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Abstract

We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter e
whose coefficients depend holomorphically on (e,t) near the origin in C? and are bounded holomorphic
on some horizontal strip in C w.r.t the space variable. In our previous contribution [14], we assumed the
forcing term of the Cauchy problem to be analytic near 0. Presently, we consider a family of forcing terms
that are holomorphic on a common sector in time ¢ and on sectors w.r.t the parameter ¢ whose union
form a covering of some neighborhood of 0 in C*, which are asked to share a common formal power series
asymptotic expansion of some Gevrey order as € tends to 0. We construct a family of actual holomorphic
solutions to our Cauchy problem defined on the sector in time and on the sectors in € mentioned above.
These solutions are achieved by means of a version of the so-called accelero-summation method in the
time variable and by Fourier inverse transform in space. It appears that these functions share a common
formal asymptotic expansion in the perturbation parameter. Furthermore, this formal series expansion
can be written as a sum of two formal series with a corresponding decomposition for the actual solutions
which possess two different asymptotic Gevrey orders, one steming from the shape of the equation and
the other originating from the forcing terms. The special case of multisummability in € is also analyzed
thoroughly. The proof leans on a version of the so-called Ramis-Sibuya theorem which entails two distinct
Gevrey orders. Finally, we give an application to the study of parametric multi-level Gevrey solutions
for some nonlinear initial value Cauchy problems with holomorphic coefficients and forcing term in (e, t)
near 0 and bounded holomorphic on a strip in the complex space variable.
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1 Introduction

We consider a family of parameter depending nonlinear initial value Cauchy problems of the
form

(1) Q(az)(atuap (tv 2 6)) = 61,2(6)(621(8,2)“% (tv 2 6))(@2(az)uap (tv 2 6))
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+ 0Dt ) =0p 1 Oo =Dk D500 Ry (D)7 (1, 2, €) + > X1EH0) Ry(9:)u (1, 2, )
=1
+ CO(t7 2 E)Ro(az)uap(t’ Z, 6) =+ CF(E)po(ta 2 6)

for given vanishing initial data u®»(0,z,¢) = 0, where D > 2 and &p, k2, Ay, dp, 0, 1 < 1 <
D — 1 are nonnegative integers and Q(X),Q1(X),Q2(X),R;(X), 0 < I < D are polynomials
belonging to C[X]. The coefficient cy(¢, z,€) is a bounded holomorphic function on a product
D(0,7) x Hg x D(0,€p), where D(0,r) (resp. D(0,¢€p)) denotes a disc centered at 0 with small
radius r > 0 (resp. ¢ > 0) and Hg = {z € C/|Im(z)| < B} is some strip of width 3 > 0. The
coefficients ¢ 2(€) and cp(€) define bounded holomorphic functions on D(0, €y) vanishing at € = 0.
The forcing terms f% (¢, z,¢€), 0 < p < ¢ — 1, form a family of bounded holomorphic functions on
products 7 x Hz x&,, where T is a small sector centered at 0 contained in D(0, r) and {&p }o<p<c—1
is a set of bounded sectors with aperture slightly larger than 7 /ks covering some neighborhood
of 0 in C*. We make assumptions in order that all the functions € — f°¢ (¢, 2, €), seen as functions
from &, into the Banach space F of bounded holomorphic functions on 7 x Hz endowed with the
supremum norm, share a common asymptotic expansion f(t, z, €) = Y om0 fm(t, 2)e™/m! € F([e]]
of Gevrey order 1/k; on &, for some integer 1 < ky < k2, see Lemma 11.

Our main purpose is the construction of actual holomorphic solutions u® (¢, z,€) to the
problem (1) on the domains 7 x Hg x &, and to analyse their asymptotic expansions as e tends
to 0.

This work is a continuation of the study initiated in [14] where the authors have studied
initial value problems with quadratic nonlinearity of the form

(2) Q(9:)(9rull, z,€)) = (Q1(:)ult, z,€))(Q2(9:)ult, 2, €))
D-1
+ 6(5’3_1)(k+1)_5f’+1t(‘SD_l)(kH)@fDRD(3z)u(t, z,€) + Z eAltdl(?fle(az)u(t, 2, €)
=1
+ CO(ta Z, E)Ro(az)@b(t, Z, 6) + f(ta 2, 6)

for given vanishing initial data w(0,z,¢) = 0, where D, A, d;,d; are positive integers and
Q(X),Q1(X),Q2(X),Ri(X), 0 <1 < D, are polynomials with complex coefficients. Under
the assumption that the coefficients cy(t, 2, €) and the forcing term f(¢, z, €) are bounded holo-
morphic functions on D(0,7) x Hg x D(0,¢€p), one can build, using some Borel-Laplace pro-
cedure and Fourier inverse transform, a family of holomorphic bounded functions u,(t, z, €),
0 <p < ¢ —1, solutions of (2), defined on the products 7 x Hg x &,, where &, has an aperture
slightly larger than m/k. Moreover, the functions € — wu,(t, z, €) share a common formal power
series U(t,z,€) = Y, <o hm(t, )€™ /m! as asymptotic expansion of Gevrey order 1/k on &,. In
other words, u,(t, 2, €) is the k—sum of (¢, z,€) on &, see Definition 9.

In this paper, we observe that the asymptotic expansion of the solutions u°(t, z,€) of (1)
w.r.t € on &, defined as u(t,z,€) = > <ohm(t,2)e™/m! € F[[e]], inherits a finer structure
which involves the two Gevrey orders 1/k; and 1/ks. Namely, the order 1/ky originates from
the equation (1) itself and its highest order term e(®p—D(k2+D)=0p+14(6p—1)(klA 1) 0 R, (5. as it



was the case in the work [14] mentioned above and the scale 1/k; arises, as a new feature, from
the asymptotic expansion f of the forcing terms f°(t, z,€). We can also describe conditions for
which u% (t, z, €) is the (ka, k1)—sum of i(t, z,€) on &, for some 0 < p < ¢ — 1, see Definition 10.
More specifically, we can present our two main statements and its application as follows.

Main results Let ky > ki > 1 be integers. We choose a family {Ep}o<p<c—1 of bounded sectors
with aperture slightly larger than 7/ke which defines a good covering in C* (see Definition 7)
and a set of adequate directions 0, € R, 0 < p < ¢—1 for which the constraints (152) and (153)
hold. We also take an open bounded sector T centered at 0 such that for every 0 <p <g¢—1,
the product et belongs to a sector with direction d, and aperture slightly larger than = /ks, for
alle € &, allt € T. We make the assumption that the coefficient co(t, z,€) can be written as a
convergent series of the special form

co(t, z,€) = co(€) > com(z,€)(et)"
n>0
on a domain D(0,7) x Hg x D(0,€p), where Hg is a strip of width ', such that T C D(0,r),
Uo<p<c—1Ep C D(0,€0) and 0 < ' < B are given positive real numbers. The coefficients co (2, €),
n > 0, are supposed to be inverse Fourier transform of functions m — Co,(m,€) that belong
to the Banach space Eg ) (see Definition 2) for some p > max(deg(Q1) + 1,deg(Q2) + 1)
and depend holomorphically on € in D(0,e0) and co(e) is a holomorphic function on D(0, €p)
vanishing at 0. Since we have in view our principal application (Theorem 3), we choose the
forcing term f°(t, z,€) as a my,— Fourier-Laplace transform

kQ 2 u\ky du
op _ e p ()72 izm 22
for(t, z,€) = (2m)1/2 / /Wp Yy (u,m,e)e ‘) e " dm,

where the inner integration is made along some halfline L., C Sy, and Sy, is an unbounded

sector with bisecting direction 0,, with small aperture and where 1!12’2’ (u,m,€) is a holomorphic
function w.r.t u on Sy,, defined as an integral transform called acceleration operator with indices
mg, and mg,,

dh
dirm e = [ um 96w

p
where G(u, h) is a kernel function with exponential decay of order k = (k:% - k%)_l, see (114).
The integration path LW; is a halfline in an unbounded sector Uy, with bisecting direction 0,
and Q,Z)Zf(h,m, €) is a function with exponential growth of order ki w.r.t h on Uy, U D(0, p) and
exponential decay w.r.t m on R, satisfying the bounds (156). The function f°r(t,z,€) represents
a bounded holomorphic function on T x Hg x &,. Actually, it turns out that f(t,z,€) can be

simply written as a my, —Fourier-Laplace transform of sz’f(h, m,e),

o0 )
for(t, z,€) = k1 7!1% U, M, € e_(i)kle”md—udm,
) k1 ’ )
L,

eni ) ., v
see Lemma 135.

Our first result stated in Theorem 1 reads as follows. We make the assumption that the
integers dp, ko, A;,d;, 61, 1 < 1 < D — 1 satisfy the inequalities (147), (148) and (160). The
polynomials Q(X),Q1(X), Q2(X) and Ri(X), 0 <1 < D are submitted to the constraints (149)
on their degrees. We require the existence of constants rg r, > 0 such that

Q(im)
Ry(im)

' 2 TQ7RZ



forallm € R, all1 <1< D (see (150)) and moreover that the quotient Q(im)/Rp(im) belongs
to some suitable unbounded sector Sq gr,, for allm € R (see (151)). Then, if the sup norms of
the coefficients c12(€)/€, co(€)/e and cp(€)/e on D(0,€p) are chosen small enough and provided
that the radit rq.gr,, 1 <1 < D, are taken large enough, we can construct a family of holomorphic
bounded functions u®»(t, z,¢€), 0 < p <¢—1, defined on the products T x Hg x Sp, which solves
the problem (1) with initial data u® (0, z e) = 0. Similarly to the forcing term, u®r(t,z,€) can
be written as a my,—Fourier-Laplace transform

+o00 . d
(t zZ, 6 1/2/ /L wk2 u, m, 6) (Et)erlzm%dm

where ""ZZ (u,m, €) denotes a function with at most exponential growth of order ka in u on Sy,
and exponential decay in m € R, satisfying (166). The function wzg (u,m, €) is shown to be the

analytic continuation of a function ACCZZ ky (wz,’l’)(u,m,e) defined only on a bounded sector Sgp
with aperture slightly larger than w/k w.r.t u, for all m € R, with the help of an acceleration
operator with indices my, and my,,

dh
Acczzvkl (wzflj)(u, m,e) = /L wa(h,m,e)G(u,h)F.
1

We show that, in general, wZ’l’(h,m,e) suffers an exponential growth of order larger than ki
(and actually less than k) w.r.t h on Uy, U D(0,p), and obeys the estimates (168). At this

point u® (t, z,€) cannot be merely expressed as a my, —Fourier-Laplace transform of wk and s
obtained by a version of the so-called accelero-summation procedure, as described in [1], Chapter
.

Our second main result, described in Theorem 2, asserts that the functions u®r, seen as
maps from &, into I, for 0 < p < ¢ —1, turn out to share on &, a common formal power series
w(e) =50 hme™/m! € Flle]] as asymptotic expansion of Gevrey order 1/ky. The formal series
ii(€) formally solves the equation (1) where the analytic forcing term f°»(t, z, €) is replaced by its
asymptotic expansion f(t,z,€) € F[[e]] of Gevrey order 1/ky (see Lemma 11). Furthermore, the
functions u®r and the formal series 4 own a fine structure which actually involves two different

Gevrey orders of asymptotics. Namely, u® and @ can be written as sums
a(e) = ale) +ai(e) + tale) , u’(t,z,€) = ale) +ui”(e) + uy’ (e)

where a(e) is a convergent series near € = 0 with coefficients in F and u1(e) (resp. ta(e))
belongs to F[[e]] and is the asymptotic expansion of Gevrey order 1/ky (resp. 1/ka) of the
F—valued function ui (e) (resp. u2 "(€)) on &,. Besides, under a more restrictive assumption
on the covering {Epto<p<c—1 and the unbounded sectors {Uy,}o<p<c—1 (see Assumption 5 in
Theorem 2), one gets that u®o(t, z, €) is even the (ka, k1)—sum of i(e) on some sector Ey,, with
0 < pg <¢—1, meaning that u?”o (€) can be analytically continued on a larger sector Sy,
containing Ep,, with aperture slightly larger than 7/ky where it becomes the k1—sum of Gy (e) and
by construction ugpo(e) is already the ka—sum of Uz(€) on &, see Definition 10.

As an important application (Theorem 3), we deal with the special case when the forcing
terms fo(t,z,€) themselves solve a linear partial differential equation with a similar shape as
(2), see (220), whose coefficients are holomorphic functions on D(0,r) x Hg x D(0,€y). When
this holds, it turns out that u®®(t, z,€) and its asymptotic expansion u(t, z,€) solves a nonlinear



singularly perturbed PDE with analytic coefficients and forcing term on D(0,r) x Hg x D(0, €),
see (224).

We stress the fact that our application (Theorem 3) relies on the factorization of some
nonlinear differential operator which is an approach that belongs to an active domain of research
in symbolic computation these last years, see for instance [6], [7], [12], [28], [29], [33].

We mention that a similar result has been recently obtained by H. Tahara and H. Yamazawa,
see [31], for the multisummability of formal series a(t,z) = > oqun(z)t™ € O(CY)[[t]] with
entire coefficients on CV, N > 1, solutions of general non-homogeneous time depending linear
PDEs of the form ‘

ot Y A= f(t,x)

j+la|<L

for given initial data (8/u)(0,z) = j(x),0<j<m—1 (where 1 <m < L), provided that the
coefficients a; (t) together with t — f(¢,2) are analytic near 0 and that ¢;(z) with the forcing
term x — f(t,r) belong to a suitable class of entire functions of finite exponential order on C*.
The different levels of multisummability are related to the slopes of a Newton polygon attached
to the main equation and analytic acceleration procedures as described above are heavily used
in their proof.

It is worthwhile noticing that the multisummable structure of formal solutions to linear and
nonlinear meromorphic ODEs has been discovered two decades ago, see for instance [2], [5], [8],
[18], [21], [27], but in the framework of PDEs very few results are known. In the linear case
in two complex variables with constant coefficients, we mention the important contributions
of W. Balser, [4] and S. Michalik, [22], [23]. Their strategy consists in the construction of a
multisummable formal solution written as a sum of formal series, each of them associated to
a root of the symbol attached to the PDE using the so-called Puiseux expansion for the roots
of polynomial with holomorphic coefficients. In the linear and nonlinear context of PDEs that
come from a perturbation of ordinary differential equations, we refer to the works of S. Ouchi,
[25], [26], which are based on a Newton polygon approach and accelero-summation technics as
in [31]. Our result concerns more peculiarly multisummability and multiple scale analysis in the
complex parameter €. Also from this point of view, only few advances have been performed.
Among them, we must mention two recent works by K. Suzuki and Y. Takei, [30] and Y. Takei,
[32], for WKB solutions of the Schrédinger equation

'(2) = (2 = €2°)9(2)

2

which possesses 0 as fixed turning point and z. = € “ as movable turning point tending to

infinity as € tends to O.

In the sequel, we describe our main intermediate results and the sketch of the arguments
needed in their proofs. In a first part, we depart from an auxiliary parameter depending initial
value differential and convolution equation which is regularly perturbed in its parameter €, see
(70). This equation is formally constructed by making the change of variable T' = et in the
equation (1) and by taking the Fourier transform w.r.t the variable z (as done in our previous
contribution [14]). We construct a formal power series U(T,m,€) = 3, -, Un(m, €)T™ solution
of (70) whose coefficients m ++ U, (m,¢) depend holomorphically on € near 0 and belong to
a Banach space Eg ) of continuous functions with exponential decay on R introduced by O.
Costin and S. Tanveer in [10].

As a first step, we follow the strategy recently developed by H. Tahara and H. Yamazawa in
[31], namely we multiply each hand side of (70) by the power T¥1+! which transforms it into an



equation (75) which involves only differential operators in T' of irregular type at 7" = 0 of the
form TP0r with B > ki +1 due to the assumption (72) on the shape of the equation (70). Then,
we apply a formal Borel transform of order k;, that we call my, —Borel transform in Definition
4, to the formal series U with respect to T, denoted by

wi, (1, m, €) EUme

n>1

n/kl)

Then, we show that wy, (7,m, €) formally solves a convolution equation in both variables 7 and
m, see (83). Under some size constraints on the sup norm of the coefficients c¢; 2(€) /€, co(€) /€ and
cr(€)/e near 0, we show that wg, (7, m, €) is actually convergent for 7 on some fixed neighborhood
of 0 and can be extended to a holomorphic function wgl (7, m, €) on unbounded sectors U, centered
at 0 with bisecting direction d and tiny aperture, provided that the mj, —Borel transform of
the formal forcing term F(T,m,¢), denoted by v, (7,m,€) is convergent near 7 = 0 and can
be extended on U; w.r.t 7 as a holomorphic function wgl (1,m, €) with exponential growth of
order less than ki. Besides, the function wgl (1,m, €) satisfies estimates of the form: there exist
constants v > 0 and wy > 0 with

|7|
1+ |7]2k

viT|"

W (r,m, )| < wg(1 + |m|) HeAlm
kU1 TG >~ W4

for all 7 € Uy, all m € R, all e € D(0,¢), see Proposition 11. The proof leans on a fixed
point argument in a Banach space of holomorphic functions F; (‘fj B ko1 1) studied in Section 2.1.

Since the exponential growth order x of w,‘zl is larger than k;, we cannot take a my, —Laplace
transform of it in direction d. We need to use a version of what is called an accelero-summation
procedure as described in [1], Chapter 5, which is explained in Section 4.3.

