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Abstract. Let S ⊂ R3 be a C4-smooth relatively compact orientable surface with a sufficiently

regular boundary. For β ∈ R+, let Ej(β) denote the jth negative eigenvalue of the operator
associated with the quadratic form

H1(R3) ∋ u 7→
∫∫∫

R3
|∇u|2dx− β

∫∫
S
|u|2dσ,

where σ is the two-dimensional Hausdorff measure on S. We show that for each fixed j one has
the asymptotic expansion

Ej(β) = −
β2

4
+ µD

j + o(1) as β → +∞ ,

where µD
j is the jth eigenvalue of the operator −∆S +K−M2 on L2(S), in which K and M are

the Gauss and mean curvatures, respectively, and −∆S is the Laplace-Beltrami operator with
the Dirichlet condition at the boundary of S. If, in addition, the boundary of S is C2-smooth,
then the remainder estimate can be improved to O(β−1 log β).

1. Introduction

Schrödinger operators with singular interaction are often used to produce solvable models of
various sorts and to study relations between spectral properties and the geometry of the interaction
support. While the case where the latter is a discrete point set was an object of interest for more
than three decades [1], relatively less attention has been paid to contact interactions supported by
hypersurfaces in Euclidean spaces. The first general and mathematically rigorous analysis of such
Schrödinger operators with interaction support of codimension one was presented in [6]. However,
it was only in 2001, when a wave of interest to these operators started, its initial point being the
paper [11], motivated by the fact that they can model semiconductor graph-like structures which,
in contrast to the usual quantum graph theory [4], make it possible to take quantum tunneling
into account. At the same time interesting mathematical questions appeared. For a summary of
the work done in the following few years we refer the reader to the review paper [9] and the recent
papers [2, 3, 20,21].

A question of a particular interest concerned strong coupling situations, i.e. the asymptotic
behavior of eigenvalues when the coupling constant β of an attractive singular interaction be-
comes large. A technique was devised in [15, 16] which allowed to treat this problem for smooth
curves Γ in R2 without endpoints by a combination of bracketing technique and a use of locally
orthogonal coordinates in the vicinity of the support. In this way an asymptotic expansion was ob-
tained in which a universal divergent first term was followed by an eigenvalue of a one-dimensional
Schrödinger operator with the potential −γ2/4 where γ was the curvature of Γ. An analogous
result was later derived for a closed smooth surface S in R3; in that case the comparison operator
was two-dimensional and the curvature induced potential was K −M2 where K and M were the
Gauss and mean curvatures of S, respectively. We note in passing that similar asymptotic formulæ
can be derived also for more singular interactions such as those supported by curves in R3, i.e.
manifolds of codimension two, see [13], or δ′-interactions supported by planar curves [12].
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The method of [15] did not work, however, for manifolds with a boundary, or more exactly, it
did work but it provided estimates too rough to characterize individual eigenvalues. The reason
was that the used upper and lower bounds in this case yielded comparison operators with the
same symbol but different boundary conditions, Dirichlet and Neumann. The conjecture was
that the asymptotic formula still holds with the Dirichlet comparison operator. This claim was
indeed found valid: in [14] it was proved for non-closed smooth finite curves Γ in R2 by using
bracketing in an extended neighborhood of Γ in combination with a convolution-type expression
of the eigenfunction. The aim of the present paper is to solve the analogous problem for finite
smooth surfaces in R3 with a boundary.

Let us describe the main results more rigorously. Let S ⊂ R3 be a C4-smooth relatively compact
orientable surface with a compact Lipschitz boundary ∂S. In addition, we suppose that S can be
extended through the boundary, i.e. that there exists a larger C4-smooth surface S2 such that
S ⊂ S2, where S means the closure of S. We consider the quadratic form

h(u, u) =

∫∫∫
R3

|∇u|2dx− β

∫∫
S

|u|2 dσ, D(h) = H1(R3),

where σ is the two-dimensional Hausdorff measure on S. One can easily check (see [6]) that this
form is closed in L2(R3) and semibounded from below, and hence it defines a unique self-adjoint
operator H in L2(R3), semibounded from below. In a suitable weak sense, the operator H can
be interpreted as the Laplacian with the boundary condition [∂νu] = βu on S, where [∂νu] is the
jump of the normal derivative on S, see e.g. [6] or [21]. Using the standard machineries one shows
that the essential spectrum σess(H) of H is [0,∞) and that there is a finite number of negative
eigenvalues E1(β) < E2(β) ≤ . . . , cf. [6].

The embedding S ⊂ R3 gives rise to a metric tensor (gab) on S and to the contravariant tensor
(gab) := (gab)

−1, and for the Hausdorff measure σ we have dσ(s) =
√
gds with g := det(gab). We

will deal with the operator LD
S := −∆S +K −M2 on S with the Dirichlet boundary condition at

the boundary of S, with K and M being respectively the Gauss and mean curvature on S. More
precisely, the operator LD

S is defined as the unique self-adjoint operator acting in L2(S) := L2(S, σ)
generated by the quadratic form

H1
0 (S) ∋ u 7→ ⟨∂ju, gjk∂ku⟩L2(S) + ⟨u, (K −M2)u⟩L2(S) , (1.1)

where the Einstein convention for the indices is used. Due to the relative compactness of S in S2,
both K and M are bounded on S, and the operator LD

S is semibounded from below and has a
compact resolvent. We denote by µD

j , j ∈ N, its eigenvalues enumerated in the usual way.
The results of the paper can be summarized as follows:

Theorem 1.1. Let S be as above (i.e. relatively compact with a Lipschitz boundary and extendable
through the boundary), then for each fixed j ∈ N one has

Ej(β) = −β2/4 + µD
j + o(1) as β → +∞. (1.2)

If, in addition, S has a C2-boundary, then the remainder estimate can be replaced by O(β−1 log β).

The two remainder estimates are obtained by different methods. The proof of (1.2) relies on
the monotone convergence of non-densely defined quadratic forms [23], which is a new tool in
comparison to the previous papers on δ-interactions. The proof is contained in Sections 2–3. We
note that the form convergence we use appears to be similar to that appearing in analysis of
the strong coupling limit of operators −∆ + λχΩ, where χΩ is the indicator function of a set Ω,
see [22]. It is known that the regularity of Ω in this problem plays an important role in calculating
the convergence rate of such operators [5,7]. While the asymptotics (1.2) gives the expected result,
we have only a weak estimate of the error term. In order to obtain the same remainder estimate
O(β−1 log β) as for closed surfaces, we are adapting to the present situation the technique used
in [14], which is done in the second part of the paper, from Section 4.1 on, and which appears to
be rather technically involved compared to the two-dimensional case.
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2. First steps

2.1. Analysis on thin neighborhoods. We remark that due to the properties of S we can pick
an “intermediate” surface S1 which is relatively compact, C4, with a Lipschitz boundary, and such
that S ⊂ S1 ⊂ S1 ⊂ S2. Furthermore, let S2 ∋ s 7→ ν(s) be a smooth unit normal on S2.

It is a well-known fact of the differential geometry that for a sufficiently small a > 0, the map

S1 × (−a, a) ∋ (s, t) 7→ F (s, t) = s+ tν(s) ∈ R3 (2.1)

is a diffeomorphism between S1× (−a, a) and its image and can be continued to the boundary. We
introduce the following sets (we omit the dependence on a):

U1 := F
(
S1 × (−a, a)

)
, U := F

(
S × (−a, a)

)
.

and consider the following two quadratic forms,

hN1 (u, u) :=

∫∫∫
U1

|∇u|2dx− β

∫∫
S

|u|2 dσ , D(hN1 ) = H1(U1) , (2.2)

hD(u, u) :=

∫∫∫
U

|∇u|2dx− β

∫∫
S

|u|2 dσ , D(hD) = H1
0 (U) , (2.3)

and denote by HN
1 and HD the associated self-adjoint operators acting respectively in L2(U1) and

L2(U). In the sense of forms we have then the inequalities HN
1 ⊕ (−∆N

1 ) ≤ H ≤ HD ⊕ (−∆D),
where −∆N

1 is the Neumann Laplacian in L2(R3 \ Ū1) and −∆D is the Dirichlet Laplacian in
L2(R3 \ Ū). As both −∆N

1 and −∆D are non-negative, to assess the negative spectrum it is
sufficient to compare the negative eigenvalues of H with those of HN

1 and HD which have both
compact resolvents.

