1 < α, there is precisely one simple impurity state in a finite number of
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odd gaps. In particular, for sufficiently small α1 −α positive or negative, the
operator −∆α1,A1 has no eigenvalues.

4.3. Perturbations of geometry

In the final subsection of the section we assume that the periodic system pre-
sented by −∆α,A suffers a geometric perturbation. Specifically, we suppose
that the first ring of the chain is rescaled in such a way that his length changes
to 2ℓ, the equal distances between the two vertices being preserved, while the
other characteristics of the system such as coupling constants and magnetic
fields remain the same. Denoting for the sake of brevity the corresponding
Hamiltonian by −∆ℓ, we are going to show that its spectral properties de-
pend, in particular, on whether the scaling transformation is a contraction
(ℓ < π) or dilatation (ℓ > π), as well as on the sign of the coupling constant.

Using the same reasoning as in the previous subsections, we first find
the matrices Nj entering the recurrence relations Φj+1 = NjΦj . For the
perturbation in question we have

N1(k) =

(
2ξ1(k) − sin kℓ cosAπ

sin kπ cosAℓ

1 0

)
, N2(k) =

(
2ξ2(k) − sin kπ cosAℓ

sin kℓ cosAπ

1 0

)
,

with

ξ1(k) =
1

cosAℓ

(
sin k(π + ℓ)

2 sin kπ
+

α

4k
sin kℓ

)
,

ξ2(k) =
1

cosAπ

(
sin k(π + ℓ)

2 sin kℓ
+

α

4k
sin kπ

)
,

while for j ∈ Z \ {1, 2}, we get Nj(k) = N(k). Furthermore, the eigenvalues
of −∆ℓ are determined by the characteristic equation

det[N2(k)N1(k)u
∗(k), u∗(k)] = 0 .

Taking into account the explicit structure of the matrices Nj , we find that

N2(k)N1(k) =

(
4(ξ2(k))

2 sin kℓ cosAπ
sin kπ cosAℓ −

sin kπ cosAℓ
sin kℓ cosAπ −2ξ2(k)

sin kℓ cosAπ
sin kπ cosAℓ

2ξ2(k)
sin kℓ cosAπ
sin kπ cosAℓ − sin kℓ cosAπ

sin kπ cosAℓ

)
,

from which we conclude that k2 ∈ R \ σ(−∆α,A) is an eigenvalue of −∆ℓ if
and only if ∣∣∣2ξ1(k)− λ∗(k)

sin kℓ cosAπ

sin kπ cosAℓ

∣∣∣ = 1 . (4.10)

We restrict ourselves to discussing solutions of equation (4.10) below the
continuum spectrum threshold, i.e. in the first spectral gap of −∆α,A. As
k2 varies from the lower end of a gap to the upper end, the left-hand side
of (4.10) is continuous with respect to k. Suppose first that α is negative, then
the left-hand side of (4.10) is strictly decreasing with respect to k2, and in the
case of contraction (dilatation) its minimal value is less (respectively, greater)
than one, hence one obtains one (respectively, no) solution to equation (4.10).
Assume next α > 0. In the case of a contraction the left-hand side of (4.10)
is strictly decreasing with respect to k2 and its local minimum is greater
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than one. At the same time, in the case of a dilatation the function first
strictly decreases to its local minimum the value of which is less than one,
and then it increase to its local maximum. Moreover, for a fixed natural n
and a sufficiently large ℓ the function on the left-hand side of (4.10) has
exactly n local minima and maxima with the following properties: all the
minimum values are zero, while the sequence of maximum values is strictly
decreasing and greater than one. This means, in particular, that for such an
ℓ one obtains 2n eigenvalues in the first spectral gaps.

Denote by ♯ℓ the function counting eigenvalues of −∆ℓ in the first spec-
tral gap of its continuous spectrum.

Theorem 4.5. For α > 0 and ℓ ∈ (0, π), we have ♯ℓ = 0. On the other hand,
if α > 0 and ℓ > π, then ♯ℓ ≥ 1, and moreover, ♯ℓ → ∞ holds as ℓ → ∞. At
the same time, for α < 0 and ℓ ∈ (0, π) we have ♯ℓ = 1. If α < 0 and ℓ > π,
then ♯ℓ = 0.