In a second step, we go back to our seminal convolution equation (70) and we multiply each
handside by the power T%2*1 which transforms it into the equation (121). Then, we apply a
my,—Borel transform to the formal series U w.r.t T, denoted by Wi, (T,m,€). We show that
Wk, (T, m, €) formally solves a convolution equation in both variables 7 and m, see (123), where
the formal my, —Borel transform of the forcing term is set as 12%2 (1,m,€). Now, we observe that
a version of the analytic acceleration transform with indices ko and k1 constructed in Proposition
13 applied to wgl (1,m, €), standing for ng(T, m, €), is the k—sum of 12%2 (T,m,€) w.r.t 7 on some
bounded sector Sflﬁ with aperture slightly larger than 7/k, viewed as a function with values
in Eg,y. Furthermore, ng (1,m, €) can be extended as an analytic function on an unbounded
sector Sg, with aperture slightly larger than 7/x where it possesses an exponential growth
of order less than ks, see Lemma 4. In the sequel, we focus on the solution ng (1,m,¢€) of the

convolution problem (129) which is similar to (123) but with the formal forcing term )y, (T m,e€)
replaced by wZQ (1, m, €). Under some size restriction on the sup norm of the coefficients c; 2(€) /e,
co(€)/e and cp(e)/e near 0, we show that ka (1,m, €) defines a bounded holomorphic function
for 7 on the bounded sector Sg .. and can be extended to a holomorphic function on unbounded
sectors Sy with direction d and 7tiny aperture, provided that Sy stays away from the roots of some
polynomial P,,(7) constructed with the help of Q(X) and Rp(X) in (1), see (131). Moreover,
the function ng (1,m, €) satisfies estimates of the form: there exist constants v’ > 0 and vg > 0
with

_ il e

1+ |7|2k2

for all 7 € Sy, all m € R, all € € D(0, ¢p), see Proposition 14. Again, the proof rests on a fixed
point argument in a Banach space of holomorphic functions F] (ij ' Boyuks) outlined in Section 2.2.

jwit, (rm, €)] < wa(L + [m]) e P



In Proposition 15, we show that wZQ (1,m, €) actually coincides with the analytic acceleration
transform with indices my, and myg, applied to wgl (1,m,¢€), denoted by Accz%,Cl (w,‘fl)(T, m,e€),

as long as 7 lies in the bounded sector SS .- As a result, some my,—Laplace transform of the

analytic continuation of Accz2 Ky (wgl)(T, m,€), set as UY(T,m,¢), can be considered for all T

belonging to a sector Sd79k27h with bisecting direction d, aperture 0, slightly larger than m/ko

and radius i > 0. Following the terminology of [1], Section 6.1, U%(T,m,€) can be called the
(M, , My, )—sum of the formal series U(T,m, ¢€) in direction d. Additionally, U%(T, m, €) solves
our primary convolution equation (70), where the formal forcing term F/(T',m, €) is interchanged
with F4(T,m, ) which denotes the (my,, mg, )—sum of F in direction d.

In Theorem 1, we construct a family of actual bounded holomorphic solutions u°#(t, z, €),
0 < p < ¢—1, of our original problem (1) on domains of the form 7 x Hg x &, described in
the main results above. Namely, the functions u®» (¢, z,€) (resp. f°?(t, z,¢)) are set as Fourier
inverse transforms of U%,

P (t, z,€) = FH(m e U (et,m,e))(2) , fo%(t,z,€) = F L (m s F%(et,m,€))(2)

where the definition of F~! is pointed out in Proposition 9. One proves the crucial property that
the difference of any two neighboring functions u®»+1(t, z, €) — u® (¢, z, €) tends to zero as € — 0
on &,11 N &, faster than a function with exponential decay of order £, uniformly w.r.t ¢t € T,
z € Hg, with k = ky when the intersection Uy, , N U, is not empty and with k& = ki, when this
intersection is empty. The same estimates hold for the difference fo»+1(¢,z,¢€) — fOr(t, 2, ¢).

The whole section 6 is devoted to the study of the asymptotic behaviour of u®¢(t,z,¢) as
¢ tends to zero. Using the decay estimates on the differences of the functions u° and f°,
we show the existence of a common asymptotic expansion u(e) = > <, hme™/m! € F[€]]
(resp. f(e) = Y om0 fm€™/ml € F[[e]]) of Gevrey order 1/k; for all functions u®» (¢, z,€) (resp.
for(t, 2,¢€)) as € tends to 0 on &p. We obtain also a double scale asymptotics for u®» as explained
in the main results above. The key tool in proving the result is a version of the Ramis-Sibuya
theorem which entails two Gevrey asymptotics orders, described in Section 6.1. It is worthwhile
noting that a similar version was recently brought into play by Y. Takei and K. Suzuki in [30],
[32], in order to study parametric multisummability for the complex Schrédinger equation.

In the last section, we study the particular situation when the formal forcing term F'(T,m, €)
solves a linear differential and convolution initial value problem, see (204). We multiply each
handside of this equation by the power T%1*1 which transforms it into the equation (208). Then,
we show that the my, —Borel transform vy, (7,m, €) formally solves a convolution equation in
both variables 7 and m, see (209). Under a size control of the sup norm of the coefficients cq(€) /e
and cp(€)/e near 0, we show that iy, (7,m, €) is actually convergent near 0 w.r.t 7 and can be
holomorphically extended as a function LZJZT (7,m, €) on any unbounded sectors Uy, with direction
0, and small aperture, provided that U,, stays away from the roots of some polynomial P,,(7)

constructed with the help of Q(X) and Rp(X) in (204). Additionally, the function 1/12,11’ (1,m,€)
satisfies estimates of the form: there exists a constant v > 0 with

I7|
1+ |7|2k

vlr|F1

[p? (r,m, €)] < v(1+ [m]) He= P!

for all 7 € Uy, all m € R, all e € D(0,¢), see Proposition 18. The proof is once more based
upon a fixed point argument in a Banach space of holomorphic functions F| (Cf/ Bk k) defined in

Section 2.1. These latter properties on 1/12’1’ (1,m, €) legitimize all the assumptions made above

on the forcing term F(T,m,¢). Now, we can take the my, —Laplace transform E?#Zkl (wZ’l’)(T) of



¢Z’1’ (1,m,€) w.r.t 7 in direction d,, which yields an analytic solution of the initial linear equation
(204) on some bounded sector Svp.0x, ,h With aperture 0y, slightly larger than 7/ki. It comes to
light in Lemma 13, that L%’kl (wZT )(T) coincides with the analytic (myg,, mg, )—sum F° (T, m, ¢)
of F' in direction 0, on the smaller sector pr,GkQ,h with aperture slightly larger than 7/ks. We
deduce consequently that the analytic forcing term f°# (¢, z, €) solves the linear PDE (220) with
analytic coefficients on D(0,7) x Hg x D(0,¢p), for allt € T, z € Hg, € € E,. In our last main
result (Theorem 3), we see that this latter issue implies that u® (¢, z, €) itself solves a nonlinear
PDE (224) with analytic coefficients and forcing term on D(0,r) x Hg x D(0,€), for all t € T,
ze H gy €€ gp.

The paper is organized as follows.

In Section 2, we define some weighted Banach spaces of continuous functions on (D(0, p)UU) xR
with exponential growths of different orders on unbounded sectors U w.r.t the first variable and
exponential decay on R w.r.t the second one. We study the continuity properties of several kind
of linear and nonlinear operators acting on these spaces that will be useful in Sections 4.2, 4.4
and 7.2.

In Section 3, we recall the definition and the main analytic and algebraic properties of the
my—summability.

In Section 4.1, we introduce an auxiliary differential and convolution problem (70) for which we
construct a formal solution.

In Section 4.2, we show that the mj, —Borel transform of this formal solution satisfies a convo-
lution problem (83) that we can uniquely solve within the Banach spaces described in Section
2.

In Section 4.3, we describe the properties of a variant of the formal and analytic acceleration
operators associated to the my—Borel and mj;—Laplace transforms.

In Section 4.4, we see that the my,—Borel transform of the formal solution of (70) satisfies a
convolution problem (123). We show that its formal forcing term is k—summable and that its
k—sum is an acceleration of the my, —Borel transform of the above formal forcing term. Then,
we construct an actual solution to the corresponding problem with the analytic continuation of
this k—sum as nonhomogeneous term, within the Banach spaces defined in Section 2. We recog-
nize that this actual solution is the analytic continuation of the acceleration of the my, —Borel
transform of the formal solution of (70). Finally, we take its mg,—Laplace transform in order
to get an actual solution of (146).

In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions to
our initial Cauchy problem (1). We show that the difference of any two neighboring solutions is
exponentially flat for some integer order in € (Theorem 1).

In Section 6, we show that the actual solutions constructed in Section 5 share a common formal
series as Gevrey asymptotic expansion as € tends to 0 on sectors (Theorem 2). The result is
built on a version of the Ramis-Sibuya theorem with two Gevrey orders stated in Section 6.1.
In Section 7, we inspect the special case when the forcing term itself solves a linear PDE. Then,
we notice that the solutions of (1) constructed in Section 5 actually solve a nonlinear PDE with
holomorphic coefficients and forcing term near the origin (Theorem 3).

2 Banach spaces of functions with exponential growth and decay

The Banach spaces introduced in the next subsection 2.1 (resp. subsection 2.2) will be crucial in
the construction of analytic solutions of a convolution problem investigated in the forthcoming
subsection 4.2 (resp. subsection 4.4).



2.1 Banach spaces of functions with exponential growth x and decay of ex-
ponential order 1

We denote D(0,7) the open disc centered at 0 with radius 7 > 0 in C and D(0, ) its closure.
Let Uy be an open unbounded sector in direction d € R centered at 0 in C. By convention, the
sectors we consider do not contain the origin in C.

Definition 1 Let v, B, > 0 and p > 0 be positive real numbers. Let k > 1, kK > 1 be integers
and d € R. We denote F(V Bk the vector space of continuous functions (1,m) — h(r,m) on

(D(0, p) UUy) x R, which are holomorphic with respect to T on D(0,p) UUy and such that

pl I .
AT )|l g k) = SUP (1+ [m]) exp(B|m| — v|7[")|h(T, m)]
7€D(0,p)UU4,meR |7
is finite. One can check that the normed space (F(Cf,ﬂ ko) H.H(,,ﬂ,%kﬁ)) is a Banach space.

Remark: These norms are appropriate modifications of those introduced in the work [14],
Section 2.

Throughout the whole subsection, we assume pu, 8,v,p > 0, k,x > 1 and d € R are fixed. In
the next lemma, we check the continuity property under multiplication operation with bounded
functions.

Lemma 1 Let (1,m) = a(r,m) be a bounded continuous function on (D(0,p) UUy) x R by a
constant C; > 0. We assume that a(r,m) is holomorphic with respect to T on D(0, p) U Uy.
Then, we have

(3) lla(m, m)h(T,m)[|(w,8,00m) < CLUIRT, )| (0,8,0,8)

for all h(r,m) € FV,B SER)-

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 1 Let xo2 > —1 be a real number. Let vo9 > —1 be an integer. We assume that
1+ x2+1v2>0.

If Kk > k(2

o 2 + 1), then there exists a constant Cy > 0 (depending on v,vs, x2) such that

(4) ||/ 5)X2s"2 f(s l/k»m)dSH(u,ﬂ,,u,k,n) < ol £ (1, m) | (1, 8,1,.0)

for all f(r,m) € Fu,ﬁ Sk

Proof Let f(r,m) € Fg«ﬁ,u,k,n)‘ By definition, we have

Tk
5) | / (7% — 5)X2%2 (5% m)dsl| (g

1+ |7|%k
= sup (1+ \m|)“¢ exp(B|m| — v|7|¥)
7€D(0,p)UU4,meR |T|

T 1
<l [t e explvis B )

x B(t,s,m)ds|
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where

1 ~gjm| eXP(v]s]"/F) v
B(T,S,m): (1+|m‘)ue Blm| 1_|_|5|2 |S|1/k(7_k_8)X28 2
Therefore,
,T.k:
(6) II/0 (% — 5)%2572 £ (5% m)ds| 1,5y < CollF (7m0, 0.000)
where
1 2k |7|* Rk
7 G sup T e eXPWR™T) | L — nyenvdh = sup B(x)
_ 1 h2
r€D(0,p)UU,4 |7] 0 + >0
where

_ 1+ $2 Kk/k * exp(yhﬁ/k) Lipg X2

We write B(z) = Bi(z) + Ba(z), where

14 2? w/k */2 exp(vh*®) 1.,
Bl(l‘) = Wexp(—ux )A th Q(IE — h)Xth,

1+ 22 w/k r exp(yh”/k) 1,
Bo(w) = — i exp(-ve )/x/21+h2h'“ 2(z — h)2dh.

Now, we study the function Bj(x). We first assume that —1 < x2 < 0. In that case, we have
that (x — h)X2 < (z/2)X2 for all 0 < h < x/2 with > 0. Since vo > —1, we deduce that

1—|—$2 T ek z/2 euh"‘/k N
< ZY\X2p— VT )
(8) Bi(z) < Lk (2) e /0 1—|—h2hk dh
1 T 1
< 2 LN 1+xa+v2 (1 K/k

for all x > 0. Since kK > k and 1 + x2 + 1o > 0, we deduce that there exists a constant K1 > 0
with
(9) sup Bi(z) < K.
x>0

We assume now that y2 > 0. In this situation, we know that (z—h)X2 < zX2 forall 0 < h < x/2,
with « > 0. Hence, since 1o > —1,

1
2Uk(E +vo+1)
for all x > 0. Again, we deduce that there exists a constant K71 > 0 with

(11) sup Bi(z) < K 5.
x>0

1
ok/k

(10) Bi(x) < (1+427) 2 (/2)" exp(—v(1 — —)a™/)

In the next step, we focus on the function By(x). First, we observe that 1+ h? > 1+ (x/2)? for
all x/2 < h < x. Therefore, there exists a constant Ky > 0 such that

14+22 1 z 1
12) B < - - _yglk / R RYRETY2 (1 — p)X24h,
(12) Ba(z) < 1+ (Z)2 2i/F exp(—va"/¥) x/Qexp(V YhET2(z — h)

1 x
< Kgl—/k exp(—y$”/k)/ eXp(l/hH/k)h%—le(:L‘ — h)X2dh
x 0
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for all x > 0. It remains to study the function
€T
By(x) :/ exp(vh*/*)hi 2 (z — h)X*dh
0

for z > 0. By the uniform expansion e’"”" = ano(uh“/ k)™ /n! on every compact interval [0, 2],
x > 0, we can write

(13) By i(x) = E V'/ hnkm+%+u2(x_h)xzdh'
n>0

Using the Beta integral formula (see [3], Appendix B3) and since 2 > —1, % + 19 > —1, we can
write

1
L"P(X2 P+ et 1)x%+%+u2+><2+1
nl T(%E+ 4+ +x2+2)

(14) Boi(z) =)

n>0

for all x > 0. Bearing in mind that
(15) [(z)/T(x+a) ~1/z*

as x — +oo, for any a > 0 (see for instance, [3], Appendix B3), from (14), we get a constant
K51 > 0 such that

1 1
(16) Baa(w) € Kokttt 3 o ey
n>0

for all # > 0. Using again (15), we know that 1/(n + 1)X2t! ~ T'(n + 1)/T(n + x2 + 2) as
n — +oo. Hence, from (16), there exists a constant K32 > 0 such that

1
(17) Byi(z) < Kppa#tvatxet] Z i (vat/Fyn

= n+ x2 +2)

for all z > 0.

Remembering the asymptotic properties of the generalized Mittag-Leffler function (known
as Wiman function in the literature) Eq 5(2) = >_,502"/I'(8 + an), for any a, 8 > 0 (see [3],
Appendix B4 or [11], expansion (22) p. 210), we get from (17) a constant K93 > 0 such that

(18) B2,1([E> < K2.3[E%+V2+X2+1x—%(Xrﬁ-l)el/x"/k

for all z > 1. Under the assumption that v + x2 +1 < 7(x2 + 1) and gathering (12), (18), we
get a constant K54 > 0 such that

(19) sup By(x) < Ko,
x>0

Finally, taking into account the estimates (6), (7), (9), (11), (19), the inequality (4) follows. O

Proposition 2 Let k,k > 1 be integers such that k > k. Let Q1(X),Q2(X), R(X) € C[X] such
that

(20) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im)#0
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for allm € R. Assume that p > max(deg(Q1) + 1,deg(Q2) +1). Let m +— b(m) be a continuous
function on R such that

1
|b(m)| < M

for all m € R. Then, there exists a constant C3 > 0 (depending on Q1,Q2, R, u, k,k,v) such
that

k

(21) |[b(m) /0 Tk s

x Qa(im1)g(z/*, my)

el

(/08 - Q1(i(m — m)) f((s — 2)/F m — my)

—0o0

dl‘dml ) dS‘ ’ (V,B,M,k,’i)

o
(s —x)x

< G|l f(,m)|w,6,.0e,) 9 (7, )|

(V.8 11,k k)

for all f(t,m),g(T,m) € F(Cf/,ﬁ,mkﬁ)'

Proof Let f(r,m),g(r,m) € F(uﬁplm) For any 7 € D(0, p) U Uy, the segment [0, 7%] is such
that for any s € [0,7%], any = € [0, 5], the expressions f((s — z)'/*,m —m1) and g(z'/*,m,) are
well defined, provided that m,m; € R. By definition, we can write

k

b(m) /0 Tk s

e

(/08 +OOQ1( i(m —ma)) f((s — 2)*, m —my)

— 00

1/k

x Q2(im1)g(z™/",my) dxdm)ds|| (v,8,uk,x)

1
(s —x)x
1+ |7 2k
1) V- i wipy P R
7€D(0,0)UU4,meR |T|

k
T mem, L+ |s—x o
<A [T = = e A g e

1+

X (s = )5, m = )} x (L e
] 7

exp(—vz|"")g(@/*,m1)}
x C(s,x, m, my)dxdmi)ds|

where

exp(—f|ma|) exp(=Blm —mi)
(1 m —ma|)#(1 + |ma|)#
’8_$‘1/k‘$|1/k

1+ s =) (1 + |z[*)

Now, we know that there exist Q1,Q2,R > 0 with

C(s,z,m,my) =

b(m)Q1(i(m — m1))Q2(im1)

_
(s —x)z

x exp(v]s — a|"/*) exp(v]a]"/")

(22) [Q1(i(m —m1))| < Qi(1+ [m —m )29 |Qa(ima)| < Qa(1 + |my]) 1@,
|R(im)| = R(1 + |m]|)desD)
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for all m, my € R. Therefore,

Bl

Tk s +oo
(23) [Ib(m) /0 (r — )k /0 Qu (i(m — m)) £((s — 2)* m — m)

—0o0

1
. 1/k
x Qa(im1)g(x / ,ml)mdmdml)dﬂ](V’g,u,k,,{)
< CBHf(Ta m)”(u,ﬁ,mk,m)ng(ﬂ m)| (v,B, 1,k K)
where
(1) C aup (1l T ) — vy
3= -
T€D(0,p)UU4,mER ’ | (1 + | |)deg R)
y /'T"“ b Ve / /+°° exp(—Blmu|) exp(=Bm — mu|)
0 (1 + |[m —my )E(1 + [mq[)#
h— J})l/kxl/k
1 _ deg(Q1) (1 deg(Q2) (
1
o \k/k k/k
x exp(v(h — x)®'") exp(vz )(h — x)xdxdml)dh.