Through the text, for a semibounded from below self-adjoint operator A we denote by Λj(A)
its jth eigenvalue (provided it exists). Then the above consideration gives the inequalites

Λj(H
N
1 ) ≤ Ej(β) ≡ Λj(H) ≤ Λj(H

D) ,

valid (at least) for the indices j for which the right-hand side is negative. Using the above diffeo-
morphism F we introduce unitary tranformations ϕ and ϕ1 as follows:

ϕ1 : L2(U1) → L2(S1 × (−a, a), dσ dt) , (ϕ1f)(s, t) :=
√(

1 + k1(s)t
)(
1 + k2(s)t

)
f
(
F (s, t)

)
with k1 and k2 being the principal curvatures, and ϕ is defined analogously with U1 and S1 replaced
by U and S. A standard computation, see e.g. [8, 10], shows that, in the sense of forms, one can
estimate BN

1 ≤ ϕ1H
N
1 ϕ

−1
1 and ϕHDϕ−1 ≤ BD, where BN

1 and BD are the self-adjoint operators,
acting respectively in L2(Σ1) := L2(Σ1, dσ dt) and L

2(Σ) := L2(Σ, dσ dt), where

Σ1 := S1 × (−a, a), Σ := S × (−a, a),
associated respectively with the forms bN1 and bD,

bN1 (u, u) = (1− Ca)
(
⟨∂ju, gjk∂ku⟩L2(Σ1) + ⟨u, (K −M2)u⟩L2(Σ1)

)
+ ∥∂tu∥2L2(Σ1)

− β

∫∫
S

|u(s, 0)|2dσ − Ca∥u∥2L2(Σ1)
− C

∫∫
S1

(∣∣u(s,−a)∣∣2 + ∣∣u(s, a)∣∣2)dσ ,
D(bN1 ) = H1(Σ1),

bD(u, u) = (1 + Ca)
(
⟨∂ju, gjk∂ku⟩L2(Σ) + ⟨u, (K −M2)u⟩L2(Σ)

)
+ ∥∂tu∥2L2(Σ)

− β

∫∫
S

|u(s, 0)|2dσ + Ca∥u∥2L2(Σ) ,

D(bD) = H1
0 (Σ) ,

where C > 0 is independent of a and β. We remark again that BN
1 and BD have compact

resolvents, and we arrive at the inequalities

Λj(B
N
1 ) ≤ Λj(H) ≤ Λj(B

D) if Λj(B
D) < 0. (2.4)

The sought asymptotic expansions will arise from estimating the both bounds of (2.4) which we
will do in the subsequent sections.
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2.2. Separation of variables and upper bound. The upper bound of Ej(β) in terms of µD
j is

relatively easy, and the right-hand side of (2.4) was in fact already estimated in [10]. We repeat
the construction here for the sake of completeness:

Lemma 2.1. Assume that S has a compact Lipschitz boundary, then for any fixed j ∈ N there
holds

Ej(β) ≤ −1

4
β2 + µD

j +O
( log β

β

)
as β → +∞.

In order to prove Lemma 2.1 we remark that one can represent BD := L̃D
S ⊗ 1 + 1⊗ TD, where

L̃D
S = (1 + Ca)LD

S + Ca and TD is the self-adjoint operator in L2(−a, a) associated with the
quadratic form

H1
0 (−a, a) ∋ v 7→

∫ a

−a

∣∣v′(t)∣∣2dt− β
∣∣v(0)∣∣2.

By [15, Proposition 2.4], for βa > 8/3 the operator TD has a unique negative eigenvalue, and

−β
2

4
≤ Λ1(T

D) ≤ −β
2

4
+ 2β2e−βa/2.

At the same time we have Λj(L̃
D
S ) = (1 +Ca)µD

j +Ca, and µD
j do not depend on a. Therefore, if

a is small and both β and βa are large, one has

Λj(B
D) ≤ −β

2

4
+ 2β2e−βa/2 + µD

j + Ca(1 + µD
j ) (2.5)

for all j with (1 + Ca)µD
j + Ca ≤ −Λ1(T

D). Therefore, if j is fixed, β is large and

a := ξβ−1 log β, ξ ≥ 6, (2.6)

we have

Λj(B
D) ≤ −1

4
β2 + µD

j +O
( log β

β

)
, (2.7)

and Lemma 2.1 is obtained by the substitution into (2.4).

Remark 2.2. For a later use, we remark that a similar approach can be applied to other related
operators. Namely, for sufficiently small a > 0 (supposed to be less than one in order to avoid a
notation conflict), consider the surface

Sa = {z ∈ S1 : distS1(z, S) < a},
where distS1 is the distance measured along the geodesics of S1, and denote

Ξa = F
(
Sa × (−a, a)

)
. (2.8)

Denote by HD
a the self-adjoint operator acting in L2(Ξa) generated by the quadratic form

hDa (u, u) =

∫∫∫
Ξa

|∇u|2ds− β

∫∫
Sa

|u|2dσ, D(hDa ) = H1
0 (Ξa),

then using the same computations one obtains, with a chosen as (2.6),

Λj(H
D
a ) = −1

4
β2 + µD

j (a) +O
( log β

β

)
, (2.9)

where µD
j (a) is the jth Dirichlet eigenvalue of −∆S +K −M2 on Sa.

3. Eigenvalue asymptotics with a weak remainder estimate

In the present section we are going to prove the first part of Theorem 1.1:

Proposition 3.1. Assume that S has a compact Lipschitz boundary, then for any fixed j ∈ N
there holds Ej(β) = −β2/4 + µD

j + o(1) as β → +∞.

We recall that in this claim we have no control over the remainder. On the other hand, we
impose here quite weak assumptions concerning the regularity of the boundary of S, and our
approach is quite robust; we expect that it can be adapted to similar problems like the strongly
attractive δ′-interactions with minimal effort. In view of Lemma 2.1 we just need to establish a
suitable lower bound for Ej(β), which is done in the rest of the section.
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3.1. A one-dimensional operator. Let us keep the choice made in (2.6) for a and denote by
TN the self-adjoint operator in L2(−a, a) associated with the quadratic form

tN (v, v) =

∫ a

−a

|v′|2dt− β
∣∣v(0)∣∣2 − C

(∣∣v(−a)∣∣2 + ∣∣v(a)∣∣2) , D(tN ) = H1(−a, a) .

As shown in [15, Proposition 2.5], for β → +∞ we have

Λ1(T
N ) = −1

4
β2 +O

( 1
β

)
, Λ2(T

N ) ≥ 0 . (3.1)

Let φj denote normalized eigenfunctions corresponding to the eigenvalues Λj(T
N ) and let Pj be

the orthogonal projectors on Cφj in L2(−a, a); we recall that all the eigenvalues of TN are simple.
In virtue of the spectral theorem for self-adjoint operators we have the inequality

tN (v, v) ≥ Λ1(T
N )∥P1v∥2 + Λ2(T

N )∥(1− P1)v∥2

= Λ1(T
N )∥v∥2 +

(
Λ2(T

N )− Λ1(T
N )
)
∥(1− P1)v∥2 , v ∈ D(tN ) ,

which can be rewritten as∫ a

−a

|v′|2dt− β|v(0)|2 − C
(∣∣v(−a)∣∣2 + ∣∣v(a)∣∣2)− Λ1(T

N )

∫ a

−a

|v|2 dt

≥
(
Λ2(T

N )− Λ1(T
N )
) ∫ a

−a

∣∣(1− P1)v
∣∣2dt , v ∈ H1(−a, a) . (3.2)

3.2. Minoration of the quadratic form. We denote

Ω := S1 \ S , Ξ := Ω× (−a, a) ≡ Σ1 \ Σ .

By regrouping the terms in the expression for bN1 we obtain

bN1 (u, u)− Λ1(T
N )∥u∥2L2(Σ1)

=(1− Ca)⟨∂ju, gjk∂ku⟩L2(Σ1) + ⟨u, (K −M2)u⟩L2(Σ1)

+ ∥∂tu∥2L2(Σ) − β

∫∫
S

|u(s, 0)|2dσ

− C

∫∫
S

(∣∣u(s,−a)∣∣2 + ∣∣u(s, a)∣∣2)dσ − Λ1(T
N )∥u∥2L2(Σ)

+ ∥∂tu∥2L2(Ξ) − C

∫∫
Ω

(∣∣u(s,−a)∣∣2 + ∣∣u(s, a)∣∣2)dσ − Λ1(T
N )∥u∥2L2(Ξ)

− Ca⟨u, (K −M2 + 1)u⟩L2(Σ1).