5. Weak perturbations of periodic systems

As before let −∆α,A stands for the Hamiltonian of the periodic system de-
scribed in Sec. 2. Now we are going to discuss situations when the system
suffers some weak perturbations. Specifically, we suppose that the param-
eters of the system are of the form A + εAj and α + εαj with ε ∈ (0, 1)
and ask about the spectrum of the perturbed Hamiltonian in the asymptotic
regime ε→ 0. First we focus on perturbations supported on a compact sub-
domain of the graph and demonstrate the behavior of the eigenvalues in the
spectral gaps of the periodic operator. Next we turn to systems where the
perturbation is also periodic and show that in this situation a version of the
well-known Saxon-Hutner conjecture is valid.

5.1. Local perturbations of magnetic fields and coupling constants

Our aim here is to compare spectral properties of −∆α,A with those produced
by a weak finite-rank perturbation. To be specific, we suppose that the cou-
pling constant perturbation strength is εαj , j = 1, . . . , n, at the vertices with
the coordinates {π, . . . , nπ}, and at the same time, the magnetic field suffers
a weak perturbation, namely for the ring indices j from {1, . . . , n} we have
an ‘additional’ magnetic potential εAj . The perturbation is controlled by the
small parameter ε and the perturbed Hamiltonian will be denoted by −∆ε.
In view of the compact support, the essential spectrum is not affected as one
can check using the argument used in the opening of Sec. 4.

We are going to demonstrate that, as ε → 0+, the presence of the
eigenvalue in the gap of σess(−∆ε) is determined by the signs of

∑n
j=1 αj

and
∑n
j=1Aj as well as of cotAπ. With this aim in mind, we mimic the

argument from the previous section which yields the relation

Φj+1(k) = Nj(k, ε)Φj(k) , j ∈ Z ,



Spectral Properties of Magnetic Chain Graphs 17

where the matrix Nj takes the form

Nj(k, ε) =

(
2ξj(k, ε) − cos(Aj−1π)

cos(Ajπ)

1 0

)
with

ξj(k, ε) =
1

cos(A+ εAj)π

(
cos kπ + (α+ εαj)

sin kπ

4k

)
.

Note that the above matrix admits the following asymptotic expansion

Nj = N + επ tanAπMj +O(ε2)

as ε→ 0, where

N(k) =

(
2ξ(k) −1

1 0

)
and Mj(k) =

(
2Ajξ(k) +

αj sin kπ
2πk sinAπ Aj−1 −Aj

0 0

)
for j ∈ Z, we just put Aj = 0 for j ∈ Z \ {1, 2, . . . , n}. We are going to
combine these relations with

Φn+2+j(k) = (N(k))jΦn+2(k) , j ∈ N , (5.1)

Φn+2(k) = Nn+1(k)Nn(k) . . . N1(k)︸ ︷︷ ︸
Nn(k)

Φ1(k) , (5.2)

Φj+1(k) = (N(k))jΦ1(k) , −j ∈ N . (5.3)

It is clear that the asymptotic behavior of the norms of the vectors Φj is
determined by spectral properties of the matrix N .

Note that in view of Theorem 3.1 and formulæ (5.1) and (5.3) the only
possibility to obtain an L2 eigenfunction of −∆ε is by demanding that

Φn+2 ∼
(

1

λ∗

)
and Φ1 ∼

(
1

λ∗

)
,

thus we conclude from relation (5.2) that k2 is an eigenvalue of −∆ε iff

det

[
Nn(k)

(
1

λ∗(k)

)
,

(
1

λ∗(k)

)]
= 0 . (5.4)

Now we observe that in the limit ε→ 0 the product Nn behaves as

Nn(k) = (N(k))n+1 + επ tanAπ
n∑
j=0

(N(k))jMn+1−j(k)(N(k))n−j +O(ε2) ,

and using than condition (5.4), one gets

det[Nn(k)u
∗(k), u∗(k)] = (λ∗(k))n+1 det[u∗(k), u∗(k)]

+ (λ∗(k))nεπ tanAπ
n+1∑
j=1

det[Mj(k)u
∗(k), u∗(k)] +O(ε2) .