Now, since k > k, we have that
(25) WoE > (b — z) k4 gi/k

for all h > 0, all z € [0,h]. Indeed, let = hu where u € [0,1]. Then, the inequality (25) is
equivalent to show that

(26) 1> (1 — )k gqn/k

for all u € [0,1]. Let p(u) = (1 —u)** +u*/* on [0,1]. We have ¢/ (u) = %(u%_ —(1—u)r Y.
Since, £ > k, we know that the function ¥(z) = z% ! is increasing on [0,1], and therefore we
get that ¢'(u) < 0if 0 <wu < 1/2, ¢'(u) =0, if u=1/2and ¢'(u) > 0if 1/2 < u < 1. Since
©(0) = ¢(1) = 1, we get that p(u) < 1 for all u € [0, 1]. Therefore, (26) holds and (25) is proved.

Using the triangular inequality |m| < |mi| + |m — my|, for all m,m; € R, we get that
03 § 03,103.2 where

(27) C31 = 19y sup (1 + |m)|)#—dee(R) /+Oo 1 dmy
' R mer oo (T4 |m — my|)r—des(@) (1 4 |my | )#—des(@2)

which is finite whenever 1 > max(deg(Q1) + 1,deg(Q2) + 1) under the assumption (20) using
the same estimates as in Lemma 4 of [20] (see also Lemma 2.2 from [10]), and where

1 2k
(28) (59 = sup iexp(—uhﬂ”)
rebOpUs |7l

||
X/
0

dxdh.

h 1/k,.1/k
7% — h)Y* exp(vh/ (h = 2) Fha) !
(171" = 1) exp(vh k)/o (1+(h—2)2)(1+22) (h—2)x
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From (28) we get that C32 < C33, where

2 T
29 03.3 = sup 41 + exp _I/x:‘i/k T — h/ l/k exp l/h/li/k
1/k
>0 T 0

h/
1 1
dz")dh .
) (/0 (L4 (= 2/)?) (1 +2) (- o)L=k 2% =)
By the change of variable ' = h'u, for u € [0, 1], we can write

W 1 1
e [ —
o (L4 (0 =a")?)(L+2) (g — g1 wat %
1 /1 1
K1E Jo (14 R2(1—w)2)(1 + R2u2)(1 — u) " Ful~*

dz’

du = Ji(h').

Using a partial fraction decomposition, we can split Ji(h') = Ji x(h') + Jo 1 (R'), where

1 L 3—2u
) Sl = | e
R (W2 +4)Jo (1+h2(1—u)?)(1—u) *u' &

1 2u+1
Jog(h') =

1
= E (2 / 242)(1 — )k 1—1,du'
R =w(h2+4)Jo (14 h2u?)(1 —u)  Fu %

From now on, we assume that k > 2. By construction of Jj (k") and J; 1 (h’), we see that there
exists a constant ji > 0 such that

32 Jh’<j—k
(32) M) < e

for all A’ > 0. From (29) and (32), we deduce that C33 < sup,>q Cs.3(z), where

B T s 16/ k
(33) Cas(z) = (1+ 2?) exp(—l/x“/k)/ Mdh/.

0 KITE (W2 +4)

From L’Hospital rule, we know that

(1422)?
. ~ . k 2
lim Cs3(z) = lim J 5 T 4
z—fo0 wotoo pl=% pRak (1 +2?) — 2z

which is finite if £ > k and when k& > 2. Therefore, we get a constant 6’3_3 > 0 such that

(34) Sli% 03.3(.%) S C~'3.3.

Taking into account the estimates for (24), (27), (28), (29), (33) and (34), we obtain the result
(21).

It remains to consider the case k = 1. In that case, we know from Corollary 4.9 of [9] that there
exists a constant j; > 0 such that

’<j71
(35) BW) < 53
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for all A’ > 0. From (29) and (35), we deduce that C33 < Sup, > 03,3‘1(1'), where

T 4 /K
= j1exp(vh'™)
(36) Cssi(z) = (1427 exp(—l/x“)/o Wdh'.
From L’Hospital rule, we know that
- ~ o (1+2%)5
zgrfoo Caaa(r) = x£r+noo vexF~ (1 4+ 22) — 22

which is finite whenever x > 1. Therefore, we get a constant 6’3_3_1 > 0 such that

(37) sup Cs3.1(7) < Ca.3.1.

x>0
Taking into account the estimates for (24), (27), (28), (29), (36) and (37), we obtain the result
(21) for k = 1. O

Definition 2 Let 8,u € R. We denote Eg ) the vector space of continuous functions h: R —
C such that

1A (m)ll(g,0) = Slé%(l + [m[)" exp(B|ml[)|h(m)]
is finite. The space Eg ) equipped with the norm ||.||(s,,) is a Banach space.

Proposition 3 Let k,x > 1 be integers such that k > k. Let Q(X), R(X) € C[X] be polynomials
such that

(38) deg(R) > deg(Q) , R(im) #0
for allm € R. Assume that p > deg(Q) + 1. Let m +— b(m) be a continuous function such that
1
[b(m)] < —=—
| R(im)]

for all m € R. Then, there exists a constant Cy > 0 (depending on Q, R, u, k, k,v) such that

el

Tk +o0o
@9) () [ (7 = )F [ = ma)QUum g s

< CullF(m)ll (g0 llg (T, m)]

(V?187u7k7n)

for all f(m) € Eg ), all g(t,m) € deﬁ,u,k:,/@)'

Proof The proof follows the same lines of arguments as those of Propositions 1 and 2. Let
f(m) € Eg,y, g(1,m) € Fgfﬁukﬁ)' We can write

Tk 1 +oo d
(40) Np:= ||b(m)/0 (% — S)k/ f(m— ml)Q(iml)g(Sl/kaml)dml?SH(u,ﬁ,u,k,fe)

1+ 7|2k .
) - wipy P R
T€D(0,p)UU4,mER 7|
Tk —+o00
< btm) [ [l exp(Blm — )£ - )
0 —00

1+|s|?

|5|1/k 9(81/k7m1)} X D(1,s,m, m1)dmds|

X {(1+ [ma| )" exp(B]ma ) exp(—v]s|*/*)
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where

Q(imy)e Pmile=Plm—ml " exp(v|s|"/¥)

D =
(7737m7m1) (1+]m—m1|)“(1+|m1|)/‘ 1+|S|2

|8|1/k(7'k o S)I/kl'
S

Again, we know that there exist constants ,9R > 0 such that
1Q(im1)] < Q1+ |ma])48@ | |R(im)| > R(1 + |m)|)des®

for all m, m; € R. By means of the triangular inequality |m| < |m1| 4+ |m — ma|, we get that

(41) No < CuaCa2|[f(m)l g, 19(T: M) (0,8 1,k0)
where
1+ |7|% . " exp(vh*/k 1
Co= sp T e >/ p(hz)hk Y|r|* = h)!Edh
T7€D(0,0)UU4 ‘T| 0 1+
and q .
o 1
Cho=—sup(l+|m “_deg(R)/ dmj.
2 R mGEl)R( | D —00 (1 + \m - m1|)/‘(1 + |m1|)N*deg(Q) !

Under the hypothesis £ > k and from the estimates (7), (11) and (19) in the special case
X2 = 1/k and vy = —1, we know that Cj 1 is finite.

From the estimates for (27), we know that Cjy 5 is finite under the assumption (38) provided
that p > deg(Q) + 1. Finally, gathering these latter bound estimates together with (41) yields
the result (39). O

In the next proposition, we recall from [14], Proposition 5, that (Es ), 1l.l|(5,,)) is a Banach
algebra for some noncommutative product x introduced below.

Proposition 4 Let Q1(X),Q2(X), R(X) € C[X] be polynomials such that

(42) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im) # 0,

for all m € R. Assume that pn > max(deg(Q1) + 1,deg(Q2) + 1). Then, there exists a constant
C5 > 0 (depending on Q1,Q2, R, pu) such that

+oo
(43) HR(;‘lm) 3 Q1(i(m —ma)) f(m — m1)Q2(im1)g(m1)dmal| .
< Csllf(m)l g llg(m)]] (8,0

for all f(m),g(m) € Eg,y. Therefore, (Eg ), |-ll(3,,) becomes a Banach algebra for the prod-
uct x defined by

R(zm) _:0 Q1(i(m —my)) f(m — m1)Q2(im1)g(m1)dm;.

fxg(m)=

As a particular case, when f,g € Eg )y with 8> 0 and p > 1, the classical convolution product

+o00
f # g(m) = / £(m — ma)g(my)dma

belongs to Eg ;.-
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2.2 Banach spaces of functions with exponential growth & and decay of ex-
ponential order 1

In this subsection, we mainly recall some functional properties of the Banach spaces already
introduced in the work [14], Section 2. The Banach spaces we consider here coincide with those
introduced in [14] except the fact that they are not depending on a complex parameter ¢ and
that the functions living in these spaces are not holomorphic on a disc centered at 0 but only
on a bounded sector centered at 0. For this reason, all the propositions are given without proof
except Proposition 5 which is an improved version of Propositions 1 and 2 of [14].

We denote SS an open bounded sector centered at 0 in direction d € R and 5’3 its closure.
Let Sg be an open unbounded sector in direction d. By convention, we recall that the sectors
we consider throughout the paper do not contain the origin in C.

Definition 3 Let v,3,u > 0 be positive real numbers. Let k > 1 be an integer and let d € R.
We denote F(Cll/ﬁ%k) the vector space of continuous functions (t,m) — h(r,m) on (S5US,) x R,

which are holomorphic with respect to T on 5’3 U Sy and such that

1+ \7’|2”€

Ih(m M)l w,ppupy = sup  (L+[m])* exp(Blm| = v|r|*)|h(r,m)]

T€55US4,meR 7|
is finite. One can check that the normed space (F(‘iﬂ k) |[Ilv,8,1,%)) s @ Banach space.

Throughout the whole subsection, we assume that u, 8, > 0 and k > 1, d € R are fixed.
In the next lemma, we check the continuity property by multiplication operation with bounded
functions.

Lemma 2 Let (1,m) — a(r,m) be a bounded continuous function on (S4U Sy) x R, which is
holomorphic with respect to T on 5’3 U Sy. Then, we have

(44) lla(T, m)R(T,m)|| (1, 8,,k) < ( osup  a(T, m)l) (T, M) (0,810,
T€S5USy,mER

for all h(1,m) € Fiﬁ,u,k)'

In the next proposition, we study the continuity property of some convolution operators

acting on the latter Banach spaces.

Proposition 5 Let v1 > 0 and x2 > —1 be real numbers. Let vo > —1 be an integer. We
consider a holomorphic function a, (T) on Sfl US4, continuous on Sfl U.Sy, such that

< 71
|y, 1 (7)] < (1+ [7]F)m
for all T € S’é’l U.Sy.

If 14+ x2 +v2 > 0 and 1 > va, then there exists a constant Cg > 0 (depending on v,va, x2,71)
such that

k

(45) llaq, & (7) /0 (7 — spes™ £ (% m)ds| .00 < Coll £ (7)1,

for all f(T,m) € qu,ﬂ,u,k)'
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Proof The proof follows similar arguments to those in Proposition 1. Indeed, let f(7,m) €
F(‘ly k)" By definition, we have

k

(46) [l i() /0 (% — 5P f(sH5 m)ds|| g

1+ |7|2k
= sup (1+ |m[)“¢exp(ﬁ]m| —v|7|*)
TESﬁUSd,meR ’T’
7"g 2
1+ s
) [0+ e exp(vlsl) T 61 )
x F(1,s,m)ds|
where . vls))
Flr,s,m) = —— e AmIEPD) 1kl gyxagve
( ) A5 ) 1JF|S|2|| ( )
Therefore,
,rk
(47) H%,k(T)/O (7% — 5)%25"2 £ (1%, m)ds] | 1,510y < CollF (7 m) | w,8,0.0)
where
1 2k
Ce = sup iexp(—ywk)
TGSZUSd |T’
1 IrI* exp(vh) 1
X he (|7|F — h)X2h"2dh = sup F(x
b e @
where

1+ 2 1 Texp(vh), 1, 3
Fla) = — 7 exp(-va) (14 z)m /o Tpz @ = hyedh.

We write F'(x) = Fy(x) + Fa(z), where

2 x/2
_ e ! / OPW)  vn ppvaan,
0

Bi@) = el g | T

1+ 2? 1 “ exp(vh), 1.,
Fo(e) = = exp(-va) (1+ ) /x/z e M = hyedh.

Now, we study the function Fj(z). We first assume that —1 < x2 < 0. In that case, we have
that (z — h)X2 < (x/2)X2 for all 0 < h < z/2 with x > 0. We deduce that

1+2% 1 o2 e
48) Fi(x) < =)X2eTv? hE T2 dh
) @) < @ o [

1 T
2Uk(F +vp+1) 2

< (1 _’_1,2) )1+x2+u2

———
A +am TPV
for all z > 0. Bearing in mind that 1+ x2 + 2 > 0 and since 1 +x > 1 for all x > 0, we deduce

that there exists a constant K7 > 0 with

(49) sup Fi(z) < K;.
x>0
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We assume now that x2 > 0. In this situation, we know that (z—h)X2 < zX2 for all0 < h < z/2,
with x > 0. Hence,

1
2V/k(E + vy + 1)

for all x > 0. Again, we deduce that there exists a constant Ky 1 > 0 with

vx
5 )

(50) Fi(x) < (14 x2) X2 (:E/2)”2+1 exp(—

Ao

(51) sup F(z) < K.
x>0

In the next step, we focus on the function Fy(x). First, we observe that 14 h% > 1+ (x/2)? for
all ©/2 < h < x. Therefore, there exists a constant Ky > 0 such that

1+2% 1 1 v 14, o
1 1 v 1
- - _ wTY2( _ p)X2
< K2x1/k (R exp( yw)/o exp(vh)h& ™2 (x — h)X2dh

for all x > 0. Now, from the estimates (18), we know that there exists a constant K33 > 0 such
that

€T
(53) Fg_l(aj) = / exp(yh)h%Jer (m _ h)X2dh < Kg,gl‘%Jereyz
0
for all z > 1. From (52) we get the existence of a constant 5 > 0 with
(54) sup Fy(z) < Fy.
z€[0,1]

On the other hand, we also have that 1 + = > x for all > 1. Since 71 > v and due to (52)
with (53), we get a constant F» > 0 with

(55) sup Fy(x) < .
z>1
Gathering the estimates (47), (49), (51), (54) and (55), we finally obtain (45). O

The next two propositions are already stated as Propositions 3 and 4 in [14].
Proposition 6 Let k > 1 be an integer. Let Q1(X),Q2(X), R(X) € C[X] such that
(56) deg(R) > deg(Q1) , deg(R) = deg(Q2) , R(im) # 0

for allm € R. Assume that p > max(deg(Q1) + 1,deg(Q2) +1). Let m +— b(m) be a continuous
function on R such that

1
P RG]

for all m € R. Then, there exists a constant C7 > 0 (depending on Q1,Q2, R, p, k,v) such that

k s “+oo

@nnwmATw>$HA Qi (i(m — m)) F((s — 2)*m — m)

—00

. 1
x Qa(imy)g(z'/¥, m1)mdiﬂdml)d8“(v,ﬂ,u,k)

< CALF(r,m) | w, 8,009 (T M) 0,100

for all f(r,m),g(r,m) € F&ﬁﬁuﬁ)'
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Proposition 7 Let k > 1 be an integer. Let Q(X), R(X) € C[X] be polynomials such that
(58) deg(R) > deg(Q) , R(im) #0
for all m € R. Assume that ;> deg(Q) + 1. Let m +— b(m) be a continuous function such that

1
| R(im))|

[b(m)| <

for all m € R. Then, there exists a constant Cg > 0 (depending on Q, R, u,k,v) such that
Tk N 1 +o0o ) Lk ds
9) 1ipm) [ F =)t [ pm = ) QU s S

< G|l ()l 8,19 (T, m) | w,8.40,k)

for all f(m) € Eg,, all g(1,m) € F(C,l/,g,u,k)'

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We recall a definition of k—Borel summability of formal series with coefficients in a Banach space
which is a slightly modified version of the one given in [1], Section 3.2, that was introduced in
[14]. All the properties stated in this section are already contained in our previous work [14].

Definition 4 Let k > 1 be an integer. Let my(n) be the sequence defined by

too
k):/o tkte~tat

| 3

for allm > 1. A formal series

X(T) = ianT” € TE[[T]]

n=1

with coefficients in a Banach space (E,||.||g) is said to be mp—summable with respect to T in
the direction d € [0,2m) if

i) there exists p € Ry such that the following formal series, called a formal my— Borel
transform of X

By (X)(7) = 3 i7" € TEL])
n=1

=3

is absolutely convergent for |T| < p.

ii) there exists § > 0 such that the series By, (X)(1) can be analytically continued with
respect to T in a sector Sg5 = {1 € C* : |d — arg(7)| < 6}. Moreover, there exist C > 0 and
K > 0 such that

1B () (7)< eI

forall T € Sg45.
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If this is so, the vector valued my—Laplace transform of By, (X)(7) in the direction d is defined
by

X S _ kdu
L3 B (O)T) = | B (X)) /D
Y
along a half-line L, = R+ei7 C Sgs U {0}, where v depends on 7" and is chosen in such a way

that cos(k(y — arg(T))) > 61 > 0, for some fixed d;. The function L%, (B, (X))(T) is well
defined, holomorphic and bounded in any sector

Suorin ={T €C*:|T| < RY* | |d—arg(T)| < 0/2},
where 7 < 6 < 7 +20 and 0 < R < 01/K. This function is called the my—sum of the formal
series X (T) in the direction d.

In the next proposition, we give some identities for the mg—Borel transform that will be
useful in the sequel.

Proposition 8 Let f(t) = Y ons1 [ty G(t) = 32,51 gnt™ be formal series whose coefficients
frs gn belong to some Banach space (E, ||.||g). We assume that (E,||.||g) is a Banach algebra for
some product x. Let k,m > 1 be integers. The following formal identities hold.