(3.3)

To simplify some terms on the right-hand side we use the identification L2(Σ1) ≡ L2(S1) ⊗
L2(−a, a). Consider the orthogonal projector Π1 := 1 ⊗ P1 in L2(Σ1). Using first (3.2) and
then the asymptotics (3.1), for any u ∈ H1(Σ) we obtain, as β is large,

∥∂tu∥2L2(Σ) − β

∫∫
S

∣∣u(s, 0)∣∣2dσ − C

∫∫
S

(∣∣u(s,−a)∣∣2 + ∣∣u(s, a)∣∣2)dσ − Λ1(T
N )∥u∥2L2(Σ)

≥
(
Λ2(T

N )− Λ1(T
N )
)
∥(1−Π1)u∥2L2(Σ)

≥ β2

5
∥(1−Π1)u∥2L2(Σ) .

(3.4)

Furthermore, using the Sobolev inequality [19, Lemma 8],∣∣v(−a)∣∣2 + ∣∣v(a)∣∣2 ≤ 4a∥v′∥2L2(−a,a) + 2a−1∥v∥2L2(−a,a) for any v ∈ H1(−a, a) ,
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and then the asymptotics (3.1), which gives

∥∂tu∥2L2(Ξ) − C

∫∫
Ω

(∣∣u(s,−a)∣∣2 + ∣∣u(s, a)∣∣2)dσ − Λ1(T
N )∥u∥2L2(Ξ)

≥ (1− 4Ca)∥∂tu∥2L2(Ξ) − 2Ca−1∥u∥2L2(Ξ) − Λ1(T
N )∥u∥2L2(Ξ)

≥
(
− Λ1(T

N )− 2Cβ

ξ log β

)
∥u∥2L2(Ξ)

≥ β2

5
∥u∥2L2(Ξ)

=
β2

5
∥Π1u∥2L2(Ξ) +

β2

5
∥(1−Π1)u∥2L2(Ξ) .

(3.5)

Finally, we have ∣∣⟨u, (K −M2 + 1)u⟩L2(Σ1)

∣∣ ≤ E∥u∥2L2(Σ1)
(3.6)

with E := ∥K −M2∥L∞(S1) + 2. Substituting now (3.4), (3.5) and (3.6) into (3.3) we conclude
that for large β one has

bN1 − Λ1(T
N ) ≥ cβ , (3.7)

where cβ is the quadratic form given by

cβ(u, u) := (1− Ca)⟨∂ju, gjk∂ku⟩L2(Σ1) + ⟨u, (K −M2)u⟩L2(Σ1) − CaE∥u∥2L2(Σ1)

+
β2

5

(
∥(1−Π1)u∥2L2(Σ1)

+ ∥Π1u∥2L2(Ξ)

)
, D(cβ) = H1(S1)⊗ L2(−a, a) .

Denote by Cβ , β > 0, the self-adjoint operators associated with cβ . Since our argument involves the
min-max principle we have to pay attention to the essential spectrum, noting that these operators
have no longer compact resolvents. To estimate the essential spectrum threshold, we simply drop
the last non-negative summand and write cβ ≥ c′β with

c′β(u, u) := (1− Ca)⟨∂ju, gjk∂ku⟩L2(Σ1) + ⟨u, (K −M2)u⟩L2(Σ1)

− CaE∥u∥2L2(Σ1)
+
β2

5
∥(1−Π1)u∥2L2(Σ1)

, D(c′β) = H1(S1)⊗ L2(−a, a) ,

which means that the self-adjoint operators C ′
β associated with c′β can be written as

C ′
β = LN

S ⊗ 1 + 1⊗ β2

5
(1− P1) , LN

S = (1− Ca)(−∆N
S ) +K −M2 − CaE ,

the operator −∆N
S being the Neumann Laplace-Beltrami operator in L2(S1) associated with the

form H1(S1) ∋ u 7→ ⟨∂ju, gjk∂ku⟩L2(S1). We note that the operators LN
S have compact resolvents

and they are uniformly semibounded, LN
S ≥ −E for all sufficiently large β, and their jth eigenvalues

behave, as j is fixed, as Λj

(
LN
S

)
= Λj(−∆N

S +K −M2) +O(a). On the other hand, the spectrum
of the transverse part 1 − P1 consists of a simple eigenvalue zero and the infinitely degenerate
eigenvalue 1, which gives

inf σess(C
′
β) ≥

β2

5
+ inf σ(LN

S ) ≥ β2

5
− E → +∞ as β → +∞ .

As C ′
β ≤ Cβ , this result means at the same time that

inf σess(Cβ) → +∞ for β → +∞. (3.8)

In view of (3.7) and the min-max principle, we then have, for each fixed j,

Λj(B
N
1 ) ≥ Λ1(T

N ) + Λj(Cβ) = −1

4
β2 + Λj(Cβ) +O

( 1
β

)
. (3.9)
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3.3. Passing to a common Hilbert space. In order to deal with a family of forms acting on
a fixed Hilbert space we denote G := L2(S1) ⊗ ℓ2(N) and introduce unitary operators θ, Θ, and
orthogonal projectors κ1, K1 as follows:

θ : L2(−a, a) → ℓ2(N), (θf)(j) := ⟨φj , f⟩, j ∈ N ,
Θ : L2(S1)⊗ L2(−a, a) → G, Θ := 1⊗ θ,

κ1 : ℓ2(N) → Ce1, κ1f := f(1)e1,

K1 : L2(S1)⊗ ℓ2(N) → L2(S1)⊗ Ce1, K1 := 1⊗ κ1

where e1 = (1, 0, 0, . . . ) ∈ ℓ2(N). Finally, we introduce the natural identification operator

I : L2(S1)⊗ Ce1 7→ L2(S1) .

One easily checks that the operators Ĉβ := ΘCβΘ
∗ are those associated with the quadratic forms

ĉβ(u, u) = (1− Ca)⟨∂ju, gjk∂ku⟩G + ⟨u, (K −M2)u⟩G − CaE∥u∥2G

+
β2

5

(
∥(1−K1)u∥2G + ∥IK1u∥2L2(Ω)

)
, D(ĉβ) = H1(S1)⊗ ℓ2(N) . (3.10)

In view of the unitary equivalence between Cβ and Ĉβ , Eqs. (3.8) and (3.9) imply

Λj(B
N
1 ) ≥ −1

4
β2 + Λj(Ĉβ) +O

( 1
β

)
, (3.11)

inf σess(Ĉβ) → +∞ as β → +∞ . (3.12)

3.4. Convergence of forms. Recall that we have defined E := ∥K −M2∥L∞(S1) + 2. One can
pick a β0 sufficiently large so ĉβ ≥ −(E − 1) holds for β ≥ β0 and ĉβ2 ≥ ĉβ1 for β2 ≥ β1 ≥ β0,
which implies by [18, Theorem VI.2.21] that(

Ĉβ2 + E
)−1 ≤

(
Ĉβ1 + E

)−1 ≤ 1 as β2 ≥ β1 ≥ β0 . (3.13)

Consider the quadratic form

q(u, u) = sup
β≥β0

ĉβ(u, u) , D(q) :=

{
u ∈

∩
β≥β0

D(ĉβ) : sup
β≥β0

ĉβ(u, u) < +∞
}
.