It is easy to see that det[u∗, u∗] = λ∗ − λ∗, and moreover,

det[Mju
∗, u∗] = λ∗

(
λ∗Aj + λ∗Aj−1 +

αj sin kπ

2kπ sinAπ

)
,
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hence that the characteristic determinant takes asymptotically the form

λ∗ − λ∗ + 2εξ(k)π tanAπ
n∑
j=1

(
Aj +

αj sin kπ

4kπξ(k) sinAπ

)
+O(ε2)

Finally, observe that the eigenvalues are given via solution to the equation

εg(k) +O(ε2) = f(k) , (5.5)

where

f(k) = −cotAπ

π

√
1− 1

ξ(k)2
, g(k) =

n∑
j=1

Aj +
sin kπ

4kπξ(k) sinAπ

n∑
j=1

αj .

Obviously, the sign of function f is determined by the number sgn(− cotAπ).
Furthermore, as k2 varies from the lower end of a gap in σ(−∆α,A) to its
upper end, f(k) is continuous with respect to k and strictly monotonous
with respect to k2, and f(k) tends to zero as ξ(k) → 1, the value being
attained at the spectrum threshold.

At the same time, the function g has the following properties: g(k) is
continuous with respect to k as k2 varies from the left infinity to the right
infinity of the real line, outside a countable set of the second order jumps
{k ∈ C+ : ξ(k) = 0}. Furthermore, g(k) is strictly increasing (decreasing) with
respect to k2 if cotAπ

∑n
j=1 αj > 0 (respectively, cotAπ

∑n
j=1 αj < 0). Note

that g(k) →
∑n
j=1Aj holds as k

2 → −∞, as well as that g(k) =
∑n
j=1Aj for

any non-negative integer k and that these point are inflection points of the
function g. Finally, consider some fixed neighborhood of a k ∈ N, then the
slope of the function g in this neighborhood tends to zero as N ∋ k → ∞.

The listed properties of the functions f and g allow us to state the
following result describing eigenvalues in the gaps.

Theorem 5.1. Assume that cotAπ
∑n
j=1Aj > 0. If

∑n
j=1 αj > 0, the operator

−∆ε has no eigenvalues as ε → 0+ except in a finite number of even gaps,
where it can have one eigenvalue per gap. Similarly, for

∑n
j=1 αj < 0 and

−∆ε it has no eigenvalues except in a finite number of odd gaps, where it can
have one eigenvalue per gap. In particular, for a sufficiently large |

∑n
j=1Aj |,

the operator has no eigenvalues, while for a sufficiently small |
∑n
j=1Aj | and∑n

j=1 αj > 0 (respectively,
∑n
j=1 αj < 0) it has an eigenvalue in the second

(respectively, the first) gap.

On the other hand, let cotAπ
∑n
j=1Aj < 0. If

∑n
j=1 αj > 0, the opera-

tor −∆ε has precisely one simple eigenvalue as ε→ 0 in every gap of its es-
sential spectrum except possibly a finite number of odd gaps. If

∑n
j=1 αj < 0,

the operator has precisely one simple eigenvalue in every gap of its essen-
tial spectrum except possibly a finite number of even gaps. In particular,
for a sufficiently large |

∑n
j=1Aj |, the operator has an eigenvalue in every

gap, while for a sufficiently small |
∑n
j=1Aj | and

∑n
j=1 αj > 0 (respectively,∑n

j=1 αj < 0) it has no eigenvalue in the first (respectively, the second) gap.
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The theorem does not cover particular situations when some of the
perturbations has zero mean. Let us focus on them and suppose first that∑n
j=1 αj = 0, then the characteristic equation (5.5) reads

−cotAπ

π

√
1− 1

ξ(k)2
= ε

n∑
j=1

Aj +O(ε2) , ε→ 0 .

We see that for a sufficiently small positive ε the necessary and sufficient
condition for eigenvalue existence takes the form

sgn

( n∑
j=1

Aj

)
= − sgn(cotAπ) . (5.6)

Theorem 5.2. Suppose that
∑n
j=1 αj = 0. The spectrum of −∆ε coincides

with the one for −∆α,A unless condition (5.6) holds. If this is the case, then
the essential spectrum of −∆ε coincides with σ(−∆α,A), and moreover, −∆ε

has precisely one simple eigenvalue in every gap of its essential spectrum.