(60) B (151907 ()) (7) = k7B, (F(1))(7)
. * 7t m . ds
m 7) = Tk —s =1 Sl/k i
(61) B (" O)0) = g [ = 9 B (PO
and
62 By (70 %07 = 7% [ B PO = 99) By (60 6) 5.

In the following proposition, we recall some properties of the inverse Fourier transform

Proposition 9 Let f € Eg ) with § >0, p > 1. The inverse Fourier transform of f is defined
by

+oo
FU@) = i [ ) exliom)dm

(2m)
for all x € R. The function F~1(f) extends to an analytic function on the strip

(63) Hp = {z € C/|Im(z)| < B}.

Let ¢(m) = imf(m) € Eg,_1). Then, we have

(64) 0.F () (z) = F 1 (9)(2)

for all z € Hg.

Let g € Eg ) and let (m) = Wf*g(m), the convolution product of f and g, for allm € R.
From Proposition 4, we know that ¢ € Eg ). Moreover, we have

(65) FHNEF H9)(z) = F HW)(2)

for all z € Hg.
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4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

4.1 Formal solutions of the main convolution initial value problem

Let k1,ke > 1, D > 2 be integers such that ko > k1. Let §; > 1 be integers such that

(66) =01, & <41,

forall1<I<D-—1. Foralll<I<D-—1,let d;,A; > 0 be nonnegative integers such that
(67) d>6 , N—d+6—-1>0.

Let Q(X), Q1(X), Q2(X), Ri(X) € C[X], 0 << D, be polynomials such that

(68) deg(Q) > deg(Rp) > deg(R;) , deg(Rp) > deg(Q1) , deg(Rp) > deg(Qa),

for all m € R, all 0 <1 < D — 1. We consider sequences of functions m +— Cp ,(m,¢€), for all
n > 0 and m +— F,(m,e), for all n > 1, that belong to the Banach space E(g ) for some 3 >0
and p > max(deg(@Q1) + 1,deg(Q2) + 1) and which depend holomorphically on € € D(0,¢g) for
some €y > 0. We assume that there exist constants Ky, Ty > 0 such that

(69) Conrm, )50 < Kol)"

for all n > 1, for all e € D(0,¢). We define Co(T,m,€) = >, <1 Con(m,e)T™ which is a
convergent series on D(0,Ty/2) with values in Eg ) and F(T,m,€) = > n>1 Fn(m, €)T™ which
is a formal series with coefficients in Eg ). Let c12(¢),co(e),co0(€) and cr(e) be bounded
holomorphic functions on D(0, €g) which vanish at the origin e = 0. We consider the following
initial value problem

(70)  Q(im)(drU(T,m, €)) — TP~ DAV Ry (im)U (T, m, €)

ezl [ U(T im1)U(T,my, €)d
(2m)1/2 J_ Ql( (m —my))U(T,m —my,€)Q2(im1)U(T, my, €)dm;

D-1
+ Z Ry(im)eM—dita—Lpd G?U(T, m,€)
=1

-1_c(e) +OOC(T — m1, €)Ro(im1)U(T, m1, €)d
a2 o(T',m — ma, €) Ro(ima)U(T', m, €)dmy

—1o0(e) [T Ro(im1)U(T d “Lep(e) F(T
(27‘_)1/2 . gvo(m—ml,e) O(Zml) ( ,ml,e) m1+6 CF(E) ( ,m,e)

+ €

+e€

for given initial data U(0,m,¢) = 0.

Proposition 10 There exists a unique formal series

Tme ZUme

n>1

solution of (70) with initial data U(0,m,€) = 0, where the coefficients m — U,(m,€) belong to
B, for 8> 0 and p > max(deg(Q1)+1,deg(Q2)+1) given above and depend holomorphically
on € in D(0, €).
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Proof From Proposition 4 and the conditions stated above, we get that the coefficients Un(m,e)
of U(T,m,e¢) are well defined, belong to Eg ) for all € € D(0,¢), all n > 1 and satisfy the
following recursion relation

(71) (n =+ 1)Un+1 (mv 6)

Rp(im) 5,1 .
= Qum) 520" (n+6p — (6p — 1) (k2 + 1) = ))Unisp—(5p—1)(kat1) (M5 €)
et c1a(e) [T . .
+ Qlim) Z @m)i2 | . Q1(i(m —my))Uy, (m — my,€)Q2(im1) Uy, (M1, €)dm;
ni+nz=n,n1>1,n2>1
D-1 .
n Z Ry(im) <6Al*dl+6171H§.l_1(n+ 5 — dy —j)) Unss,—a (m, €)
2+ Qlim) =0 e
e cole) [T
+ — Cony (m —my, €)Ro(im1)Up, (m1, €)dmy
Q(Zm) n1+n2=f§21,n221 (27T)1/2 % 1 i
e Leoo(e) teo , e Lep(e)
+ W N Co’()(m —mi, 6)R0(Zm1)Un(m1, e)dm1 + WFn(m, 6)
for all n > max(max;<j<p_1d;, (0p — 1)(k2 + 1)). O

4.2 Analytic solutions for an auxiliary convolution problem resulting from a
my, —Borel transform applied to the main convolution initial value prob-
lem

We make the additional assumption that
(72) d; > (51 — 1)(:161 + 1)

for all 1 <1 < D — 1. Using the formula (8.7) from [31], p. 3630, we can expand the operators
T‘Sl(kﬁl)@fpl in the form

(73) TR = (TR lop) 4 YT Ay TR O (TR gy
1<p<é—1
where As, ,, p=1,...,0; — 1 are real numbers, for all 1 <[ < D. We define integers alllk1 > 0in

order to satisfy
(74) di+k+1= 51(76‘1 + 1) + dll,’ﬁ

for all 1 <1< D — 1. We also rewrite (0p —1)(ka +1) = (0p — 1)(k1 + 1) + (6p — 1) (k2 — k1).
Multiplying the equation (70) by T%1*! and using (73), we can rewrite the equation (70) in
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the form
(75)  Q(im)(T* 1 opU(T, m,e))
= Rp(im)T0r=Vk2=k) (TR 90001 (T m, €)
+ Rp(im) Z AéD’pT(‘sD*l)(k&*kl)Tkl(5D*P) (T’““E)T)I’U(T, m, €)

1<p<dp-1
“+oo
4 e lrhtt (Cl 2)(1/)2 Q1(i(m —m))U(T,m —mq,€)Q2(im1)U (T, my, €)dmy

+3° Riim) (Bt at gt (T 9p) U (T, m €)

YD Ay AR O (TR R U (T, m, )

1<p<—1

+o0
_ C .
1Tk1+1 (2;() 1)/2 » C()(T, m—my, E)RQ (zml)U(T, my, e)dm1

“+o00

_1Tk1+1%(6) C(),()(m - ma, G)Ro(’iml)U(T, mi, e)dm1 + 6_1CF(€)Tk1+1F(T, m, 6).
-0

+e€ (2ﬂ)1/2

We denote wg, (7, m, €) the formal my, —Borel transform of ﬁ(T, m, €) with respect to T', g, (T, m, €)
the formal my, —Borel transform of Cy(T',m,€) with respect to T' and )y, (T, m, €) the formal
my, —Borel transform of F(T,m, 6) with respect to T'. More precisely,

Wi, (T, M, €) ZU m, €)=~ , Pk (T,m,e€) Zanme -
n>1 /7) n>1 (17)

Using (69) we get that for any x > kj, the function ¢, (7, m,€) belongs to ngﬁuh ) for all
e € D(0,¢p), any unbounded sector Uy centered at 0 with bisecting direction d € R, for some
v > 0. Indeed, we have that

(76) 1@ (75 )l | ,8.41,k1.,)

1+ |72k ||
<) _NCon(m,e)llsum(  sup  ———exp(—v|7|") )-
nzz:l ! (70 r€D(0,p)UU,4 7| F(;%)

By using the classical estimates

(77) sup 2™ exp(—mox) = (@ Mie=mi
>0 ma
n_1
for any real numbers my > 0, my > 0 and Stirling formula T'(n/k1) ~ (2m)/2(n/k1)*1~ 2e—"/k

as n tends to +00, we get two constants A, A3 > 0 depending on v, k1, k such that

1 2k1 n e —vx
(78) sup iexp(—uh!“) | |n :sup(1+9162’“/”‘)$71 c —
T€D(0,p)UU,4 7| F(E) x>0 F(;?l
n—1mn1 n1 on—1 2k n-1,26 -1y 2k
< e n PN T T ) Tk
< (Ot By ) frin/i)
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for all n > 1. Therefore, if the inequality Ao < Ty holds, we get the estimates

A1A2K0 1

Ty 1—’%—3‘

(79) ||90k1 (7—7 m, E)H(zx,ﬁ,u,kl,n) < Al Z Hcﬂ,n(mv €)||(B,,LL)(A2)n <

n>1

On the other hand, we make the assumption that iy, (7, m,¢€) € F(Cflﬁukl k1) for all € €
D(0, €p), for some unbounded sector Uy with bisecting direction d € R, where v is chosen above.
We will make the convention to denote 1/),‘51 the analytic continuation of the convergent power

series 1, on the domain Uy U D(0, p). In particular, we get that wgl (T,m,€) € F(‘fjﬁ k1 ) for
any k > k1. We also assume that there exists a constant kal > 0 such that

(80) 195, (710 o ) < Gty
for all e € D(0,€p). In particular, we notice that

(81) 18, (7m0, vy ) < G,y

for any x > k1. We require that there exists a constant rg g, > 0 such that

(52) = ron

forallmeR, all1 <I<D.
Using the computation rules for the formal my, —Borel transform in Proposition 8, we deduce
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the following equation satisfied by wy, (7, m, €),

(83) Q(im)(kar*wy, (1,m, €))

k1 1 & Gp=D(ko—ky) 4 5 ds
_ . 1 k D ¢0p 1/k1 —
RD(Zm)F(WXQ_kI))/O (T —s) ! F1” 8" P wg, (577 m, €)=~
. Tkl
+ Rp(im) 1<§5: 1A6D,p ((5D 1) (ka— k1)+k1(6D p))
<p<ép—

T (p=1)(kg—k1)+k1 (5p—p) d
—1 S
X / (Th — 5) k1 k’l’spwkl(sl/kl,m,e)—s
0

k

Lt Tk /T 1( ki g)l/ka
€ I T — S
1+ kfll) 0

c € S +o00
X(<21£f>(1/)25/0 | Qulilm = m)u (s =)0 m =€)
ds

1
dxdm1> —

XQZ(iml)w’ﬁ (xl/kl ) 1M, 6) (3 — w)x S

kl ds

+ZRz(i’m) Adire -1 T 7" %y 1(;6161551%1(81/7617%6))i

1<p<é;—1 D( ”“1 +6; —

T k 1/k
+ e / T — !
r(1+k—11) 0 ( )

s +o0 1
X < CO()?/23/ / gokl((s—x)l/kl,m—m1,E)Ro(iml)wkl(xl/kl7m1,€)dxdml) cis
0

et A
e

+5z p— l(kpspwk ( 1/k1 .m 6))d5>
S

(2m —00 (s —x)z
k1 k1 +00
-1 T ki yi/k C00(€) _ - 1/ky ds
+e Tt kll)/o (r s) (27r)1/2( . Co,0(m —mq, €)Ro(im1)wg, (s /™, my, €)dmy ) — .
7k ™ ds
+ete 6/ TR gyl kyd sl/kl,m,e—.

In the next proposition, we give sufficient conditions under which the equation (83) has a solution

wgl (7,m,€) in the Banach space FZ v Bopisk1 ) where 3, are defined above and for well chosen

Kk > k.

Proposition 11 Under the assumption that

11 1 ko di+(1—6)
84 —=— -, >
(84) K kq ko ko — k1 — dj + (1 —51)(k'1 + 1)

for all 1 <1 < D —1, there exist radii rgr, > 0, 1 <1 < D, a constant @ > 0 and constants
(1,2, €0,0, €05 €15 €1,0, CF, G2 > 0 (depending on Q1,Q2, k1, 1, v, €0, Ry, Ay, 6,dy for 1 <1< D —1)
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such that if

c1.2(€) co(€)
(85) Sup ‘ ’ <Gz sup | ’ <Co H‘Pkl (T,m, G)H(V,ﬁ,u,kl,n) < (1,
eeD(0,¢9) € ceD(0,e) €
co,0(€)
sup | | <G00 5 [lCo0(m, €[, < Co,
e€D(0,¢0)
CF(ﬁ)
sSup | | <d{F , ||¢g1 (T?m’ E)H(V,ﬁ,p,,kl,f@) < C2
e€D(0,ep) €

for all e € D(0,€p), the equation (83) has a unique solution w,ffl (1,m,€) in the space F(Cf,’ﬂ%klﬂ)

where 3, > 0 are defined in Proposition 10 which verifies ngl (7,m, )|, k1 r) < @, for all
e € D(0,¢).

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 3 One can choose the constants rq g, > 0, for 1 <1 < D, a small enough constant
@ and constants (1.2, o, €0,0,C1,¢1,0,CF, G2 > 0 (depending on Q1, Q2, k1, i, v, €0, Ry, Ay, 6y, dy for



28

1 <1< D —1) such that if (85) holds for all ¢ € D(0,¢p), the map HF' defined by

(86) HE (w(r,m))

k

. st _ _
_ RD(.Zm) 1 (Tkl _ S)%M_lkasdDw(sl/kl,m)@
Q(im) p,p(Co=Ul=hly fy
k1
Rp(im) 1
+ == As
Qim) 1§p§5:p—1 PP klr((5D*1)(1f2*1]2)+k1(513*p))
k1 _ _ _
x/ (TF —s) S Ziwﬁ(éD p)_lk}fspw(sl/kl,m)ﬁ
0 S
Tk
4 6_1 1 / I(Tk;l _ S)l/kl
Q(im)k T'(1+ 1) Jo
S +oo
(229 [ utton =m0 =)
1 ds
; 1/k il
X Q2 (imy)w(x " my) = $)xdaﬁdm1> .
D—1 . k1 dal
+ Z Rl(lm) eAlfdri»(slfl ]‘1 / (Tkl _ S) l]éllel _l(klalsélw(sl/k’l m))@
. d )
= Qum) ky D (L) 70 s
Al_dl"!‘(;l_l 1 Tkl kl %—F(SZ—P—l D _.p 1/k1 ds
+ > Aspe - (tFr — 5) R (kY sPw (s m)) ==
1<p<d,—1 ki I( lk,fl + 6 —p) 70
Tk
4l co(€) / I(Tkl _ g)l/k
Q(im)k T'(1+ 1) Jo
X 13/5 /+oo o, (s — )% m — my, €) Ro(imy )w(z'/* ml)#dmdml ds
@2m2 " Jo J o ' 7 ’ 7 (s —x)x s
k1 +oo
_ co,0(€) / Y . / : 1/k ds
+el— : T —g) P ———— Coo(m—my,€)Ro(imi)w(s™ /", my)dmy)—
Qimmr+ D) o T L, oot Rolmuls R mdm)S
cr(e) T ds
e F / R g Wkgd (kL
QT+ 2) Jo YR r

satisfies the next properties.
i) The following inclusion holds

(87) HE (B(0,w)) € B(0,w)

where B(0, @) is the closed ball of radius @ > 0 centered at 0 in F

(1, Bosk1 o) for all e € D(0, ¢€).
ii) We have

1
(88) 1 (w1) = HE (W)l 0,,0k1 ) < Sllwr = walle,p ik )
for all wy,ws € B(0,w), for all e € D(0,¢).

Proof We first check the property (87). Let € € D(0,¢p) and w(7,m) be in F(‘Iljﬁ“k1 ) We
take (1.2, Co,C0,0,C1,¢1,05 G2, CF, @ > 0 such that (85) holds and [|w (7, m)||, 8,k x) < @ for all

e € D(0,¢€).
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Since k > k1 and (68) hold, using Proposition 2, we get that

k

1 c1,2(€) ™ ki _ g\ 1/
) I a1

1 s p+too '
) (Ws/o oo Q1 (i(m — m1)w((s — 2)"/*,m —m)

;dfvdml §|
(s —x)x s

ng(iml)w(ﬁl/kl,ml)

< C3C12 (fw(r, m)| < C3(1 2w
< (27r)1/2k1r(1+k:%) ) (B k1K) = (27.‘.)1/2k111(1+k711).

(V»Buu‘ykl ’K;)

Due to the lower bound assumption (82) and taking into account the definition of  in (84),
we get from Lemma 1 and Proposition 1

k

. . -
(90) H%D(E;T)) klf(W) /0 (g 2 s % o
1
Cgk(lsD I
- TQvRDle(W) s T 8,1k ,r0)
CokiP

=ty D(E2 k)
and that
O s

Q(Zm) 5D7pklr((5D71)(k2721)+k1(6D7p))

T Gp—1)(ka—k1)+k1(Sp—p) d
k —Lyp 1/k S
x/ (T —s) k1 ki sPw(s / 1,m)—s H(Vﬂ’“,kl’,ﬂ)
0

[Asp pl C2k?
< N —— ([ (T, )| (1,8 gk )
O N e ) whs
|Asp p|CokY _
- TQ,RD]ﬁF((5D*1)(k24’2)+k1(5137p))

forall 1 <p<dp—1.