It is known, see [18, Theorem VIII.3.13a], that q is closed, and hence it defines a self-adjoint

operator Q ≥ −(E − 1) acting in the Hilbert space L := D(q), the closure being taken in the
topology of G, and if τ : G → L denotes the orthogonal projection, then

(Ĉβ + E)−1 → τ∗(Q+ E)−1τ strongly as β → +∞ , (3.14)

cf. [23, Satz 3.1]. Furthermore, by [23, Satz 2.2] we have also

τ∗(Q+ E)−1τ ≤ (Ĉβ + E)−1 for all β ≥ β0 . (3.15)

In view of the explicit expression for D(ĉβ) we see that u ∈ D(q) if and only if u ∈ H1(S1)⊗ ℓ2(N)
such that (1 − K1)u = 0 and ∥IK1u∥L2(Ω) = 0. The first condition says that u is of the form

u = f ⊗ e1 with f ∈ H1(S1) and e1 = (1, 0, 0, . . . ) ∈ ℓ2(N), and then the second condition tells us
that the function f must verify ∥f∥2L2(Ω) = 0. As we supposed that the boundary ∂S is Lipschitz,

we have(
f ∈ H1(S1) and ∥f∥2L2(Ω) = 0

)
iff f ∈ H̃1

0 (S1) :=
{
f ∈ H1(S1) : f |S ∈ H1

0 (S), f |Ω = 0
}
.

Using the unitary operator J : H̃1
0 (S1) → H1

0 (S), Jf = f |S , we may write

D(q) =
{
f ⊗ e1 : f ∈ H̃1

0 (S1)
}
=
{
J∗f ⊗ e1 : f ∈ H1

0 (S)
}
≡ K∗

1 I
∗J∗H1

0 (S) .
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If D(q) ∋ u = J∗f ⊗ e1 with f ∈ H1
0 (S), then f = JIK1u. Substituting into (3.10) we observe

that the last summand equals zero and that the factor Ca = Cξβ−1 log β vanishes in the limit
β → +∞, so we arrive at

q(u, u) = ⟨∂ju, gjk∂ku⟩L2(Σ1) + ⟨u, (K −M2)u⟩L2(Σ1)

= ⟨∂ju, gjk∂ku⟩L2(Σ) + ⟨u, (K −M2)u⟩L2(Σ)

= ⟨∂jf, gjk∂kf⟩L2(S) + ⟨f, (K −M2)f⟩L2(S).

Comparing this to (1.1) we conclude that Q = K∗
1 I

∗J∗LD
S JIK1.

3.5. Convergence of eigenvalues. In view of Eqs. (3.13), (3.14), and (3.15), the operators

Fβ := E− (Ĉβ +E)−1 form a monotonically increasing family converging strongly to the operator
G := E −K∗

1 I
∗J∗(LD

S + E)−1JIK1 as β → +∞. Furthermore, for any ε > 0, all these operators
have by (3.12) no essential spectrum in (−∞, E − ε) if β is sufficiently large, and by [24], we have
for any fixed j with Λj(G) < E − ε the convergence

Λj(Fβ) → Λj(G) as β → +∞ . (3.16)

On the other hand, for any fixed j we can find ε > 0 with Λj(Q) = Λj(L
D
S ) = µD

j < ε−1 −E, and

Λj(G) = E − (µD
j + E)−1 < E − ε , Λj(Fβ) = E −

(
Λj(Ĉβ) + E)−1 , (3.17)

which means that the convergence (3.16) holds for any fixed j. Substituting (3.17) into (3.16) we

deduce Λj(Ĉβ) = µD
j + o(1) for β → +∞, and (3.11) gives then Λj(B

N
1 ) ≥ −β2/4 + µD

j + o(1). In
combination with (2.4) and Lemma 2.1, this concludes the proof of Proposition 3.1.

4. Eigenvalue asymptotics with an improved remainder

4.1. Scheme of the proof. Let us turn to the improved remainder estimate in Theorem 1.1. So
far we have proved

−β
2

4
+ µD

j + o(1) ≤ Ej(β) ≤ −β
2

4
+ µD

j +O(β−1 log β)

holds as β → +∞. Now we are going to improve the lower bound to the same order of error term,
O(β−1 log β), as the upper one provided we adopt stronger assumptions on the regularity of the
boundary. The estimates will closely follow the procedure used in [14] for an interaction supported
by finite planar curves. We provide first the main steps of the proof, and the technical details will
be presented in separate subsections below.

Our first aim is to estimate the decay of the eigenfunctions of H with respect to the distance
from S. For this purpose, we will use an integral representation of the eigenfunction, which was
obtained in Corollary 2.3 of [6]: if λ < 0 and u ∈ ker(H − λ), then one can represent

u(x) =

∫∫
S

e−
√

|λ|·|x−s|

4π|x− s|
h(s) dσ(s), (4.1)

where h ∈ L2(S) is a solution to the integral equation

h(t) = β

∫∫
S

e−
√

|λ|·|t−s|

4π|t− s|
h(s) dσ(s). (4.2)

In the rest of the section we are going to establish some relations between the above functions u
and h. We remark that if u and h are related by (4.1), then, for almost every x ∈ R3, there holds∣∣u(x)∣∣ ≤ e−

√
|λ|dist(x,S)

4πdist(x, S)
∥h∥L1(S),

∣∣∇u(x)∣∣ ≤ 1

4π

(√
|λ|+ 1

dist(x, S)

)
e−

√
|λ|dist(x,S)

dist(x, S)
∥h∥L1(S)

(4.3)

where dist is the usual distance in R3. Therefore, in order to estimate the decay of the eigen-
functions u of H, it is sufficient to have a suitable bound for the norm of the associated functions
h.
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For sufficiently small δ the map F given by (2.1) is a diffeomorphism between S × (−δ, δ) and

�δ :=
{
s+ tν(s) : s ∈ S, t ∈ (−δ, δ)

}
. (4.4)

Hence, for a given function u defined on S we define the function u0 on �δ via

u0
(
s+ tν(s)

)
:= u(s).

The following assertion is of crucial importance for the subsequent analysis, and it is the most
technically demanding part of this paper. Its proof by direct calculations is given in Subsection 4.2
below.

Lemma 4.1. There exist positive constants C1, C2 and δ0 with the following properties: if δ ∈
(0, δ0) and λ < −C1(log δ)

2 and u and h are related by (4.1), then ∥u0−u∥L2(�δ) ≤ C2∥h∥L2(S) · δ.

Assume now that u is a normalized eigenfunction of H, then Lemma 4.1 is used to obtain an
upper bound for the norm of h, which gives then a pointwise upper bound for u using (4.3).

Lemma 4.2. Let j ∈ N be fixed and u be a normalized eigenfunction of H for the eigenvalue
Ej(β). Let h be associated with u by (4.1), then ∥h∥L2(S) = O(β2) for large β.

Proof. We have

1 = ∥u∥L2(R3) ≥ ∥u∥L2(�δ) ≥ ∥u0∥L2(�δ) − ∥u− u0∥L2(�δ). (4.5)

Using the equality h = βu|S , see (4.1) and (4.2), we get for δ small enough

∥u0∥2L2(�δ)
≥ 1

2

∫ δ

−δ

∫∫
S

∣∣u(s)∣∣2dσ(s) dt = δ∥u∥2L2(S) = δβ−2∥h∥2L2(S).

Now we take δ := (Aβ)−2 with A > 0. By Lemmata 2.1 and 4.1, for sufficiently large β we have
∥u0 − u∥L2(�δ) ≤ C2∥h∥L2(S)δ. Therefore equation (4.5) reads as

1 ≥
(
β−1

√
δ − C2δ

)
∥h∥L2(S) =

1

Aβ2

(
1− C2

A

)
∥h∥L2(S).

and the choice A = 2C2 gives ∥h∥L2(S) ≤ 4C2β
2. �

The result of Lemma 4.2 will be now used to obtain a new two-side estimate for the eigenvalues.
First we define one more auxiliary operator as follows. For ε > 0 consider the set

Θε = {z ∈ R3 : dist(z, S) < ε} (4.6)

and the self-adjoint operator Kε acting in L2(Θε) generated by the quadratic form

kε(u, u) =

∫∫∫
Θε

|∇u|2 dx− β

∫∫
S

|u|2 dσ , D(kε) = H1
0 (Θε) . (4.7)

Since the eigenfunctions of H decay fast with the distance from S, one conjectures that the eigen-
values of H are close to those of Kε in a suitable asymptotic regime. Our aim is now to put this
guess on a more solid ground. Let us start with a technical preliminary. In what follows we denote

d :=
k log β

β
, δ := d+

1

β
=

1 + k log β

β
, (4.8)

where k > 1 is a constant that will be chosen later. Moreover, let γ ∈ C∞(R) be such that γ(s) = 1
for s ≥ 1, γ(s) ∈ (0, 1) for s ∈ (0, 1), and γ(s) = 0 for s ≤ 0. For large β set

gβ(x) :=

γ
(
log
(
dist

(
x, ∂Θδ

))
+ log β

log(log β)
+ 1

)
for x ∈ Θδ ,

0 for x /∈ Θδ .