On the other hand, for
∑n
j=1Aj = 0 the characteristic equation (5.5) reads

ε
n∑
j=1

αj +O(ε2) = − sgn(ξ(k))
4k cosAπ

sin kπ

√
(ξ(k))2 − 1 , ε→ 0 . (5.7)

As k2 varies from the lower end of a gap in σ(−∆α,A) to its upper end, the
right-hand side of this relation is continuous with respect to k and strictly
increasing with respect to k2. In particular, it alternately increases from −∞
to zero or from zero to ∞, starting with the increase from −∞ to zero in the
first gap, i.e. the one below the continuous spectrum threshold.

Theorem 5.3. Suppose that
∑n
j=1Aj = 0. For any ε ∈ (0, 1) the essential

spectrum of −∆ε coincides with that of −∆α,A. Assume that
∑n
j=1 αj < 0,

then the operator −∆ε has exactly one simple impurity state in every odd gap
of its essential spectrum for ε → 0+. If the sum

∑n
j=1 αj is positive, then

it has exactly one simple impurity state in every even gap of its essential
spectrum as ε→ 0.

5.2. Weak periodic perturbations

Let us turn now to perturbations which are periodic along the chain graph.
Let A and α be sequences with a period p ∈ N, i.e.

A= {A(p)
j }j∈Z , A

(p)
j+p = A

(p)
j , j ∈ Z ,

α= {α(p)}j∈Z , α
(p)
j+p = α

(p)
j , j ∈ Z ,

and ask about the effect of the corresponding perturbations on the spectrum.
Then difference equation (3.7) now becomes

ψj+1(k) +
cos(A

(p)
j−1π)

cos(A
(p)
j π)

ψj−1(k) = 2ξ
(p)
j (k)ψj(k) ,
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with

ξ
(p)
j (k) =

1

cos(A
(p)
j π)

(
cos kπ +

α
(p)
j

4k
sin kπ

)
, k ∈ K , j ∈ Z .

The relation between the vector whose position indices differing by p can be
written as

p∏
j=1

N
(p)
j (k)Φ1(k) = Φp+1(k) , k ∈ K ,

where Φj(k) has been described in the previous section, while N
(p)
j (k) is

defined in the same manner as Nj(k) replacing ξj with ξ
(p)
j . Since the deter-

minant of N
(p)
j is cos(A

(p)
j−1π)/ cos(A

(p)
j π), the matrix

∏p
j=1N

(p)
j has unit de-

terminant, and therefore the product of its eigenvalues is one. By the Floquet-
Bloch theorem Φp+1(k) = eipπθΦ1(k) and the eigenvalues are given by e±ipπθ

implying

tr

( p∏
j=1

N
(p)
j (k)

)
= 2 cos pπθ, ℑk ≥ 0 , ℑθ ≥ 0 . (5.8)

Example. The original unperturbed system is, of course, included. Indeed,

suppose that p = 1, A
(p)
j = A and α

(p)
j = α, then the characteristic determi-

nant of the corresponding operator reads as

cos θπ = ξ(k) , k ∈ K , θ ∈ [−1, 1) ,

which is what we get from the condition (2.6) unless A− 1
2 ∈ Z or k ∈ N.

In what follows we will assume that the perturbation is weak and put

A
(p)
j = A

(p)
j (ε) = A+ εAj , Aj+p = Aj , j ∈ Z ,

α
(p)
j = α

(p)
j (ε) = α+ εαj , αj+p = αj , j ∈ Z ,

denoting by −∆
(p)
ε the corresponding Hamiltonian. Recall from the previous

section that in this case we have

Np = Np + επ tanAπ

m−1∑
j=0

N jMp−jN
p−j−1 +O(ε2) ,

which yields, in particular,

trNp(k) = tr(N(k)p) + επ tanAπ

p∑
j=1

tr(N(k)p−1Mj) +O(ε2)

Given the definition of N(k) it is straightforward to check that

N(k)p =

(
Up(ξ(k)) −Up−1(ξ(k))