From assumption (68) and due to the second constraint in (84), we get from Lemma 1 and
Proposition 1

1
Ri(im) a_gis_1 1 7 Gk ds
(92) | gt e et [k ) B ) P
]ﬁF( k'll) 0
1 Ok 1 Ok
Aj—dj+6;— 2 _ _ 2
< ‘6’ =ity 17, dll Hw(T7m)H(V,B,M,k‘1,H) < ’dAl o 17, dll
Q,R; k1F( 21:1) QR klr( lk/lq)
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forall1 << D-—1 and

Ry(7 1
e
@ T (%A 46— p)
k1 dll,kl d
X/O (Tkl —s) = +6l_p_1(k11)5pw(81/k13m))f”(u,ﬁ,u,kl,n)
1 Cok?
A — — 2
S |€| ! dl+§l ! | 6l7p| dl ! Hw(T?m)H(l/,ﬁ,u,kl,H)
Q. ki T(—fL + 6, — p)
P
< |€|Al—d1+5l—1 1 |A5zp| 102k
@1 7 k‘1r( duil +5l )

forall 1 <p <4, — 1. Since k > ky and (68) we get from Proposition 2 that

71 +oo
O 1 Gaertrn " (e [ et im0

) 1
< RaCimapute! ) dadms ) s

C3(1,0
~(2m)' 214+ )

C3(1,0
@m) 2k (1 + &)

H90k1(7— m, 6)| (V,B;Lkl,li)Hw(T m)” (v,B,p,k1,K) < Cl

Since k > k; and (68) we deduce from Proposition 3 that

k

_1 co,0(€) T e L oo e
O 1 e D 9 Gyt Cootm =m0

C4€0,0

. ds
X RO(Zml)w(sl/kl ml)dml) (8,101 ) < @) PR T (1 T )

[1Co,0(m, €)ll(s,0)

C4€0,0
(2m) 12k T (1 + )

Gow

N[ m)ll .k m) <

and finally bearing in mind Proposition 1 we get that

k

_ cr(e) T ds
9) e gt [ = 0 Ll
k1

Q(im)kiT'(1 4+ -

< sup CzCF
" mer |Q(im)| kiT(1 +

1 C
I (sl < S8 o %P ¢,

im)[ =D (1+ 1)
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Now, we choose g g, > 0, for 1 <1 < D, (1,2,€0,0,¢0,CF,€1,0,¢1,¢2 > 0 and @ > 0 such that

C 2 CoksP
O7) Gy /231511;3+ T+ rQ,RDM(?‘;;lLM)w
+ (‘iéfii)(|igii+kl(an—p> @t Dz_jl @ : 0251(1; l
1<p<ip—1TQRp R k1 ) =1 "Q.Ry kal(2%)
_ 1 Oy kY C3(1,
! 19;611 O 1TQ’RZ o le(dl;;’fngrlél - p)w ’ (2”)1/2’:1;(01 +5) e
C C
* G T S oG T kag)@ s

Gathering all the norm estimates (89), (90), (91), (92), (93), (94), (95), (96) together with the
constraint (97), one gets (87).

Now, we check the second property (88). Let wy (7, m), ws(r,m) be in F¢ . We take

(V76,M,]{?17f$)
wo > 0 such that

[wi (T, M) (,8,1,01 1) < @5

for I = 1,2, for all e € D(0,¢p). One can write

(98)  Q1(i(m —ma))wi((s — )% m — m1)Qa(im )wy (z/*1,my)
— Q1(i(m — m1))wa((s — )% m — m1)Qa(imy )wa(z/*,my)

= Q1(i(m —my)) (wl((s — ac)l/kl,m —my) —wa((s — x)l/kl,m — ml)) Qg(iml)wl(a:l/kl,ml)

+ Q1(i(m — m1))wa((s — )% m — m1)Qa (i) (wl(xl/klaml) — wz(xl/kljm1)>

and taking into account that x > ki, (68), (98) and using Proposition 2, we get that

k

1 c1.2(€) ™ ki g\1/k
0 W g b

s —+o0
X ((27r1)1/25/0 /_ (Q1(i(m —m1))wi((s — 2)Y* m —my)
x Qa(imy)wi (z/*, my) — Q1(i(m — m1))wa((s — z)/F  m — my)
X Qa(imy)wa (2% my))

< C3(1,2
~2m)V2T(1+ 1)

ds
d:cdm1> ? ‘ (v,B,p,k1,K)

b
(s —x)x

(| |w1 (7—7 m) — w2 (T’ m)‘ |(l/,ﬁ,/.L,k1,I€) (‘ |w1 (7-7 m)|

(V75»/‘L»kl 75)

C3(1,22w
(2m) 2k T (1 + £-)

+ HwQ(Tv m)”(u,ﬁ,y,kl,n)) < le (T7 m) - w2(7—7 m)‘ (v,B,p,k1,K) -

On the other hand, from the estimates (90), (91), (92), (93), (94), (95) and under the constraints
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(68), (84) and the lower bound assumption (82), we deduce that

k

RD (zm) 1

(100) || /T PR S Lo
- T — S 1 S
Q(im) klr(W) 0 1
ds
X (wl(sl/kl’m) — w2(51/k17m))?H(V’ﬂ’M’kl’H)
CokiP
>~ w17, M) —wa(T, M v "
TQyRDkl]-—‘(((SD_lgc(le_kl))H ( ) ( )H( 7ﬁ7/"k‘17 )
and that
RD(im) 1
(101) ] Q@im) 5D,Pklr((6D71)(k27£1)+k1(5D*p))
1

™ (Gp=1)(ka—k)+k Gp-p) ds
X /0 (" —s) & KD (wy (s'/F1 m) — w2(81/k17m))?”(u,ﬁ,u,kl,n)

‘A5D7P|C2k€)

< _ _ _ le (7—7 m) - wQ(Tv m)”(u,ﬁ,p,k )
k(2= UR ) !
forall 1 <p<dp —1 and also
. k1 d}
LIS PR Sy R
) d
Q(im) klr(%) 0

5 ds
X (k:lls‘sl (wl(sl/kl,m) — w2(51/k17m)))?H(u,B,u,klﬁ)

1)
< |€|Az—dl+5l—1 1 Clel

dl le (7—7 m) — w2 (7-7 m) H(V,B,u,kl,n)
o e
forall 1 <1 < D — 1 together with
] 1
(103) |}225((”n)) AéhpeAz*der&zfl —
v kiI'( lk’fl +0;—p)

™ k %4—51—?—1 P 1/k 1/k ds
[ I 8 ) = (s ) st

1 CokP
< Je| Aot |As, pl 21

dl
TQ,R, e T( lklfl +6,—p)

[fwi (T, m) = wa (T, m)||(0,8,p1,k1,)

for all 1 < p < §; — 1. Finally, we also obtain

(104)
Th1 s +00
. co(€) / ko 1/k1< 1 // ok
TG EAR TR N SN CE T A SRRLE
. 1 d
x Ro(ima) (w1 (z/* my) — wz(xl/kl,ml))@—a:)acdxdml> ?SH(V,B,mkl,n)
C3C1,0

= oy gyt = e mlos .
1
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and

S cople) Tk gk L [T _
(105) lle Q(z'm)kzlr(Hkﬂ)/ (T =) eyl Coolm=mu€)

] ds C4Qp,
x Ro(im1)(wi (s/51,my) — wz(sl/’“,ml))dml)jﬂ(uﬁ,u,km) = (27r)1/2k41I(‘)(01 + L)CO
k1

X ”wl (7_7 m) — w2 (Ta m) | |(l/,,8,u,k:1,l£)'

Now, we take w, rg r, >0, for 1 <1 < D and (1,2, ¢0,0,€0,¢1,0,¢1 > 0 such that

C5¢1 02w CokiP
(106) : + —————+
@M PRT(L+ %) 1 gy by D(Co= "))
‘A5D7P‘02k11) + Z —d;+0;—1 1 02]{51
op—1)(ko—k k1(6
1gp§5D—17“Q,RDk‘1F(( p=Lka= ki)Jr 1(lp-p)) 1<i<D—1 "R ( ”“)
1 C k:p C
D D e e T
1<p<§—1 QR kil (2% + 6 — p) (2m) 1+ 7)
C4Co,0
+ .
(2m)Y 2k T (1 + )C <1/2

Bearing in mind the estimates (99), (100), (101), (102), (103), (104), (105) with the constraint
(106), one gets (88). Finally, we choose rg g, > 0, for 1 <1 < D, (1.2,€0.0,C0, ¢ C1,0,C1, 2 >0

and w > 0 such that both (97), (106) are fulfilled. This yields our lemma. O
We consider the ball B(0,w) c F¢ (1,8, 1k ) Constructed in Lemma 3 which is a complete metric

space for the norm |[.||(,, 5,k k). From the lemma above, we get that H* is a contractive map
from B(0,w) into itself. Due to the classical contractive mapping theorem, we deduce that the
map H¥' has a unique fixed point denoted by w,‘fl (1, m,€) (i.e HM (w,‘jl(r, m,e€)) = w,‘fl (1,m,€))
in B(0,w), for all € € D(0, ¢y). Moreover, the function w,‘fl (1,m, €) depends holomorphically on

e in D(0,€p). By construction, w,‘fl (1,m, €) defines a solution of the equation (83). This yields
Proposition 11. O

4.3 Formal and analytic acceleration operators

In this section, we give a definition of the formal and analytic acceleration operator which is
a slightly modified version of the one given in [1], Chapter 5, adapted to our definitions of
my—Laplace and mi—Borel transforms. First we give a definition for the formal transform.

Definition 5 Let k > k > 0 be real numbers. Let f(1) = > ons1 [nm" € TC[[7]] be a formal
series. We define the formal acceleration operator with indices my, my, by

A i £(€) }:h

n>1

e £C[[¢])-

Notice that if one defines the formal my— Laplace transform ﬁmk (f) and the formal mj— Borel

transform Bmk(f) of f(T) by
= anF(%)Tn ) Bm,; (f)(Z) = F(%)

n>1 n>1
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then the formal acceleration operator Am;,mk can also be defined as

In the next definition, we define the analytic transforms.

Proposition 12 Let k > k > 0 be real numbers. Let S(d, % +0, p) be a bounded sector of radius
p with aperture % + 6, for some 6 > 0 and with direction d. Let F : S(d,% +6,p) = C be a
bounded analytic function such that there exist a formal series F(z) = > o>t Fn2™ € C[[2]] and
two constants C, K > 0 with

N-1
(107) |F(2) = Y Foz"| < CKNT(1+ N/E)|2|Y

n=1
for all z € S(d, % +6,p), all N > 2. The analytic mj—Borel transform of F in direction d is
defined as

(108) (B2, 5)2) = 5 [ Flwess((

Ly 2

uk+1

where 7y, is the closed Hankel path starting fmm the origin along the segment [0, (p/Z) ildt 5y )],
following the arc of circle [(p/2) ity (p/2)ei(d_%_%)] and going back to the origin along

the segment [(p/2)ei(d_ﬁ %), 0] where 0 < &' < 4 that can be chosen as close to 0 as needed.
Then, the function (B%%F)(Z) is analytic on the unbounded sector S(d,d") with direction d
and aperture 6" where 0 < 6" < &' which can be chosen as close to &' as needed. Moreover, if
(Bmkﬁ)(Z) = 1 F,Z"/T(n/k) denotes the formal mj— Borel transform of F', then for any
given p' > 0, there exists two constants C, K > 0 with

(109) (B Z 0 n_7" < CKNT(1+ N/k)| 2|V
n=1 k:

for all Z € S(d,8") N D(0,p'), all N > 2, where & is defined as 1/k = 1/k — 1/k. Finally, the
my,— Borel operator Bgﬁ; is the right inverse operator of the mg— Laplace transform, namely we
have that

(110) £l (v s (BL F)W)(T) = F(T),

for all T € S(d, T + ¢, p/2).

Proof The proof follows the same lines of arguments as Theorem 2, Section 2.3 in [1]. Namely,
one can check that if F'(z) = 2", for an integer n > 0, then

(111) By, F(Z) = Z"/T(n/k)

for all Z € S(d, ") by using the change of variable u = z/wl/’; in the integral (108) and a path
deformation, bearing in mind the Hankel formula

1 1 [
- tevd
T(%) 2m/7w redw
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where v is the path of integration from infinity along the ray arg(w) = —= to the unit disc, then
around the circle and back to infinity along the ray arg(w) = 7. From the asymptotic expansion
(107) and using the same integrals estimates as in Theorem 2, Section 2.3 in [1], together with
the Stirling formula, for any given p’ > 0, we get two constants C, K > 0 such that

1

N
Bl F(z)- Y r?%”’ = 1By, (Rx-1F)(2)] < OKNW‘Z‘N

=3

n=1
where Ry_1F(u) = F(u) — SN ! Fu™, for all N > 2, for all Z € S(d,§"”) N D(0, o). Therefore
(109) follows.

In the last part of the proof, we show the identity (110). We follow the same lines of
arguments as Theorem 3 in Section 2.4 from [1]. Using Fubini’s theorem, we can write

> vk ’U’~€ vk AU
(112) Efnk(v — (Bf.l%F)(v))(T) :k‘/ <—k F(u)elw) = du> e~ (%) dv

Lq

Therefore, by direct integration, we deduce that

k[ F(u TF
d d -
(113) £ (0 (Bl P)(T) = o A e
Now, the function u — # Th has in the interior of +; exactly one singularity at v = T
Tk _yk k
(since T is assumed to belong to S(d, % +¢’,p/2)), this being a pole of order one, with residue
—F(T)/k. The residue theorem completes the proof of (110). |

Proposition 13 Let S(d,«) be an unbounded sector with direction d € R and aperture c. Let
k>Fk>0 be given real numbers and let k > 0 be the real number defined by 1/k = 1/k — 1/l~€
Let f : S(d,a) UD(0,7) — C be an analytic function with f(0) = 0 and such that there exist
C, M >0 with

|f(h)| < CceMP”

for all h € S(d,a)) U D(0, ).
For all 0 < §' < /K (which can be chosen close to w/k), we define the kernel function

kk i

VQ&M

du
ukt1

exp(~(1)F + (5

where Vd’,;ﬁ, is the path starting from 0 along the halfline R e’

along the halfline RJrei(d*ﬁ*%). The function G(§, h) is well defined and satisfies the following

estimates : there exist c¢1,co > 0 such that

T 8’
([@+35+7) and back to the origin

]
€]

for allh € Ly =R e and all € € S(d, ") for 0 < 6" < & (that can be chosen close to &' ).

(114) [G(&,h)] < crexp(—ca(7)")
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Then, for any 0 < p < (ca/M)Y*, the function
dh
A F €)= | FI)G(E )7 = 9(&)

defines an analytic function on the bounded sector Sq .5, with aperture %= +6, for any 0 < § < a,
in direction d and radius p and which satisfies that there exist C, K > 0 with

N—-1
(115) 96) = 3 far B en < GRNT (14 N )Y
n=1

T(n/k)

for all & € Sapsp, all N > 2, where §(§) = >_,5; fngz;g{” is the formal acceleration

Amkmkf(f) where f(h) = > n>1 fuh™ is the (convergent) Taylor expansion at h = 0 of f on
D(0,r).

In other words, g(§) is the k—sum of §(§) on Sq s, in the sense of the definition [1] from
Section 3.2.

Proof We first show the estimates (114). We follow the idea of proof of Lemma 1, Section 5.1
in [1]. We make the change of variable u = h@ in the integral G(&, h) and we deform the path
of integration in order to get the expression

_ Rk S [ e emEayE 1
G(&h)__ﬂ(ﬁ) /Te e a %du

where v, is the closed Hankel path defined in Proposition 12 with the direction d = 0. Hence, we
recognize that G(&, h) can be written as an analytic Borel transform G(, h) = k(B?nkek)(f/h)

where e (u) = e~(1/9)* " From Exercise 1 in Section 2.2 from [1], we know that ej(u) has 0 as
formal power series expansion of Gevrey order k£ on any sector S[)’%H; with direction 0 for any

0 < ¢ < 7/k. From Proposition 12, we deduce that (B,?% ex)(Z) has 0 as formal series expansion
of Gevrey order k on any unbounded sector Sy v where 0 < §” < ¢’ < 6 < 7/k (where §” can
be chosen close to 7/k). Finally, using Exercise 3 in Section 2.2 from [1], we get two constants
c1,c2 > 0 such that

(BE, e)(Z)] < crem2l? ™"

for all Z € Sy 5#. The estimates (114) follow.
In order to show the asymptotic expansion with bound estimates (115), we first check that
if f(h) = h™, for an integer n > 0, then
I'(n/k)

~/4d~ — V) en
(116) e (€)= e

on Sqx.s,- Indeed using Fubini’s theorem, we can write

k ok
AL () = g [ e o g,
* k8! Lq h

um Vd

From the definition of the Gamma function we know that

n—ﬁkdh d n ny n
k/th e = o () =P
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and bearing in mind (111), after a path deformation, we recognize that

NPT

Ay F(©) = T(IBY, (1) () = )

L(n/k)

&

Since the Taylor expansion of f at h = 0 is convergent, there exist two constants Cy, Ky > 0
such that

N-1
(117) 1F(h) = fah"] < CrE RN

n=1

for all h € D(0,r), all N > 2. Taking the expansion (117) and the exponential growth estimates
(114), using the same integrals estimates as in Exercise 3 in Section 2.1 of [1], we get two
constants C', K > 0 such that

=z

—1 F n
A FO) = 3 NET = AL, (R 1)) < CRNT(+ N/l
n=1 k
where Ry_1f(h) = f(h) — SN f.h7, for all N > 2, all € € Sy.s, O

4.4 Analytic solutions for an auxiliary convolution problem resulting from a
my, —Borel transform applied to the main convolution initial value prob-
lem

We keep the notations of Sections 4.1 and 4.2. For the integers d;, d;, for 1 <[ < D — 1 that
satisfy the constraints (66), (67) and (72), we make the additional assumption that there exist
integers de’,Q > 0 such that

(118) di+ ko +1=8(ko + 1) + d7,

forall 1 <1 < D —1. In order to ensure the positivity of the integers dl2 k,» We impose the
following assumption on the integers dzl, Ky
(119) dll,kl > (51 — 1)(k2 — kl),

for all 1 <1 < D — 1. Indeed, by Definition of dlljk1 in (74), the constraint (118) rewrites
di,@ = dl{kl + ko — k1 — 0;(k2 — k1). Using the formula (8.7) from [31], p. 3630, we can expand
the operators T‘Sl(kﬁl)(‘)fpl in the form

(120) T5z(k2+1)3§j — (Tk2+1aT)5z + Z Aahkaz((sl*P) (Tk2+1aT)P
1<p<é,—1
where As, ,, p=1,...,0; — 1 are real numbers, for all 1 <1 < D.