The function gβ is absolutely continuous and its gradient ∇gβ(x) =
(
∂1gβ(x), ∂2gβ(x), ∂3gβ(x)

)
exists for almost every x.

The following result is obvious:
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Lemma 4.3. For large β, the support of ∇gβ is contained in the set

Ω(β) :=

{
x ∈ Θδ :

1

β log β
≤ dist

(
x, ∂Θδ

)
≤ 1

β

}
,

and Ω(β) ∩Θd = ∅.

Next let us fix an arbitrary N ≥ 1 and consider an orthonormal family (uj,β)j=1,...,N of eigen-
functions of H for the eigenvalues Ej(β), j = 1, . . . , N . Introduce their cut-offs

ϕj,β := gβuj,β .

Remark that gβ ∈ H1
0 (Θδ) and that gβ and ∇gβ are bounded by (4.15) below and Lemma 4.3,

which gives the inclusions ϕj,β ∈ H1
0 (Θδ).

The proofs of the following two Lemmata are given in Subsections 4.3 and 4.4 respectively.

Lemma 4.4. For any N ∈ N and µ > 0 there exists κ1 > 0 such that for any k ≥ κ1 in (4.8) and
any j, l = 1, . . . , N there holds |kδ(ϕj,β , ϕl,β)− Ej(β)δj,l| ≤ β−µ as β is large.

Lemma 4.5. For any N ∈ N and µ > 0 there exists κ2 > 0 such that for any k > κ2 in (4.8) and
any j, l = 1, . . . , N there holds

∣∣⟨ϕj,β , ϕl,β⟩L2(Θδ) − δj,l
∣∣ ≤ β−µ as β is large.

Now we can compare the eigenvalues of H with those of Kδ as follows:

Lemma 4.6. Let j ∈ N be fixed, then for any µ > 0 there exists κ0 > 0 such that for any k > κ0
in (4.8) there holds Λj(Kδ)− β−µ ≤ Ej(β) ≤ Λj(Kδ) as β is large.

Proof. By the min-max principle we have

Λj(Kδ) = min
U⊂H1

0 (Θδ)
dimU=j

max
u∈U\{0}

kδ(u, u)

∥u∥2L2(Θδ)

. (4.9)

As the extension of any function from H1
0 (Θδ) by zero belongs to the form domain of H, we have

immediately Ej(β) ≤ Λj(Kδ).
Let U be the subspace spanned by the ϕn,β with n = 1, . . . , j. By Lemma 4.5 one has dimU = j

for large β. Let b1ϕ1,β + · · ·+ bjϕj,β =: ϕ ∈ U , b = (b1, . . . , bj) ∈ Cj . Due to Lemmata 4.4 and 4.5
one can find k0 > 0 such that for k ≥ k0 we have for sufficently large β(

1− Cβ−µ
)
∥b∥2Cj ≤∥ϕ∥2L2(Θδ)

≤
(
1 + Cβ−µ

)
∥b∥2Cj ,

kδ(ϕ, ϕ) ≤
j∑

n=1

En(β)|bn|2 + Cβ−µ∥b∥2Cj ≤
(
Ej(β) + Cβ−µ

)
∥b∥2Cj ,

where C > 0 is independent of b and β. Using 1
2 < 1− Cβ−µ < 1 and Ej(β) < 0 for β sufficently

large we get

kδ(ϕ, ϕ)

∥ϕ∥2L2(Θδ)

≤
Ej(β)∥b∥2Cj

∥ϕ∥2L2(Θδ)

+
Cβ−µ∥b∥2Cj

∥ϕ∥2L2(Θδ)

≤
Ej(β)∥b∥2Cj(

1 + Cβ−µ
)
∥b∥2Cj

+
Cβ−µ∥b∥2Cj(

1− Cβ−µ
)
∥b∥2Cj

= Ej(β)

(
1− Cβ−µ

1 + Cβ−µ

)
+ 2Cβ−µ ≤ Ej(β)− Cβ−µEj(β) + 2Cβ−µ.

Testing on the subspace U in (4.9) and using Ej(β) = O(β2) we obtain Λj(Kδ) ≤ Ej(β)+C1β
2−µ,

where C1 > 0 is independent of β. As µ > 0 can be chosen arbitrary, the result follows. �

Lemma 4.7. Let the surface S be with a compact C2-boundary, then for each fixed j there holds
Ej(β) ≥ −β2/4 + µD

j +O(β−1 log β) as β → +∞.

Proof. For sufficiently small a > 0, consider the surface Sa = {z ∈ S1 : distS1(z, S) < a},
the distance distS1 being measured along the geodesics of S1, and let µD

j (a) be the jth Dirichlet

eigenvalue of −∆Sa +K −M2 on Sa. It is a standard result of the domain perturbation theory,
see e.g. [17], that each a 7→ µD

j (a) is Lipschitz for small a, in particular,

µD
j (a) = µD

j +O(a). (4.10)



11

Define
Ξa := F

(
Sa × (−a, a)

)
=
{
s+ ν(s)t : s ∈ Sa, t ∈ (−a, a)

}
and denote by HD

a the self-adjoint operator in L2(Ξa) generated by the quadratic form

hDa (u, u) =

∫∫∫
Ξa

|∇u|2dx− β

∫∫
Sa

|u|2dσ, D(hDa ) = H1
0 (Ξa).

Choose k ≥ 3 to obtain the estimate of Lemma 4.6 with µ = 1 and set

δ :=
1 + k log β

β
, a :=

2k log β

β
,

For large β we have the inclusion Θδ ⊂ Ξa and the inequalities Λj(H
D
a ) ≤ Λj(Kδ). Due to the

Lemma 4.6 and our choice of k we have Λj(Kδ) ≤ Ej(β) + β−1. Furthermore, the operator HD
a

can be studied using the separation variables (see Remark 2.2), which gives

Λj(H
D
a ) = −β2/4 + µD

j (a) +O(β−1 log β) = −β2/4 + µD
j +O(β−1 log β),

where we used (4.10). Putting together the three inequalities for the eigenvalues one arrives at

−β2/4 + µD
j +O(β−1 log β) = Λj(H

D
a ) ≤ Λj(Kδ) ≤ Ej(β) + β−1,

which gives the sought estimate Ej(β) ≥ −β2/4 + µD
j +O(β−1 log β). �

Theorem 1.1 is now completely contained in Lemma 2.1, Proposition 3.1 and Lemma 4.7.

4.2. Proof of Lemma 4.1. We assume first that the surface S1 can be covered by a single map
Φ : D1 → S1 ⊂ R3, where D1 ⊂ R2 is an open set and Φ is C4. Denote D := Φ−1(S). Remark
that then there exists a bounded function R : D → R3 such that

Φ(z) = Φ(y) + Φ′(y)(z − y) +R(z, y)|z − y|2 (4.11)

holds for z, y ∈ D, where Φ′ is the differential of Φ. Recall that

dσ(s) =

∣∣∣∣ ∂Φ∂y1 × ∂Φ

∂y2

∣∣∣∣ dy1dy2 ≡
√
g(y)dy1dy2 for s = Φ(y1, y2).