Up−1(ξ(k)) −Up−2(ξ(k))

)
,
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where Up are Chebyshev’s polynomials of the second kind. Denoting con-
ventionally by Tp Chebyshev’s polynomials of the first kind, and using the
relation 2Tp(ξ) = Up(ξ)− Up−2(ξ) we arrive at

trNp(k) = 2
(
Tp(ξ(k)) + επ tan(Aπ)ξ(k)Up−1(ξ(k))g(k)

)
.

to state the result, denote by −∆ε,j the Hamiltonian of the ‘Kronig-Penney-
type’ chain graph, p = 1, with the parameters α+ εαj and A+ εAj and with
the corresponding resolvent set ρ(−∆ε,j).

Theorem 5.4. Assume that

ρp = R ∩
p∩
j=1

ρ(−∆ε,j)

is the intersection of all the spectral gaps of the Hamiltonians of the Kronig-
Penney-type chain graphs indicated above. Then

ρp ⊆ ρ(−∆(p)
ε ) .

holds for all ε small enough.

Proof. To begin with observe that energies k2 ∈ R in the spectral gaps of all
‘Kronig-Penney’ Hamiltonians −∆ε,j are now simply characterized by∣∣ξ(p)j (k)

∣∣ > 1 ,

which is obviously equivalent to∣∣ξ(k)(1 + επ tan(Aπ)gj(k)
)∣∣ > 1 +O(ε2) , ε→ 0 , j ∈ Z , (5.9)

where

gj(k) = Aj +
αj sin kπ

4kπξ(k) sinAπ
.

Thus in order to prove the theorem it suffices to show that the validity of
(5.9) for a fixed k, ℑk ≥ 0, and all j = 1, . . . , p, implies

| trNp(k)| > 2 ,

or equivalently∣∣Tp(ξ(k)) + επ tan(Aπ)ξ(k)Up−1(ξ(k))g(k)
∣∣ > 1 +O(ε2) , ε→ 0 .

To this end we will employ explicit expressions of Chebyshev’s polynomials
of the first and second kind, namely

Tp(ξ) =
1

2

[ p2 ]∑
i=0

p

p− i

(
p− i

i

)
(−1)i(2ξ)p−2i ,

and

Up(ξ) =

[ p2 ]∑
i=0

(
p− i

i

)
(−1)i(2ξ)p−2i .
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From them it follows that the characteristic determinant of the total Hamil-
tonian −∆

(p)
ε can be rewritten as

Tp(ξ) + επ tan(Aπ)ξUp−1(ξ)g

=

[ p−1
2 ]∑
i=0

(−1)i2p−2i−1a(i)bε(i, ξ) + ((p− 1) mod 2) ,

where

a(i) :=
(2i)!(p− i− 1)!

i!(p− 1)!
.

and

bε(i, ξ) :=

((
p

p− 2i

)
+

(
p− 1

p− 2i− 1

)
επ tan(Aπ)g

)
ξp−2i .

It is worth mentioning here that the factor a is equal to one for i = 0 and is
less than or equal to two for i ≤ [p2 ]. At the same time the factor bε can be
cast into the form

bε(i, ξ) =
∑

j1<···<jp−2i

p−2i∏
n=1

ξ(1 + επ tan(Aπ)gjn) +O(ε2) , ε→ 0 .

From what has been already said we finally conclude that∣∣Tp(ξ(k)) + επ tan(Aπ)ξ(k)Up−1(ξ(k))g(k)
∣∣

≥ 2p−1

p∏
j=1

|ξ(k)(1 + επ tan(Aπ)gj(k))|

− 2p−3a(1)
∑

j1<···<jp−2

p−2∏
n=1

|ξ(k)(1 + επ tan(Aπ)gjn(k))|

− . . .− ((p− 1) mod 2)

p∑
j=1

|ξ(k)(1 + επ tan(Aπ)gj(k))|+O(ε2)

> 1 +O(ε2) , ε→ 0 .

By that, the proof of the theorem is complete. �

One is naturally interested whether the result remains valid also beyond the
weak-coupling regime in analogy with Theorem III.2.3.6. of [AGHH05]. At
present, this question remains open.
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