Multiplying the equation (70) by T%2*! and using (120), we can rewrite the equation (70)
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in the form

(121) Q(lm) (Tk2+laTU(T’ m, 6)) - RD (Y’m) (Tk2+laT)§D U(Tv m, 6)
=Rp(im) > A5, TR0 (TR 002U (T, m, e)
1<p<ép—1

kgt C12(6) [T - .
+eiT (2m)1/2 Ql((m ma)U(T, m — mq, €)Qa(im1)U(T, my, €)dms

Df
+ 3 Ri(im) (EAZ*dlMHTd?kz (TR 1970 U (T, m, €)
=1

_ 2
YD Ay AR O (TR g U (T, )
1<p<§—1

+oo
+ 61Tk2+1(2070_‘_()€1)/2 . C[)(T, m—my, E)Ro(iml)U(T, my, e)dml

+oo
4 e lhetl (CO 0)(1/)2 Co.o(m —my, €)Ro(im1)U (T, my, €)dmy + € Lep(e) T TLE(T, m,e).

We denote Wy, (7, m, €) the formal my, —Borel transform of U(T, m, €) with respect to T', g, (T, m, €)

the formal my,—Borel transform of Cy(T', m,€) with respect to 7' and @kQ(T,m, €) the formal
my, —Borel transform of F(T,m,€) with respect to T,

(122)  wg, (1, m,€) ZU m,e€) Q) ko (T, My €) ZC’Onme
ko

n
n>1 n>1 (’7)
T/sz T,m,€) ZF m,€) ﬁ)
n>1 k2

Using the computation rules for the formal mj,—Borel transform in Proposition 8, we deduce
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the following equation satisfied by @y, (7, m, €),
(123)  Q(im) (ko™ @, (1,m, €)) — (kam2)°P Rp (im)g, (T, m, €)

. k2 7h2 o R ds
= Rolim) Y Aspai—s [ = 0 i V m)
1<p<dp—1 b=Pp)Jo

k

+ -1 Tkz /T 2( ko )1/k’2
€ — T — 5
F(l-&-é) 0

c € 5 400
X ((217,1_2)(1/)23/0 o Q1(i(m — m1))in, (s — )% m — my, €)

. . 1 ds
Qalim )iy (42 ) o )
D-1 ko k2 dikQ d
+ 37 Ry(im) [ et T / (7h2 = s) 2 (ke s, (5152, m, €)) 2
— F dl,kz 0 S
=1 (%2)

ko k2 d d
Aj—di+8-1 T k =240 -p-1 N 1/k s
Y gl JANGETE (kP (51142, m, ) 2
1<p<d—1 I(22+06,—p)7°

1 Tk "

i Tk;g _ 3 l/k’z
1+ 1) /o ( )

CO(G) s +o0 1/k2 . N 1/k2 ; @
X <(27r)1/23/0 /_Oo Or, (5 — )% m — my, €) Ry (im1 ) p, (z ,ml,e)(s_x)xdxdml ;

+e€

ko Th2 +00
-1_ T k 1/ky C0,0(€) - - 1/k ds
+e Tt ;712) /0 (T2 — 5)1/kz (27r)1/2( . Co,0(m —myq, €)Ro(im1)wg, (s / 2,m1,e)dm1)?

k
k2 2 ds

e TN / (Tk2 — s)l/kzvﬁkz(sl/k?,m,e)—.
%z) J0 s

We recall from [14] that o, (7, m,€) € F(Cf/ﬁ“ ko) for all e € D(0,¢p), any unbounded sector Sy

and any bounded sector Scbl centered at 0 with bisecting direction d € R, for some v > 0.
From Section 4.2, we recall that wli (1,m,€) € Fcll/,ﬁ,u,khkn’ for all e € D(0,¢), for some
unbounded sector Uy with bisecting direction d € R, where v is chosen in that section.

Lemma 4 The function

dh
Uy (rom,e) = Ap, o (e 4 (hymy€)(r) = [, (hym, )Gl h) -
20"k Ly h
is analytic on an unbounded sector Sy s with aperture = + & in direction d, for any 0 < ¢ <

ap(Uy) where ap(Uy) denotes the aperture of the sector Uy, and has estimates of the form : there
exist constants C’¢k2 >0 and v' > 0 such that

—u—Blm| 7]
(124) |1/),C€l2(7',m, e)| < C¢k2(1 + |m|)"He Bl \Wexp(y/’ﬂkz)
for all T € Syps, all m € R, all € € D(0,e0). In particular, we get that Ad (h +—

Mg My

Q,Z)gl(h,m, €))(r) € F(ij, Buks) JOT any unbounded sector Sq and bounded sector Sb with aperture
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% 0, with & as above, and we carry a constant Gy, > 0 with

(125) ngg (7’, m, 6) | ’(V/,,B,,u,kz) < Cdﬂkz

for all e € D(0, €p).

Proof Bearing in mind the inclusion (81) we already know from Proposition 13 that the function
T wgz (1,m,€) defines a holomorphic and bounded function (with bound independent of
€ € D(0,€)) on asector Sy, 5 (., 7)1/~ o With direction d, aperture % +4 and radius (co/v)V/% /2,
for some § > 0 and the constant ¢y introduced in (114), for all m € R, all € € D(O €0)-

From the assumption that the function T/’k (1,m,€) belongs to the space F(Vﬁ,ukl,kl)’ see
(80), we know that the my, —Laplace transform

£, (0 v (o, ) ) = [ i (o, expl(—())
d
defines a holomorphic and bounded function (by a constant that does not depend on e € D(0, €))
on a sector Sy, in direction d, with radius ¢’ and aperture § which satisfies % + 5 <0<
B teTt ap(Uyg), where ap(Uy) is the aperture of Uy, for some ¢’ > 0.
Hence, by using a path deformation and the Fubini theorem, we can rewrite the function
w,i (1,m,€) in the form

k ky TR2
= Lo, (s 0, (B, ) (w)e ™ —os

Vi kg8 0! /2

(126) Wclg (7-7 m, E) du

C2um

= B, (L (s 9 () () (1)

ka

where V1, 57.57/2 is the closed Hankel path starting from the origin along the segment

5/

0, (o' /2)" %)

/ - 5/
following the arc of circle [( '/2)e it gyt ( '/ 2) %_7)] and going back to the origin

along the segment [(a’/2)e =2k~ %), 0], where 0 < ¢ < T +ap(Uy) that can be chosen close to
= +ap(Uq).

Therefore, from Proposition 12, we know that 7 — w,i (1,m, €) defines a holomorphic func-
tion on the unbounded sector S(d, §") where 0 < 6” < §’, which can be chosen close to §’, for all
m € R, all e € D(0,¢y). Now, we turn to the estimates (124). From the representation (126),
we get the following estimates : there exist constants Fy, s, F5 > 0 such that

EpeBlml k %/ Lrlyk ’T‘kg
12 d < Egl’f" 2 ko —Eg( 2
( 7) |17Z}k2(7-7m?€)‘ = (1 + ’m|)'u € |T| + 0 gha+1 ds

< E16_6|m| 6E2|T\k2‘7_|k2 I 1 e*E3(%)k2|T‘k2
- (1 + |m])/‘ FEsko

for all 7 € S(d,0"”), all m € R, all e € D(0, ¢y). Besides, from the asymptotic expansion (109),

we get in particular the existence of a constant Fy > 0 such that

(14 [m)*

(128) [¥h, (mym, €| < 7]
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for all 7 € S(d,0”)N D(0, p') and some p’ > 0. Finally, combining the estimates (127) and (128)
yields (124). O

We consider now the following problem

(129) Q(im)(kngkakQ (t,m,€)) — (k27k2)5DRD(im)wk2(T,m, €)

. k2 7*2 o ds
= RD(Zm) Z AdDJ)I‘((S-)/ (Tk2 — S)6D p l(kgspwk ( 1/k2 ,m E)) s
1<p<ip-1 b=b)Jo
ko k2
-1 T ko \1/ka
+e F(1+1)/ (T s)
c oo
( ”1/2 / [ Qutitm = i)y (s = )72 m = )
. 1 ds
ng(zml)ka(xl/k2,m1,e)(s_gj)xdxdm1> .

r(‘e

2

. Aj—di+6,—1 k2 T ko dlz"”fl 51 .61 1/ks ds
+ > Rilim) | ¢ —— [ ) sy (s m, )
— ) Jo

Z Ap—dp+5,—1 k2 ' k kg 5 po1 1/k ds
s o
+ A&,pe Lo 42 / (T ? = S) k2 (k2p3pwk2 (8 / 27m7 6))?
I,k
1<p<t,-1 I(22+06,—p) 70
k

S / LT
€ R EE—— T — S
F(l—}—é) 0

s ptoo
. < CO()el)/zs/ / k(s = )72, m — my, €) Ro(imn )i, (/72 E)ldxdm1> 5
0 S

(27 oo (s —x)x

_ T2 T copole) , [T . ds
+e 11>/0 (= s) e ST (] Coolm—mu, ) Roima ) (51, €)dimn) 2

+ e tep(e) il /Tk2 (TF2 )1/k2¢d (5% m (—:)ds
Fl€) 1~ €)—
1+ ) s

for vanishing initial data wg,(0,m,€) = 0, where 10,‘12 (1,m, €) has been constructed in Lemma 4.
We make the additional assumption that there exists an unbounded sector

SQvRD = {Z € C/|Z’ > TQRp > ‘arg(z> - dQvRD‘ < nQ,RD}

with direction dg g, € R, aperture 7g r, > 0 for some radius rg g, > 0 such that

Q(im)

(130) Rp(im)

€ SQ,RD

for all m € R. We factorize the polynomial P,,(7) = Q(im)ks — Rp (im)ngT(aD*I)kQ in the form

(131) Po(r) = —Rp(im)KSP TP %27 (7 gy (m))
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where

_ |Q(Zm)‘ ﬁ
(132) ql(m)_(—]RD(imﬂng_l)( )
Q(im) 1 27l

X exp(\/jl(arg(RD(im)ng—l)(5D — 1)ks * (0p — 1)k2))

forall 0 <1< (6p —1)ky — 1, all m € R. )
We choose an unbounded sector Sy centered at 0, a small closed disc D(0, p) and we prescribe
the sector Sg g, in such a way that the following conditions hold.

1) There exists a constant M; > 0 such that
(133) [T —a(m)| = My(1 + |7])

forall 0 <1 < (6p — Dko — 1, all m € R, all 7 € S; U D(0,p). Indeed, from (130) and
the explicit expression (132) of ¢;(m), we first observe that |g(m)| > 2p for every m € R, all
0 <1< (6p —1)kg — 1 for an appropriate choice of rg g, and of p > 0. We also see that for all
me R, all 0 <1< (dp —1)ky — 1, the roots ¢;(m) remain in a union U of unbounded sectors
centered at 0 that do not cover a full neighborhood of the origin in C* provided that ng r, is
small enough. Therefore, one can choose an adequate sector S; such that Sy NU = () with the
property that for all 0 <[ < (6p — 1)ka — 1 the quotients ¢;(m)/7 lay outside some small disc
centered at 1 in C for all 7 € Sy, all m € R. This yields (133) for some small constant M; > 0.

2) There exists a constant My > 0 such that
(134) |7 = a1y (m)| = Ma|qi, (m)]

for some Iy € {0,...,(0p — 1)ka — 1}, all m € R, all 7 € S; U D(0, p). Indeed, for the sector Sy
and the disc D(0, p) chosen as above in 1), we notice that for any fixed 0 < Iy < (6p — 1)k — 1,
the quotient 7/, (m) stays outside a small disc centered at 1 in C for all 7 € Sy U D(0, p), all
m € R. Hence (134) must hold for some small constant My > 0.

By construction of the roots (132) in the factorization (131) and using the lower bound
estimates (133), (134), we get a constant Cp > 0 such that

(135) [ Pu(r)] 2 M0 0y Ry (i) k32 (ALt 1 O
Rp(im) k37

k5P
(k3p=1) @513
(1 + .,L.)((SDfl)kal

. Sp—1)— 1
X (rmnzlg ; (6D71)7i)(1 + |7-|k2)( p—1)—7;
(14 ab)0 D5

1
> MRy, (rg.Rp) ®0 % | Rpp (im))|

_ GoanE : ko) (6D—1)— 7
= Cp(rQ,rp) o~ V%2 [Rp(im)|(1 + |7[*) 2

for all 7 € S;U D(0,p), all m € R.

In the next proposition, we give sufficient conditions under which the equation (129) has a

solution ng (1,m, €) in the Banach space F(Cll/, Bopusks) where v/, 8, u are defined above.
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Proposition 14 Under the assumption that
1
(136) op = 0+ —
ko

for all 1 < 1 < D — 1, there exist a radius rqr, > 0, a constant v > 0 and constants
$1,2550,05, S0 S1, S1,05, SF5 S2 >0 (depend”lg on Q17Q27k27CP),U’7 v, 607Rla A156l7dl fOT‘ 1 < l < D_l)
such that if

co(€)

C1,2\€
s s (92 <qn 0 ap 12D <ay o (rm ol s <o
e€D(0,e0) € e€D(0,e0)
00,0 €
’7( >\ <00 » [Coo(m,e)llau < <o,
e€D(0,e0)
CF(e)
sup | | <<r o WL (T m, Ol sk < <2
e€D(0,e0) €

for all e € D(0,¢€p), the equation (129) has a unique solution w,‘é (1,m, €) in the space F(Cf,,’ﬁ%kz)
with the property that ||wg2(7',m, Nl Buks) < v, for all € € D(0,¢0), where B, > 0 are

defined above, for any unbounded sector Sy that satisfies the constraints (133), (134) and for
any bounded sector 53 with aperture strictly larger than % such that

(138) Sg - D(O7p) ) Sfl C Sd,n,é

where D(0, p) fulfills the constraints (133), (184) and where the sector Sq .5 with aperture T +§
is defined in Lemma 4, where 0 < § < ap(Uy).

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 5 One can choose the constant rq r, > 0, a constant v small enough and constants
§1,25 50,0, 505 1, 61,05 SF> 2 > 0 (depending on Q1, Q2, ka2, Cp, p, v, €0, Ry, Ay, 6y, dy for1 <1< D—1)
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such that if (137) holds for all e € D(0, ¢q), the map H*? defined by

(139) HE(w(r,m))

k

RD(Zm) 1 /T ’ k 6p—p—1 1/k ds
= Asp (TF2 — )PP (kP sPay (s / 2 m))—
Pon(7) 1<p%:Dl PPT(dp —p) Jo 2 s
Tk
+ 6_1 1 / 2(7_k'2 _ S)l/kﬁg
Pu(m)T(1+ 55) Jo
y c1,2(6)s/s oo Q1 (i(m — m))w((s — )%, m — my)
@m2 Jo Jow
< Qa(im1)w (@, my) ———dwdmy ) 2
(s —a)z s
D-1 . ko 2
+ };Z(Zm) 6Al_dl+6l_1d+ / (TkZ _ 3) 2:2 71(k251851w(81/k’2’m))@
s () p(‘fez) Jo ;
Aj—di+6;—1 1 i ko ®+51—P—1 PP 1/k2 ds
+ Z Ag, pet et = (1772 —5) F2 (koPsPw(s ,m))?
1<p<d—1 T(722 46 —p)7°
Tk
+ 6_1 1 / 2(7_k'2 _ S)l/kg
P (T)I(1 + klj) 0
co(e) T , 1 ds
X <(27T)1/2S/0 /;Oo @kQ((S—x)l/kQ,m—m17e)RO(Zml)w(fL‘l/kZ’ml)md.fdml ?
ko
_ 1 T COO(E) +oo . O ds
et / ko _g)l/ke 200 Coo(m—my,€)R /e ydimy) &
Rt D e T ([, Coolmmm Rolimauls T madm)
Tk
+elep(e) 1 / 2(7-k2 _ )Wkl (1/k2 e)§
Pm(T)F(l‘*‘é) 0 ? s

satisfies the next properties.
i) The following inclusion holds

(140) H™2(B(0,v)) € B(0,v)

where B(0,v) is the closed ball of radius v > 0 centered at 0 in F(dy, Buky) JOT all € € D(0,¢€).
ii) We have

1
(141) [1He (w1) = HE (w2l ynke) < 1101 = w2l g ko)

for all wy,ws € B(0,v), for all e € D(0, €p).

The proof of Lemma 5 follows the same lines of arguments as Lemma 2 in Proposition 9 of [14]
and rests on Lemma 2, Propositions 5, 6 and 7 given above in Section 2.2. Therefore, we omit
the details.

We consider the ball B(0,v) C F (dy ' Bopisks) constructed in Lemma 5 which is a complete metric

space for the norm |[.[|(, g k). From the lemma above, we get that HF2 is a contractive map
from B(0,v) into itself. Due to the classical contractive mapping theorem, we deduce that the



45

map H*? has a unique fixed point denoted by ng (1,m,€) (i.e HF (ng (1,m,€)) = w,ig (1,m,€))

in B(0,v), for all € € D(0,€g). Moreover, the function wZQ (1,m, €) depends holomorphically on

e in D(0,€p). By construction, ng (1,m, €) defines a solution of the equation (129). This yields
the proposition. O

In the next proposition, we present the link, by means of the analytic acceleration operator
defined in Proposition 13, between the holomorphic solution of the problem (83) constructed in
Proposition 11 and the solution of the problem (129) found in Proposition 14.

Proposition 15 Let us consider the function w,‘fl (1,m,€) constructed in Proposition 11 and
which solves the equation (83). The function

dh
7 Acck, k, (Wf,) (7,m, €) == A7 (h = wi, (hym, €))(7) = /L Wiy (hym, €)G (1, h) =
d

Mg, My h
defines an analytic function on a sector Sy, s, /=2 with direction d, aperture - + 6 and
radius (c2/v)Y* /2, for any 0 < &6 < ap(Uy) and for a constant cy introduced in (114), with the
property that Accfcl%k,1 (wgl)(O,m, €) =0, for allm € R, all e € D(0, €).

Moreover, for all fixred e € D(0,€p), the following identity

(142) Accz%k1 (wgl)(T, m,e) = ng (1,m,¢€)

holds for all T € Sy, 5 (co )1/ 2, all m € R, provided that v > 0 is chosen in such a way that
Sd’nyé’(02/y)1/n/2 C 53 holds where Sg is the bounded sector introduced in Proposition 14.

As a consequence of Proposition 14, the function T — Acc%%k1 (wgl)(r,m, €) has an analytic
continuation on the union SS U Sy, where the sector Sq has been described in Proposition 14,
denoted again by ACC%QJCI (wgl)(T,m,e) which satisfies estimates of the form : there exists a
constant ka2 > 0 with

- |7
(143) |Acc, 1, (Wil ) (7,m, €)] < C,, (14 [m]) e ﬁlmimexp(v’lf\’”)

for all T € Sg USg, allm € R, all e € D(0,¢€p).