Furthermore, the map D× (−δ, δ) ∋ (y, t) 7→ Ψ(y, t) := Φ(y)+ tν
(
Φ(y)

)
∈ �δ is a diffeomorphism,

and one can find m > 0 such that∣∣Ψ(y, t)−Ψ(z, s)
∣∣2 ≥ m2

(
|y − z|2 + |s− t|2

)
for (y, t), (z, s) ∈ D × (−δ, δ). (4.12)

For x0 ∈ S, set y := Φ−1(x0) ∈ D and x := Ψ(y, t0) ∈ �δ with |t0| < δ. We have

u ◦ Ψ(y, 0) − u ◦ Ψ(y, t0) = −
∫ t0

0

∂t
(
u ◦ Ψ

)
(y, t) dt = −

∫ t0

0

⟨
∇u
(
Ψ(y, t)

)
, ν(x0)

⟩
dt. (4.13)

Using (4.1) we estimate∣∣∣⟨∇u(x), ν(x0)⟩∣∣∣ ≤ 1

4π

∫∫
S

[√
|λ|+ 1

|x− s|

]
e−

√
|λ||x−s|

|x− s|2
·
∣∣h(s)∣∣ · ∣∣∣⟨x− s, ν(x0)

⟩∣∣∣ ds,
and with the help of (4.12) one estimates, for z ∈ D,∣∣Ψ(y, t)− Φ(z)

∣∣ = ∣∣Ψ(y, t)−Ψ(z, 0)
∣∣ ≥ m√

2

(
|y − z|+ |t|

)
and denoting ω(z, y) := −

⟨
R(z, y), ν(x0)

⟩
with R from (4.11) we get⟨

Ψ(y, t)− Φ(z), ν(x0)
⟩
=
⟨
Φ(y) + tν(x0)− Φ(z), ν(x0)

⟩
=
⟨
Φ(y)− Φ(z), ν(x0)

⟩
+ t

=
⟨
− Φ′(y)(z − y)−R(z, y)|z − y|2, ν(x0)

⟩
+ t = ω(z, y)|z − y|2 + t,

and we note that ∥ω∥∞ ≤ ∥R∥∞. Hence,∣∣∣⟨∇u(x), ν(x0)⟩∣∣∣ ≤ 1

4π

∫∫
D

[√
|λ|+ 1

m√
2

(
|y − z|+ |t|

)] e−√|λ| m√
2

(
|y−z|+|t|

)
m2(|y − z|2 + |t|2)

·
∣∣∣h(Φ(z))∣∣∣ · ∣∣∣t+ ω(z, y)|z − y|2

∣∣∣ ·√g(z) dz .
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Denote µ := m
√
|λ|/2, cr := max

{
1, ∥R∥∞,

√
2

m

}2
, and introduce h̃ : R2 → R by

h̃(z) :=

{∣∣h(Φ(z))∣∣ ·√g(z) for z ∈ D ,

0 for z ∈ R2 \D .

Then the preceding inequality takes the form∣∣∣⟨∇u(x), ν(x0)⟩∣∣∣ ≤ cr
4πm2

e−µ|t|
∫∫

R2

[√
|λ|+ 1

|y − z|+ |t|

]
|y − z|2 + |t|
|y − z|2 + |t|2

· e−µ|y−z| · h̃(z) dz,

and using the functions Ft, Gt : R2 → R,

Ft(z) :=
|z|2 + |t|
|z|2 + |t|2

· e−µ|z|, Gt(z) :=
1

|z|+ |t|
· Ft(z) ,

it can be rewritten as∣∣∣⟨∇u(x), ν(x0)⟩∣∣∣ ≤ cr
4πm2

e−µ|t|
[√

|λ|
(
Ft ⋆ h̃

)
(y) +

(
Gt ⋆ h̃

)
(y)
]
,

where ⋆ means the convolution in L2(R2). Denoting cd :=
√
∥ detΨ′∥∞ and combining the pre-

ceding estimates we then obtain

1

c2d
∥u0 − u∥2L2(�δ)

=
1

c2d

∥∥[u0 ◦Ψ− u ◦Ψ] ·
√

|detΨ′|
∥∥2
L2(D×(−δ,δ))

≤
∫ δ

−δ

∫∫
D

∣∣u ◦Ψ(y, 0)− u ◦Ψ(y, t0)
∣∣2dy dt0

=

∫ δ

−δ

∫∫
D

∣∣∣∣∫ t0

0

∣∣∣⟨∇u(Ψ(y, t)
)
, ν(x0)

⟩∣∣∣ dt∣∣∣∣2 dy dt0
≤
∫ δ

−δ

|t0|
∫ |t0|

0

∫∫
D

∣∣∣⟨∇u(Ψ(y, t sgn(t0)), ν(x0)
⟩∣∣∣2 dy dt dt0

≤ 2
( cr
4πm2

)2 ∫ δ

0

t0

∫ t0

0

e−2µ|t|
∫∫

R2

∣∣∣√|λ|
(
Ft ⋆ h̃

)
(y) +

(
Gt ⋆ h̃

)
(y)
∣∣∣2 dy dt dt0

≤ 2
( cr
4πm2

)2 ∫ δ

0

t0

∫ t0

0

e−2µt
(√

|λ| ∥Ft ⋆ h̃∥L2(R2) + ∥Gt ⋆ h̃∥L2(R2)

)2
dt dt0.

(4.14)

We have
r2 + |t|
r2 + |t|2

r ≤ r + 1, and the Young inequality gives

∥Ft ⋆ h̃∥L2(R2) ≤ ∥Ft∥L1(R2)∥h̃∥L2(R2) ≤ ∥g 1
4 ∥∞∥h∥L2(S)∥Ft∥L1(R2)

≤ 2π∥g 1
4 ∥∞∥h∥L2(S)

∫ ∞

0

r2 + |t|
r2 + |t|2

· e−µrr dr ≤ 2π∥g 1
4 ∥∞∥h∥L2(S)

∫ ∞

0

(r + 1)e−µr dr.

If λ ≤ − 8
m2 we have µ ≥ 2 and therefore

√
|λ|µ+1

µ2 =
√
2µ
m · µ+1

µ2 < 3
m ≤ 3eµ|t|

m for all t ∈ R. Hence

∥Ft ⋆ h̃∥L2(R2) ≤ 2π
µ+ 1

µ2
∥g 1

4 ∥∞∥h∥L2(S) ≤ 2π∥g 1
4 ∥∞∥h∥L2(S)e

µ|t| 3

m
√

|λ|
.

Furthermore,

∥Gt ⋆ h̃∥L2(R2) ≤ ∥Gt∥L1(R2)∥h̃∥L2(R2) ≤ 2π∥g 1
4 ∥∞∥h∥L2(S)

∫ ∞

0

1

r + |t|
· r

2 + |t|
r2 + |t|2

· e−µrr dr.

As 1
r+|t| ·

r2+|t|
r2+|t|2 r ≤

r+1
r+|t| ≤

r+|t|+1
r+|t| we have for µ ≥ 2∫ ∞

0

1

r + |t|
· r

2 + |t|
r2 + |t|2

· e−µrr dr ≤
∫ ∞

|t|

r + 1

r
e−µ(r−|t|) dr = eµ|t|

(∫ ∞

|t|
e−µr dr +

∫ ∞

|t|

e−µr

r
dr

)

≤ eµ|t|

(
e−µ|t|

µ
+

∫ 1

|t|

1

r
dr +

∫ ∞

1

e−µr dr

)
= eµ|t|

(
e−µ|t|

µ
− log |t|+ e−µ

µ

)
≤ eµ|t|(1− log |t|).
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This leads to√
|λ|∥Ft ⋆ h̃∥L2(R2) + ∥Gt ⋆ h̃∥L2(R2) ≤ 2π∥g 1

4 ∥∞∥h∥L2(S)e
µ|t|
(

3

m
+ 1− log |t|

)
.

The substitution into (4.14) gives

∥u0 − u∥2L2(�δ)
≤

(√
2crcd
4πm2

)2 ∫ δ

0

t0

∫ t0

0

e−2µt

(
2π∥g 1

4 ∥∞∥h∥L2(S)e
µt

(
3

m
+ 1− log t

))2

dt dt0

≤

(√
2crcd
2m2

)2

∥√g∥∞∥h∥2L2(S)

∫ δ

0

t0

∫ t0

0

(
log t− log cm

)2
dt dt0

with cm := e
3
m+1. Assuming now that δ ≥ t0 is sufficiently small we have∫ t0

0

(
log t− log cm

)2
dt = cm

∫ t0
cm

0

(log s)2 ds = cm

[
s(log s− 1)2 + s

] t0
cm

0
≤

√
t0

and ∫ δ

0

t0

∫ t0

0

(
log t− log cm

)2
dt dt0 ≤

∫ δ

0

t
3/2
0 dt0 =

2

5
δ5/2 ≤ δ2.

Hence there exist λ0 < 0 and δ0 > 0 such that for λ < λ0 and δ ∈ (0, δ0) we have

∥u0 − u∥L2(�δ) ≤ C∥h∥L2(S)δ, C :=

(√
2crcd
2m2

)
∥g 1

4 ∥∞.