Proof From Proposition 11, we point out that wgl(T,m,e) belongs to the space Fg/,ﬂ,u,kl,n)
and that Hw,‘le(,,’B%kh,{) < w for all € € D(0,€). Due to Proposition 13, we deduce that the
function 7 — Acc‘,f%kl (wgl)(T, m, €) defines a holomorphic and bounded function with values in
the Banach space Eg ) (with bound independent of €) on a sector S, k,6,(ca Jv)1/% /2 With direction

d, aperture = +0 and radius (ca/v)'/*% /2, for any 0 < § < ap(Uy) and for a constant ¢y introduced
in (114), for all e € D(0, €p).

Now, as a result of Proposition 13, we also know that the function 7 — Acc%%k1 (wgl)(T, m,e)
is the k—sum of the formal series

Amkz N (h = Wiy (ha m, 6))(7—) = Wk, (Ta m, 6)

viewed as formal series in 7 with coefficients in the Banach space Eg ), on Sy, 5 (¢, /)1/x /2, for
all e € D(0,¢y). In particular, one sees that Acczml (wgl)((),m, €) =0, for all e € D(0, ).
Likewise, we notice from Lemma 4, that the function 7 — Tl)gQ (T,m,€) is the k—sum on

S0, (ca )1/ 2 OF the formal series Uiy (T,m, €) defined in (122), viewed as formal series in 7 with
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coefficients in the Banach space E(g ), for all € € D(0, ¢g). We recall that @y, (7, m, €) formally
solves the equation (123) for vanishing initial data wg,(0,m,e) = 0. Using standard stability
properties of the k—sums of formal series with respect to algebraic operations and integration
(see [1], Section 3.3 Theorem 2 p. 28), we deduce that the function Accg%k1 (wgl)(T, m, €) satisfies
the equation (129) for all T € Sy, 5 (., /)1/x/2, 2l m € R, all € € D(0, €), for vanishing initial
data Acc%%k1 (wgl)(o7 m,e) = 0.

In order to justify the identity (142), we need to define some additional Banach space. We
keep the aforementioned notations.

Definition 6 Let ' = (co/v)/*/2. We denote Hy 8 ks i) the vector space of continuous
functions (1,m) — h(T,m) on Sy, 5w X R, holomorphic with respect to T on Sy 5 such that

ul + ‘T|2k2 /K2
(144)  IA(m, M)l ppgoiy = sup (14 |m|)F—————exp(B|m| — [7]*)| (7, m)]
TE€Sy 5. MER 7]

is finite. One can check that H, g, i, 1)y endowed with the norm |||/ 3 uk0n) 5 @ Banach
space.

Remark: Notice that if a function h(7,m) belongs to the space de, Boyuk2) for the sectors Sy
and Sg described in Proposition 14, then it belongs to the space H(,s g, 1, 1) (Provided that
v > 0 is chosen such that Sy, sn C Sg) and moreover

”h(T’ m)”(zx’,ﬁ,p,kz,h’) < Hh(Tv m)”(u’,ﬁ,u,kg)
holds.

From the remark above, one deduces that the functions ¢, (7, m,€) and w,i (1,m, €) belong to
the space H(,r 5, ko 1)

In the following, one can reproduce the same lines of arguments as in the proof of Proposition
14 just by replacing the Banach space F((ff’,ﬂ,u,kg) by H(, g u.ks,n7), OnE gets the next

Lemma 6 Under the assumption that (136) holds, for the radius rq g, > 0, the constants v
and <1,2,50,0,0,1,S1,0,SF,S2 given in Proposition 14 for which the constraints (137) hold, the
equation (129) has a unique solution wy, p/(T,m,€) in the space Hr 8.y ka,hry with the property
that ||wry,n (7, M, )| (11 8,1,k,hr) < U, for all € € D(0, €).

Taking into account Proposition 14, since ng (1,m, €) belongs to F(Cf/ ' Bopika)’ it also belongs to

the space H, g, k,n)- Moreover, since 7 — Accﬁmk1 (w,‘fl)(T,m, €) defines a holomorphic and
bounded function with values in the Banach space E(g ) (with bound independent of €) on
Sd.ks, that vanishes at 7 = 0, we also get that Accﬁmk1 (wgl)(T, m, €) belongs to H,s 3, ks 1')-
As a summary, we have seen that both ng (1,m,€) and Accg%,Cl (w,‘jl)(T, m, €) solve the same
equation (129) for vanishing initial data and belong to H(,s g, k, n/)- Moreover, one can check
that the constant v > 0 in Lemma 6 and Proposition 14 can be chosen sufficiently large such
that HAcciQ’k1 (w,‘fl)(v', m, €)|| (v B ka,hyy < v holds, if the constants ¢ 2,6,0,61,0,5# > 0 are
chosen small enough and rg g, > 0 is taken large enough. By construction, we already know
that Hw,ﬁf2 (7,m, )| (v Bk, by < v. Therefore, from Lemma 6, we get that they must be equal.
Proposition 15 follows. O
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Now, we define the my,—Laplace transforms

(145) FUT,m,e€) := ko ¢,‘§2 (u,m, 6)6_(%)k2d—u
Lg u
UNT,m,e) = kg/ ng(u,mje)e_(%)de—u
Ly U

which, according to the estimates (124) and (143), are Eg ,)—valued bounded holomorphic
functions on the sector Sy s with bisecting direction d, aperture ,?—2 <6< k% + ap(Sy) and
radius A/, where b’ > 0 is some positive real number, for all e € D(0, ).

Remark: The analytic functions F'4(T, m, €) (resp. U4(T,m,€)) can be called the
(Mg, , My, )—sums in the direction d of the formal series F'(T,m,¢€) (resp. U(T, m,€)) introduced
in the Section 4.1, following the terminology of [1], Section 6.1.

In the next proposition, we construct analytic solutions to the problem (70) with analytic forcing
term and for vanishing initial data.

Proposition 16 The function UY(T, m, €) solves the following equation

(146)  Q(im)(drUL(T,m,€)) — TP~ D*ANGID Ry (im)UL(T, m, €)

+o00
1 c12(€ , |
_ 1 (217f)(1/)2 Q1 (i(m — m)UNT, m — m1, €)Qa(im1 ) UNT, my, €)dm,
D-1
=1
400
1 cole .
+e (2:;()1)/2 Co(T, m — my, €)Ro(im1) UHT, my, €)dmy
_1 coole) [F . . , )
+ € (271_)1/2 CO,O(m—ml,G)Ro(Zml)U (T, mhe)dml +e€ CF(E)F (T,m, 6)

for given initial data U%(0,m,€) =0, for all T € Sa0.n, mER, all e € D(0,€).

Proof Since the function ng(u, m, €) solves the integral equation (129), one can check by direct

computations similar to those described in Proposition 8, using the integral representations
(145) that UY(T,m,¢) solves the equation (121) where the formal series F(T,m,¢) is replaced
by F(T,m,¢) and hence solves the equation (70) where F¢(T,m,¢) must be put in place of
F(T,m,e). O

5 Analytic solutions of a nonlinear initial value Cauchy prob-
lem with analytic forcing term on sectors and with complex
parameter

Let k1,ko > 1, D > 2 be integers such that ko > k1. Let §; > 1 be integers such that

(147) 1=61, & <1,
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forall 1 <I<D-—1.Foralll <I<D-—1,let dj, A; > 0 be nonnegative integers such that
(148) dy>6 , A—di+6—1>0.
Let Q(X),Q1(X),Q2(X), Ri(X) € C[X], 0 <1< D, be polynomials such that

(149) deg(Q) = deg(Rp) > deg(Ry) , deg(Rp) = deg(Q1) , deg(Rp) = deg(Q2),
forallmeR,all0<I<D-—1.

We require that there exists a constant rg g, > 0 such that
Q(im)
Ry(im)
forallm € R, all 1 <1 < D. We make the additional assumption that there exists an unbounded
sector

(150) |

| 2> TQ,R,

SQ,RD = {Z S C/|Z’ 2 TQ.Rp > ‘arg('z) - anRD‘ < nQ,RD}
with direction dg g, € R, aperture ng g, > 0 for the radius rg r,, > 0 given above, such that

Q(im)

(151) Bop (i)

S SQ,RD
for all m € R.

Definition 7 Let ¢ > 2 be an integer. For all0 < p < c—1, we consider open sectors &, centered
at 0, with radius €9 and opening 5—2 + Kp, with k, > 0 small enough such that £, N Epi1 # 0, for
all 0 < p <¢—1 (with the convention that & = &y). Moreover, we assume that the intersection
of any three different elements in {Ep}to<p<c—1 is empty and that U;;%)S =U\ {0}, where U is
some neighborhood of 0 in C. Such a set of sectors {E,}o<p<c—1 is called a good covering in C*.

Definition 8 Let {&,}o<p<c—1 be a good covering in C*. Let T be an open bounded sector
centered at 0 with radius r7 and consider a family of open sectors

Sop0.corr = 1T € C*/|T| < eorr , [0, —arg(T)| < 0/2}

with aperture > 7 /ky and where 9, € R, for all 0 < p < ¢ — 1, are directions which satisfy the
following constraints: Let q;(m) be the roots of the polynomials (131) defined by (132) and S,,,
0 <p <¢—1 be unbounded sectors centered at 0 with directions 0, and with small aperture. Let
p > 0 be a positive real number. We assume that

1) There exists a constant My > 0 such that

(152) [T —aq(m)| = Mi(1+|7])

Jor all0 <1< (6p —1)ka =1, allm € R, all 7 € S,, UD(0, p), for all0 <p <¢—1.
2) There exists a constant My > 0 such that

(153) 7 = qi,(m)| = Ma|qi, (m)]

for some ly € {0,...,(0p — ko — 1}, allm € R, all T € SDPUD(O,/)), forall0<p<g¢-—1.

8) There exist a family of unbounded sectors Uy, with bisecting direction 9, and bounded sectors
Sgp with bisecting direction 0, with radius less than p, with aperture = + d,, with 0 < §, <
ap(Ua,), for all 0 < p < ¢ — 1, with the property that Sgp N Sng # 0 for all0 <p<c¢—1 (with
the convention that 9. = 0g).

4) For all0 <p<c—1, forallt €T, all € € &, we have that et € Sy, 0.corr-

We say that the family {(S, 0,corrJo<p<c—1,T } is associated to the good covering {Ey}o<p<c—1-
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We consider a good covering {&,}o<p<c—1 and a family of sectors {(Ss,,0,cors)o<p<c—1,7T }
associated to it. For all 0 < p < ¢ — 1, we consider the following nonlinear initial value problem
with forcing term

(154)  Q(9-) (D’ (L, z,€)) = c12(€)(Q1(D2)u (t, 2, €))(Q2(D.)u (t, 2, €))
D—-1
+ 6(513_1)(kQ‘H)_5D+1t(6D_1)(k2+1)afDRD(az)uap (t,z,€) + Z eA’tdlﬁfl Rl(az)ubp (t,z,¢€)
=1
+ CO(tv Z, E)RO(az)uap(ta 2, 6) + CF(G)po(ta 2, 6)

for given initial data u®»(0,z,€) = 0.

The functions ¢ 2(€) and cp(€) are holomorphic and bounded on the disc D(0, €p) and are
such that ¢;2(0) = ¢p(0) = 0. The coefficient c(t, z,€) and the forcing term f° (¢, z,€) are
constructed as follows. Let cy(€) and cpo(€) be holomorphic and bounded functions on the disc
D(0, €9) which satisfy co(0) = ¢9,0(0) = 0. We consider sequences of functions m — Cp ,,(m,€),
for n > 0 and m — F,(m,¢), for n > 1, that belong to the Banach space E,) for some
B >0, p > max(deg(Q1) + 1,deg(Q2) + 1) and which depend holomorphically on € € D(0, ).
We assume that there exist constants Ko,7p > 0 such that (69) hold for all n > 1, for all
e € D(0, €y). We deduce that the function

Co(T,z,€) = coo(€)F Ym — Co,o(m,€))(z) + ZCO (m— Copn(m,e))(2)T"

n>1

represents a bounded holomorphic function on D(0,7y/2) x Hg x D(0,¢€p) for any 0 < 5/ < j8
(where F~! denotes the inverse Fourier transform defined in Proposition 9). We define the
coefficient cy(t, z, €) as

(155) colt,z,€) = €o(et, z,€)

The function ¢y is holomorphic and bounded on D(0,7) x Hg x D(0,€q) where reg < Tp/2.
We make the assumption that the formal mj, —Borel transform

Vi, (T, M, €) = ZF m,e€)

n
n>1 F)
is convergent on the disc D(0, p) given in Definition 8 and can be analytically continued w.r.t 7
as a function 7 — ¢Z’1’ (1,m, €) on the domain Uy, U D(0, p), where Uy, is the unbounded sector

given in Definition 8, with wa (t,m,e) € F» and such that there exists a constant

(v,B,p,k1 k1)
C¢k1 > 0 such that B

(156) 1 (7m0, )| gk o) < Gy

for all e € D(0, €9).
From Lemma 4, we know that the accelerated function

Uy (rymy€) i= AW e, (b 07 (hym,€))(7)

defines a function that belongs to the space Jaka (0B yuks) for the unbounded sector S, and the

bounded sector Sgp given in Definition 8. Moreover, we get a constant <¢k2 > 0 with

0
(157) [ (Tsm, )| (11 B guka) < G,
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for all e € D(0,¢€p). We take the my,—Laplace transform
gk du

(158) F(T,m, €) i= ky / pe(u,m, e
Lo, U

which exists for all T € Sy g, m € R, € € D(0,¢), where Sy, 95 is a sector with bisecting
direction 9,, aperture 7~ < 6 < - + ap(Sy,) and radius ', where A’ > 0 is some positive real
number, for all e € D(0, ).

We define the forcing term f° (¢, z, €) as

(159) or(t, z,¢) := .F_l(m = F(et,m, €))(2)

By construction, f° (¢, z, €) represents a bounded holomorphic function on 7 x Hg x &, (provided
that the radius r7 of T satisfies the inequality egrs < h’ which will be assumed in the sequel).

In the next first main result, we construct a family of actual holomorphic solutions to the
equation (154) for given initial data at ¢ = 0 being identically equal to zero, defined on the
sectors &, with respect to the complex parameter e. We can also control the difference between
any two neighboring solutions on the intersection of sectors &, N &,41.

Theorem 1 We consider the equation (154) and we assume that the constraints (147), (148),
(149), (150) and (151) hold. We also make the additional assumption that

1_1 1
ﬁ_kl k‘g’

1
; dll,k1>(5l_1)(k2_k1) , 5D251+k*2,

(160) di+ ki +1 =0k +1)+djy, , dig, >0,

ke o di+(1-4)
ko — k1 — dl+(1—5l)(k‘1+1)

for 1 <1< D —1. Let the coefficient co(t,z,€) and the forcing terms f°»(t, z,€) be constructed
as in (155), (159). Let a good covering {Ep}to<p<c—1 in C* be given, for which a family of sectors
{(So,.0,c0r7 )o<p<c—1, T} associated to this good covering can be considered.

Then, there exist radiirg g, > 0 large enough, for 1 <1 < D and constants (1,2, (0,0, 1,0, CF >
0 small enough such that if

c1,2(€ col€e Co,0\€
(161)  sup \7()\ <Cz2 , sup ’L\ <C,0 , sup ’¥| < €0,0,
e€D(0,e0) € e€D(0,e0) € e€D(0,e0)
Cp\€
sup | ( )I < (r,
e€D(0,¢0)

thereafter for every 0 < p < —1, one can construct a solution u®»(t,z,€) of the equation (154)
with u® (0, z, €) = 0 which defines a bounded holomorphic function on the domain T x Hg x &,
for any given 0 < ' < .

Moreover, the next estimates hold for the solution u®» and the forcing term f° : there ewist
constants 0 < b < ry, K,, M, > 0 (independent of €) with the following properties:
1) Assume that the unbounded sectors Uy, and U, . have sufficiently large aperture in such a
way that Uy, N Uy, contains the sector Uy, o, = {7 € C*Jarg(t) € [0,,0,11]}, then

Mp
(162) sup U+ (t, z,€) — U (t, 2, €)| < Kpe 192
teTND(0,h""),2€H g/
_ My
sup |fbp+1 (t, 2, 6) o fop(t’ 2, €)| < er [elF2

teTND(0,h"),2€H
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foralle € £,11NE,.
2) Assume that the unbounded sectors Uy, and Uy, , have empty intersection, then

_ My
(163) sup [Pt (¢, 2, €) — ur (t, 2,€)| < Kpe 't
teTND(0,h"),2€ Hpy
_Mp
sup |forH(t, 2, €) — f7 (L, 2 €)| < Kpe 1M

teTND(0,h"),z€ Hys

forallec &1 NE,.

Proof Let 0 < p < ¢ — 1. Under the assumptions of Theorem 1, using Proposition 16, one can
construct a function U (T',m, €) which satisfies U (0, m, €) = 0 and solves the equation

(164)  Q(im)(drU (T, m, €)) — TP~ V4D D R (im) U (T, m, €)

_aaale) [T . o
= (277)1/2 Ql(Z(m—ml))U p(T,m—ml,e)QQ(zml)U p(T’ ml,ﬁ)dml
D-1
+ Z Rl(im)EAl_dl+5l_1le a%l Uap (T, m, 6)
=1
+ 671 CO(G) +o00 C (T " —m )R (zm )Uap(T m )dm
(2m)1/2 J_ o 1 €)frolrm y M1, €)amy
-1 6070(6) e : Op -1 0p
+e (2m)1/2 Co,o(m —ma, €)Ro(im1) U (T, m1,€)dmy + € “cp(e) FP(T,m,€)

where Co(T,m, €) = 3,1 Con(m,€)T™ is a convergent series on D(0, Tp/2) with values in Eg )
and F° (T, m,e¢) is given by the formula (158), for all ¢ € D(0,¢p). The function (T,m) —
U® (T, m, ) is well defined on the domain Sy, g X R.