For the general case (S1 is not covered by a single map) we represent S1 =
∪N

α=1 S
α, where

each Sα is covered by a single map Φα : Dα → Sα. Furthermore, represent h = h1 + · · · + hN ,
where the supports of hα have only zero-measure intersections in S and such that the support of
each term hα is contained in Sα. Without loss of generality we may assume that for sufficiently
small (but fixed) ρ > 0 there holds |s − x| > ρ for s ∈ supphα, x ∈ �δ \ F

(
Sα × (−δ, δ)

)
with any α; here F is the map given in (2.1). Consider the functions uα associated with hα by
(4.1) and represent uα = χαu

α + (1 − χα)u
α, where χα

(
s + tν(s)

)
= 1 if s ∈ Sα, otherwise

χα

(
s + tν(s)

)
= 0. Now we pick an arbitrary α. According to the first part of the proof we have

∥χα(u
α
0 − uα)∥L2(�δ) ≤ C∥hα∥L2(S)δ if β is large and δ is small, with some C > 0 common for all

α. On the other hand, due to (4.3), for any x ∈ �δ \ suppχα we have

∣∣uα(x)∣∣ ≤ e−
√
−λρ

4πρ
∥hα∥L1(S) ≤

√
areaSα

e−
√
−λρ

4πρ
∥hα∥L2(S),

which gives∥∥(1− χα)(u
α
0 − uα)

∥∥
L2(�δ)

≤
∥∥(1− χα)u

α
0

∥∥
L2(�δ)

+
∥∥(1− χα)u

α
∥∥
L2(�δ)

≤ 2
√
areaSα

e−
√
−λρ

4πρ

√
2δ(areaS) +O(δ2)∥hα∥L2(S) ≤

areaS

πρ
e−

√
−λρ

√
δ∥hα∥L2(S).

Taking λ ≤ −C1(log δ)
2 with a sufficiently large C1 > 0, which can be chosen the same for all α,

gives
∥∥(1− χα)(u

α
0 − uα)

∥∥
L2(�δ)

≤ δ∥hα∥L2(S) and

∥uα0 − uα∥L2(�δ) ≤
∥∥χα(u

α
0 − uα)

∥∥
L2(�δ)

+
∥∥(1− χα)(u

α
0 − uα)

∥∥
L2(�δ)

≤ (C + 1)δ∥hα∥L2(S).

Finally,

∥u0 − u∥L2(�δ) ≤
N∑

α=1

∥uα0 − uα∥L2(�δ) ≤ (C + 1)δ
N∑

α=1

∥hα∥L2(S) = (C + 1)δ∥h∥L2(S),

which gives the result with C2 := C + 1. �
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4.3. Proof of Lemma 4.4. Let us first give a preliminary estimate:

Lemma 4.8. There are constants C1, C2 > 0 such that the following relations hold for large β:∫∫∫
Ω(β)

|∇gβ(x)| dx ≤ C1 ,

∫∫∫
Ω(β)

|∇gβ(x)|2 dx ≤ C2 β log β .

Proof. For x ∈ Θδ we have

∂xk
gβ(x) = γ′

(
log
(
dist

(
x, ∂Θδ

))
+ log β

log(log β)
+ 1

)
· 1

log(log β)
·
∂xk

dist
(
x, ∂Θδ

)
dist

(
x, ∂Θδ

) .

Since |∂xk
dist

(
x, ∂Θδ

)
| ≤ 1 and ∥γ′∥∞ <∞ one can find a constant C̃ > 0 such that

|∇gβ(x)| ≤
C̃

log(log β)
· 1

dist
(
x, ∂Θδ

) , (4.15)

and consequently, for ν ∈ {1, 2} we get∫∫∫
Ω(β)

|∇gβ(x)|ν dx ≤ C̃ν(
log(log β)

)ν ·
∫∫∫

Ω(β)

1

|dist
(
x, ∂Θδ

)
|ν
dx

≤ C̃ν(
log(log β)

)ν ·

(
C5

∫ 1
β

1
β log β

1

rν
dr

)
with a certain constant C5 > 0. Indeed, note that the normal variable t is the distance of points
x ∈ �δ to S, and similarly for the points in tubular neighborhoods of the C2 arcs forming ∂S and
the balls centered at their junctions. Evaluating the integrals,∫ 1

β

1
β log β

1

r
dr = log(log β) ,

∫ 1
β

1
β log β

1

r2
dr = −β + β log β ,

we arrive at∫∫∫
Ω(β)

|∇gβ(x)| dx ≤ C̃C5 ,

∫∫∫
Ω(β)

|∇gβ(x)|2 dx ≤ C̃2C5
β log β − β(
log(log β)

)2 ≤ C̃2C5β log β ,

which proves the claim of the lemma. �

Now we are ready for the proof of Lemma 4.4. Remark that by Proposition 3.1, for any constants
0 < L1 < 1/2 < L2, and all j = 1, . . . , N there holds

−L2
2β

2 < Ej(β) < −L2
1β

2 for large β. (4.16)

For the sake of brevity we set ϕ := ϕj,β and ψ := ϕl,β as well as u := uj,β and v := ul,β , and
moreover, λ := Ej(β) and µ := El(β). Using

⟨∇u,∇v⟩L2(R3) − β

∫∫
S

u · v ds = Ej(β) δj,l,

we get the identity

⟨∇ϕj,β ,∇ϕl,β⟩L2(R3) − β

∫∫
S

ϕj,β · ϕl,βds− Ej(β)δj,l

= ⟨∇ϕ,∇ψ⟩L2(Θδ) − β

∫∫
S

ϕ · ψ ds−
(
⟨∇u,∇v⟩L2(R3) − β

∫∫
S

u|S · v|S ds
)

= −⟨∇u,∇v⟩L2(R3) + ⟨∇ϕ,∇ψ⟩L2(Θδ) .
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We have

⟨∇ϕ,∇ψ⟩L2(Θδ) =

∫∫∫
Θδ

(
∇gβ(x) · u(x) + gβ(x) · ∇u(x)

)
·
(
∇gβ(x) · v(x) + gβ(x) · ∇v(x)

)
dx

=

∫∫∫
Θδ

|∇gβ(x)|2 · u(x)v(x)x+

∫∫∫
Θδ

|gβ(x)|2 ·
(
∇u(x) · ∇v(x)

)
dx

+

∫∫∫
Θδ

u(x)gβ(x)
(
∇gβ(x) · ∇v(x)

)
dx+

∫∫∫
Θδ

gβ(x)v(x)
(
∇u(x) · ∇gβ(x)

)
dx ,

hence,

⟨∇ϕ,∇ψ⟩L2(Θδ) − β

∫∫
S

ϕ · ψ ds− Ej(β)δj,l

= −⟨∇u,∇v⟩L2(Rn\Θδ) +

∫∫∫
Θδ

|∇gβ(x)|2 · u(x)v(x) dx

+

∫∫∫
Θδ

(
|gβ(x)|2 − 1

)
·
(
∇u(x) · ∇v(x)

)
dx+

∫∫∫
Θδ

u(x)gβ(x)
(
∇gβ(x) · ∇v(x)

)
dx

+

∫∫∫
Θδ

gβ(x)v(x)
(
∇u(x) · ∇gβ(x)

)
dx =: I1 + I2 + I3 + I4 + I5.

Denote by h and f the functions in L2(S) corresponding to u and v as in Eq. (4.1). Using (4.3)
and dist(x, S) ≥ δ for x /∈ Θδ we get with ∥h∥1 := ∥h∥L1(S) and α := −(

√
−λ+

√
−µ) < 0∣∣⟨∇u,∇v⟩L2(R3\Θδ)

∣∣ ≤ ∫∫∫
R3\Θδ

∣∣∇u(x)∣∣ · ∣∣∇v(x)∣∣ dx
≤ ∥h∥1∥f∥1

16π2δ2

(√
−λ+

1

δ

)(√
−µ+

1

δ

)∫∫∫
R3\Θδ

eα dist(x,S) dx.

The integral on the right-hand side can be estimated in the following way: we choose R > 1 such
that Θ1 is contained in the ball BR of radius R around zero, then we have for δ ≤ 1∫∫∫

R3\Θδ

eα dist(x,S) dx =

∫∫∫
R3\B2R

eα dist(x,S) dx+

∫∫∫
B2R\Θδ

eα dist(x,S) dx

≤ 4π

∫ ∞

2R

eα(r−R)r2 dr + eαδ
4

3
π(2R)3 = 8πeαR

1− 2αR+ 2α2R2

−α3
+ eαδ

32

3
πR3 =: A.

For large β we have due to (4.16)

−2L2β ≤ α = −(
√
−λ+

√
−µ) ≤ −2L1β and

(1 + 2L2β)
2

(2L1β)3
≤ 2

3
.

Since α is negative it follows

1− 2αR+ 2α2R2

−α3
≤ 2R3(1− α)2

−α3
≤ 2R3 (1 + 2L2β)

2

(2L1β)3
≤ 4R3

3
.

which implies A ≤ c(eαR + eαδ) with c := 32
3 πR

3. Hence,

|I1| ≤
∥h∥1∥f∥1
16π2δ2

(√
−λ+

1

δ

)(√
−µ+

1

δ

)
c
(
eαR + eαδ

)
.

Now note that supp ∇gβ ⊂ Ω(β) and Ω(β) ∩Θd = ∅, hence

|I2| ≤
∫∫∫

Θδ

|∇gβ(x)|2 · |u(x)| · |v(x)| dx

≤
∫∫∫

Ω(β)

|∇gβ(x)|2 ·
e−

√
−λ dist(x,S)

4πdist(x, S)
∥h∥1 ·

e−
√
−µ dist(x,S)

4πdist(x, S)
∥f∥1 dx

≤ ∥h∥1∥f∥1
16π2

· e
αd

d2

∫∫∫
Ω(β)

|∇gβ(x)|2 dx.
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As for I3, we note that gβ(x) = 1 iff dist(x, S) ≤ d, and moreover, gβ(x) ≤ 1 for all x. This gives

|I3| ≤
∫∫∫

Θδ

∣∣∣|gβ(x)|2 − 1
∣∣∣ · |∇u(x)| · |∇v(x)| dx

≤
∫∫∫

Θδ

(
1− |gβ(x)|2

)
· 1

4π

(√
−λ+

1

dist(x, S)

)
e−

√
−λ dist(x,S)

dist(x, S)
∥h∥1

· 1

4π

(√
−µ+

1

dist(x, S)

)
e−

√
−µ dist(x,S)

dist(x, S)
∥f∥1 dx

=
∥h∥1∥f∥1

16π2

∫∫∫
Θδ\Θd

(
1− |gβ(x)|2

)
·
(√

−λ+
1

dist(x, S)

)
·
(√

−µ+
1

dist(x, S)

)
eα dist(x,S)

dist(x, S)2
dx

≤ ∥h∥1∥f∥1
16π2

(√
−λ+

1

d

)
·
(√

−µ+
1

d

)
eαd

d2

∫∫∫
Θδ\Θd

(
1− |gβ(x)|2

)
dx .

Using supp ∇gβ ∩Θd = ∅ and |gβ(x)| ≤ 1 we obtain

|I4| ≤
∫∫∫

Ω(β)

|u(x)| · |∇gβ(x)| · |∇v(x)| dx

≤
∫∫∫

Ω(β)

e−
√
−λ dist(x,S)

4πdist(x, S)
∥h∥1 · |∇gβ(x)| ·

1

4π

(√
−µ+

1

dist(x, S)

)
e−

√
−µ dist(x,S)

dist(x, S)
∥f∥1 dx

≤ ∥h∥1∥f∥1
16π2

(√
−µ+

1

d

)
eαd

d2

∫∫∫
Ω(β)

|∇gβ(x)| dx ,

and, similarly,

|I5| ≤
∥h∥1∥f∥1

16π2

(√
−λ+

1

d

)
eαd

d2

∫∫∫
Ω(β)

|∇gβ(x)| dx .

Combining now all these estimates and realizing that δ > d > 1/β for large β, so
√
−λ + 1

δ ≤√
−λ+ 1

d ≤ (L2 + 1)β and analogically for µ, we get

B :=

∣∣∣∣∣⟨∇ϕ,∇ψ⟩L2(Θδ) − β

∫∫
S

ϕ · ψ dσ − δj,lEj(β)

∣∣∣∣∣
≤ ∥h∥1∥f∥1

16π2
(L2 + 1)2

[
β2

δ2
c(eαR + eαδ) +

1

(L2 + 1)2
eαd

d2

∫∫∫
Ω(β)

|∇gβ(x)|2 dx

+ β2 e
αd

d2

∫∫∫
Θδ\Θd

(1− |gβ(x)|2) dx+ 2β
eαd

d2

∫∫∫
Ω(β)

|∇gβ(x)| dx
]
.

For sufficiently large β there holds∫∫∫
Θδ\Θd

(1− |gβ(x)|2) ≤ vol(Θδ) ≤ 1 .

Using further Lemma 4.8 we can proceed with the estimate

B ≤ ∥h∥1∥f∥1
16π2

(L2 + 1)2 ·
[
c

δ2
β2
(
eαR + eαδ

)
+

1

(L2 + 1)2
eαd

d2
C2β log β + β2 e

αd

d2
+ 2β

eαd

d2
C1

]
.

Using Lemma 4.2 and the Cauchy-Schwarz inequality we obtain ∥h∥1 = O(β2) and ∥f∥1 = O(β2).
With 1

δ <
1
d , e

αδ < eαd and eα(R−d) < 1 we then get, for sufficently large β,

B ≤ ∥h∥1∥f∥1
16π2

(L2 + 1)2
[
2c+

C2

(L2 + 1)2
+ 1 + 2C1

]
eαd

d2
β2 ≤ C

eαd

d2
β6

for a certain C > 0. Substituting α := −(
√
−λ+

√
−µ) ≤ −2L1β and d = kβ−1 log β we obtain

eαd

d2
β6 ≤ k−2β8−2L1k(log β)−2,
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and the result of Lemma 4.4 follows by taking k sufficiently large. �
4.4. Proof of Lemma 4.5. We know that ⟨uj,β , ul,β⟩L2(R3) = δj,l, hence we can estimate the
expression in question as

A :=
∣∣∣⟨uj,β , ul,β⟩L2(R3) − ⟨ϕj,β , ϕl,β⟩L2(Θδ)

∣∣∣
=

∣∣∣∣∫∫∫
R3

(
1− gβ(x)

2
)
uj,β(x)ul,β(x) dx

∣∣∣∣ ≤ ∫∫∫
R3\Θd

|uj,β(x)ul,β(x)| dx.

As in the previous proof, set ∥h∥1 := ∥h∥L1(S) and ∥f∥1 := ∥f∥L1(S). In view of Eqs. (4.3) and
(4.16), for large β we have

A ≤
∫∫∫

R3\Θd

e−
√

−Ej(β) dist(x,S)

4π dist(x, S)
∥h∥1 ·

e−
√

−El(β) dist(x,S)

4π dist(x, S)
∥f∥1 dx

≤ ∥h∥1∥f∥1
16π2d2

∫∫∫
R3\Θd

e−
(√

−Ej(β)+
√

−El(β)
)
dist(x,S) dx ≤ ∥h∥1∥f∥1

16π2d2

∫∫∫
R3\Θd

e−2L1β dist(x,S) dx .

Mimicking the proof of Lemma 4.4 one can check that∫∫∫
R3\Θd

e−2L1β dist(x,S) dx ≤ c
(
e−2L1βR + e−2L1βd

)
with an R > 1 such that Θ1 is contained in the ball BR of radius R centered at zero. By Lemma 4.2
we may estimate ∥h∥L1(S) ≤ Cβ2 and ∥f∥L1(S) ≤ Cβ2. As d = k log β

β we get

|⟨ϕj,β , ϕl,β⟩L2(Θδ) − δj,l| ≤
c

16π2d2
∥h∥L1(S)∥f∥L1(S)

(
e−2L1βR + e−2L1βd

)
≤ cC2β6

16π2k2(log β)2
(
e−2L1βR + β−2L1k

)
,

and the result follows by taking k sufficiently large. �
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Řež near Prague, Czechia, and Doppler Institute for Mathematical Physics and Applied Mathematics,
Czech Technical University, Břehová 7, 11519 Prague, Czechia
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