Moreover, U% (T, m, €) can be written as my,—Laplace transform

E)kz)@

(165) U (T, m,e€) = kg/ wz;’(u,m,e) exp(—(T "

o
along a halfline L, = RipeV=1w c Sy, U {0} (the direction 7, may depend on T'), where
WZZ (1,m, €) defines a continuous function on (Sgp U Sy,) x R x D(0,€), which is holomorphic

with respect to (7, €) on (Sgp U Sy,) x D(0,€p) for any m € R and satisfies the estimates: there

exists a constant C’wap > 0 with
ka2

? - — |7 k
(166) |wpr (1, m, €)| < szg(l + |m|)"Fe Blmlm exp(V/|7]*2)
for all 7 € Sgp US,,, allm € R, all e € D(0, ¢g). Besides, the function wzz (1,m, €) is the analytic
continuation w.r.t 7 of the function

dh
(167) 7 Ac)? (W) (m,m, €) = /L wy? (h,m, €)G(r, h)>-

"

where the path of integration is a halfline LA/; = I&&ﬁﬁ C Uy, (the direction 'y; may depend

on 7), which defines an analytic function on S, .5 ., /)1/x/2 C Sgp which is a sector with
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bisecting direction d,, aperture T + 4, and radius (c2/v)/%/2. We recall that wZ’l’(h,m,e)
defines a continuous function on (U, U D(0, p)) x R x D(0, €p), which is holomorphic w.r.t (7, ¢€)
on (U, UD(0,p)) x D(0,€p), for any m € R and satisfies the estimates: there exists a constant
C 2 > 0 with

k1

7]

p —pp—Bm|__ 111
(168) |wp? (1, m, )| Sszyi(Hlm!) e 1+ [

exp(v|7[")
for all 7 € Uy, UD(0,p), all m € R, all € € D(0, ¢p).
Using the estimates (166), we get that the function

(T,2) = U (T, z,¢) = F 1 (m = U(T,m,e€))(2)

defines a bounded holomorphic function on Sy, 9.5 X Hgr, for all € € D(0, ¢9) and any 0 < B < B.
For all 0 < p < ¢ —1, we define

ko oo 2 u . du

0 __ 770 _ (D \k2y  izm

(15, = Vet ) = /_Oo /L 22, ) exp(— ()= L

Taking into account the construction provided in 4) from Definition 8, the function u°(t, z, €)

defines a bounded holomorphic function on the domain 7 x Hg x &,. Moreover, we have
(0, z,¢) = 0 and using the properties of the Fourier inverse transform from Proposition 9, we

deduce that u% (¢, z, €) solves the main equation (154) on T x Hg x &p.

Now, we proceed to the proof of the estimates (162). We detail only the arguments for the
functions u°» since the estimates for the forcing terms f° follow the same line of discourse as
below with the help of the estimates (157) instead of (166).

Let 0 < p < ¢ — 1 such that Uy, N Uy, , contains the sector U, o,,,- First of all, from
the integral representation (167) by using a path deformation between Lv; and LV;H, we

: 0 0 0 0 o
observe that the functions Acc)? | (w;?)(7,m,€) and Acck’;,:1 (w,7) (1, m, €) must coincide on

the domain (S .5 (co/u)/n/2 N So, i1 m6,i1,(ca/p)iing2) X R x D(0,€0). Hence, there exists a

function that we denote wkp’ap“(T, m, €) which is holomorphic w.r.t 7 on S, 5, /)1/x/2 U

Sap+1 K8 1,(ca V)L /20 continuous w.r.t m on R, holomorphic w.r.t e on D(0, ¢y) which coincides

. 0 0 0
with Acey? | (wir)(T,m,€) on Sy 5 ey juyi/ma X R x D(0,€0) and with Acckf';“kl1 (W) (1, m, €)
O0 Sy 1 byin (eafvy/n /2 X R X D(0, €

Now, we put p, . = (co/v)"/*/2. Using the fact that the function
Wi w7 (u,m, €) exp(—(2)) u
€

is holomorphic on Sy, k6,00, U S0,41,5,0p1 1,00, fOT all (M, €) € Rx D(0, ), its integral along the
union of a segment starting from 0 to (p,,./2)e" 1, an arc of circle with radius p, /2 which
connects (pyx/2)eP+1 and (p,./2)e"™ and a segment starting from (p,,./2)e?? to 0, is equal

to zero. Therefore, we can write the difference u°»+! — 4% as a sum of three integrals,

0 oo D 1 u ko du
(169) u P-‘rl(t,Z,E) (t Z, 6 1/2/ / P+ (u’m7€)e—(5) e g
27T Ly, w/2,7p+1 u
+oo - d
27T Pu k/2, Tp u
+0o0 d
DIHD +1 —(&)k2 izm AU
e / S

Covr/2.7p, p+1
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where L, 5. . = [Pv.r/2, +00)e TP, Ly, i2mp = ‘[pl,,,.;/Z,—i—oo)e”P 'and Corn/29ppsn 1S a0
arc of circle with radius p, /2 connecting (p,./2)e""” and (p,./2)e"P+! with a well chosen
orientation.

We give estimates for the quantity

400
D;n-&-l (—t)k2 izm du
o) 1/2 / / (u,m,e)e” e — —dm

PUK,/2’Y p+1

By construction, the direction 7,41 (which depends on €t) is chosen in such a way that cos(k2(vp+1—
arg(et))) > 61, for all e € £, N Epy1, all t € T, for some fixed 6; > 0. From the estimates (166),
we get that

k?2 +oo +o0
<P pe=Blml "
(170) L < )12 /_Oo /pM/QCWZgH(leD e

cos (ks (’yp+1 - arg(et))) rk2 )e—mlm(Z) ﬁdm
|et|k2 r

T~ (8=p)Iml I 01 Nelk2y " yka
e dm exp(—(|t|k2 — Vel (+—)"2)dr
o

—0o0 u,n/2 |€|

01 ke ko—1
/+oo 6(55,)mdm/+oo €|+ y (\t|k2 V' |e|"2) kar
0 o2 (ks — V]elbe) k(252 )had EE

—v/]e*2)(

x exp(v'r*?) exp(—

kaC' ooy
Wk
2

< R

- (27.‘.)1/2

2k5C 0y

<—2
— (271')1/2

,p“u

e "

exn(— o1 — 3 elk2 (pV,H/Q)kQ
R (5= (s — vy o0 g T g )

2k2 szg+1

el
(@) (3= F)oka( P

for all t € T and |[Im(z)| < ' with |t] < (ﬁ)lﬂﬁ’ for some 9o > 0, for all e € £, N Epy1.
2+V'e

(pwf/2)k2)
€[+

exp(—0dg

In the same way, we also give estimates for the integral

+oo
~ (%2 gizm AU
2771/2/ / ume)e ) e udm.

PV K/2, Tp

Namely, the direction v, (which depends on et) is chosen in such a way that cos(ka(vy, —
arg(et))) > 01, for all e € £, N Epp1, all t € T, for some fixed 6; > 0. Again from the esti-
mates (166) and following the same steps as in (170), we get that

2]{720 op ko k.
2)%2
171 T Yy | | B (pl’ﬁ/
( 7 ) 2 — (271')1/2 (/6 l@/)ézk (pun)]@_l eXp( 52 ‘E‘kz )

for all t € T and |[Im(z)| < ' with [t] < (ﬁ)l/kz, for some 9y > 0, for all e € £, N Epy1.
241

€

Finally, we give upper bound estimates for the integral

kg +oo 0,,0 —(2Yk2 om du
~ )2 /_oo / wpy T (u,m, e)e” (@2 M dm

CPV,H/Qv’Yp:'Yp+1
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By construction, the arc of circle C,, 2, .., is chosen in such a way that cos(k2(0—arg(et))) >

01, for all 8 € [vp, Yp+1] (if vp < Ypt1)s 0 € [Vp+1, Vp) (if Ypy1 <), forallt € T, all e € E,NEp41,
for some fixed §; > 0. Bearing in mind (166), we get that

ko oo
172) [ < ————
(172) 3—mmva[m

pMH/Q

Tp+1
C.C 1 —pe=Bim|l_Pvs/Z
/Y max{ wzg, wz;;rl }( + ‘mD € 1+ (pu,m/2)2k2

p

_ cos(k (0 — arg(et)))

% exp(V (py.e/2)F?) exp( (21 yk2y g=mIm(2) gg| gy

|et|k2 2
k‘g(max{Cwap,C Opt1 }) 400
ky  Yrko —(B=8")|m| Pv,k 01 1 ks Pu,r;/z ko
< _ _ _
<[ dm = P expl(— o=/ =) (252
2k
2mextCopy: ) ol

Puv,k ko
< (27r)1/2(5 _ /8/) ”YP - 7P+1’7 eXp(—(52( |€| ) )

for all t € T and |Im(z)| < 8" with [¢| < (ﬁ)”k% for some 9o > 0, for all e € £, N Ep 1.
2+ e

Finally, gathering the three above inequalities (170), (171) and (172), we deduce from the
decomposition (169) that

2hs(C oy +C o) . .
w w,, 2) 2
uPP L (t, 2 €) — uP(t, z,€)| < t2 k2 €l exp(—0o (/2 +
B ) LR N o e e A
2k2 (maX{Cpr y szerl }) P P /2 i
2 9 . Pvk . VK 5
(27_[_)1/2(B _ /8,) |7p '7p+1| 9 exp( 62( |€| ) )

for all t € T and |Im(z)| < B with [t| < (#)1/’“2, for some d; > 0, for all € € £, N Epia.
2+V€
Therefore, the inequality (162) holds.

In the last part of the proof, we show the estimates (163). Again, we only describe the
arguments for the functions u® since exactly the same analysis can be made for the forcing
term f°° using the estimates (156) and (157) instead of (166) and (168).

Let 0 < p < ¢ — 1 such that U, NUs, = (). We first consider the following

Lemma 7 There exist two constants KI;“, ]\/[};4 > 0 such that

A
) (L ml) e o

0 0 2 2
(173) |Acck’2’7+kl1 (wkfl’“)(q-, m,e) — Accy 1 (Wi )(T,m,€)| < K;‘ exp(— EE

foralle € Ep1NEy, all T € Sy, 1 k6

p+1,Pv,k N SDP:’€75P7PV,K’ all m € R

Proof We first notice that the functions 7 +— wZ’l’ (t,m,€) and T wZ’l’“(T,m, €) are analytic

continuations of the common my, —Borel transform wy, (7,m,€) = >, < Un(m,e)7"/T'(n/k1)
which defines a continuous function on D(0, p) xR x D(0, €y), holomorphic w.r.t (7, €) on D(0, p) x
D(0,€9) for any m € R with estimates : there exists a constant C,,, > 0 with

7]
1+ |7|?#

vir|"

(174) ok (7m0, €)] < oy, (14 |ml)~He= !
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for all 7 € D(0,p), all m € R, all € € D(0,¢y). From the proof of Proposition 13, we know
that the function G(7,h) is holomorphic w.r.t (7,h) € C? whenever 7/h belongs to an open
unbounded sector with direction d = 0 and aperture 7/k. As a result, the integral of the function
h— wg, (h,m,€)G(7,h)/h, for all (m,€) € RxD(0,¢€), all 7 € Sy, ; w6 NSo, k.6 along

the union of a segment starting from 0 to (p/ 2)ei7;+1, an arc of circle with radius p/2 which

p+1,Pv,k D3PV, K

connects (p/ 2)ei7;+1 and (p/ 2)6”1% and a segment starting from (p/ 2)6“7?1' to 0, is equal to zero.

p+1 ( 0p+1)

. . 0 0 v .
Therefore, we can write the difference Acc w Acc;? ; (w;”) as a sum of three integrals
) ko, k1 \*ky ko k1 \ k1

0 0 0 0
(175)  Accplly (W) (mymy€) — Accyl 1 (wyr)(7,m,€)

- wkTH(h m,€)G(T, h)c%h - wa(h,m,e)G(T, h)%

L L
p/2,'v;+1 /2.7

+/ wi, (h,m, €)G(T, h)@
c . h

p/l“/;l,wp_,_l

where LP/QW;H = [p/2,+oo)ei711'+1, Lyjaqy = [p /2, +00)e and Cp/lv;ﬁj,ﬂ is an arc of circle

with radius p/2 connecting (p/ 2)6”? and (p/ 2)ei7;+1 with a well chosen orientation.

We give estimates for the quantity

dh
If‘ = | wZ’i*l(h,m €)G(1,h)— A |.
Lp/lw},“
From the estimates (114) and (168), we get that
2 . T dr
(176) I{* < / Cait (1 + |m[)Fe™ ’B'm'mew erexp(—ea(p 1)) -
< 6103”1(1 + ‘m’)_“e_ﬁ‘m‘ /+OO |T|H (02 — |T‘Hv)f€r“—1
- pi2 (c2 = [T|"V)r(p/2)" ! 7|

x exp(—(cz — rf|“v><%>“>dr

PI2

< e1 G (1 mf) e ]

(co — |T|Fv)K(p/2)"1 exp(—(ca — |7|"v)(

exp(~(ea(1 - 2 (P2

7]

[r|”
ca(1 = ge)k(p/2)"~

for all € € Ep1 NEp, all T € Sy, 1 k.6pi1,00m (VS0 k8p.00.my ALl M E R.

< 1O (1 + [ml)~He=Pml

In the same way, we also give estimates for the integral

dh
/ wkl (h,m,€)G(r, h)7|

p/2 wp

Namely, from the estimates (114) and (168), following the same steps as above in (176), we get
that

({1~ ) (P2

177 < e 0% (1+m —ue—ﬂlml
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for all e € Epp1 NEp, all 7 € Sy, 1 ks all m € R.

p+1,Pv,k N Sapvﬁvé

PV, K
Finally, we give upper bound estimates for the integral
dh
I3 |/ wi, (h, m, €)G(T,h)7\'

p/2 s wp+1

Bearing in mind (114) and (174), we get that

—Blm p/2 v(p/2)" P
(178) I3 < |/ Cuoy,, (1 + [m]) e P! |1+<p//2)2kle (P/2)" 1 exp(—ca ’/‘) )do)|

- p/2
< e1Cy, b = a1+ ) e P exp(—(ea = [rf) (2E0))
< c1Cu, | (L4 [m)) e exp(—(ea(1 — 7))(;)/2) ")
>~ C]1 wk12 Vp FYp-i-l m € exp C2 oK |7_|
for all € € Ep1 NEp, all T € Sy, 1 k611,000 (VS0 kbp.00.m ALl M € R.

Finally, gathering the above inequalities (176), (177), (178), we deduce from the decomposi-
tion (175) that

0 0 0 0
(179)  [Accyh (w7 )(1,m, €) — Aceyl . (w,h)(7,m, €)]|

c Op+1 0p ml)Fe |m]| IOS,H exp(—(c _i L/Q K
< e1(CU + G, ) ) e o e el (el = 50 (1))
+61CWk12! ~ Yy (L + |ml) e exp(— (02(1—21»@))(77/%”)

for all € € Ep1 NEp, all T € So 1 kbpirovm N Sopk6p.0005 Al m € R, We conclude that the
inequality (173) holds. O

Using the analytic continuation property (167) and the fact that the functions

u > wz (u,m, €) exp(—(5 )kQ)/u (resp. u — wkgﬂ

(u, m, €) exp(—(%)*2) /u ) are holomorphic on
Sgp U Sy, (resp. on Sgp 1 U5, ), we can deform the straight lines of integration L., (resp. Ln,,,)

in such a way that

(180) ' (t,z,€) — u®(t, 2, ¢€)

+oo
Op+1 u ko izmdu
w u, m, €)exp(—(— M dm,
2771/2/ [ s mmos-he
e - du
koy izm
W, (u,m, €) ex e*m Zdm
an L [, ehmmoet-(mens
+oo
k2 ) U . du
= B iy (. ) exp(—( 5 ))e L m
7T B Cov,nr2, Op,p+1:Yp+1
+o0
D u ko zzmdu
wy (u, m, €) exp(—(—)")e""" —dm
(27 1/2/ /pu w20y i1 et U
k2 I Op+1 ¢ Opt1 o 0
+ W I (Acckg kl (wkl )(u7 m? 6) - ACCkQ,k‘l (wkl)(u,m, 6))
—0oQ

01py7ﬁ/2’9p7p+1

X exp(—(%)b)eizm%dm
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»Vp+1 = [py“‘{/Q’ +OO)€ 71'YP+17 LpV,K/27’YP = [pl’,“/2’ +OO)€ 717})’ Cpu,m/276P»P+l77P+1 is
an arc of circle with radius p,, /2, connecting (p,,./2)e¥ " 19r+1 and (p, . /2)e¥ 1741 with a well
chosen orientation, where 6,11 denotes the bisecting direction of the sector Sy, . N

s0p+1,Pv,k
Sopkisbp.pu a0d likewise O 99 . is an arc of circle with radius py /2, connecting the points

(pur/2)eY~1rrt1 and (p,,,./2)eY 1% with a well chosen orientation and finally L0y /2,00 pr1 =
[0, o /2)eV " Hrata,

where L, /o

Following the same lines of arguments as in the estimates (170) and (172), we get the next
inequalities

. u m AU
(181) Ji =| 1/2/ / ! (,m, €) exp(—(5)")e! "= =dm|
Pt/ K/2p+1
QkQCwZ;;;Jrl | |k2 5 (Pu,n/2)k2
(27T)1/2 (6 /8/)621{7 (pun)k’Q 1 eXp(_ 2T)7
400 izmdu
_\ 1/2/ / wpy (1, m, €) exp(— (et)k2)e W
pun/z Yp
2koC
3 26, ||k exp(—5 M)
< (27T)1/2 (/8 ﬂ/)(SQ (pllli)k271 p 2 €|k2 9
b Yoo u zzmd
B, i (s ) exp(— ()t dim
™ - pu ©/2:0p p1:p+1
2]{720 2
p+1 | 0 |Pyn (=6 (Lﬁ/z)lﬁ)
(27r)1/2(6 gry et T Pppt T eXB(= 02 ’
+00
D u izmdu
=l [ oz, ) exp(—( ) 2)e = i

Cov /2, Op,p+1-7p

2]{)20 o0 0 /2
kg v,k k
(271')1/2(,8 ﬁ/) ‘ -0 7P+1| exp( 6 ( |6| ) )

for all ¢t € T and |[Im(z)| < ' with |t] < (ﬁ)l/’”, for some 01,02 > 0, for all e € &, N Ep11.
2+ e

In the last part of the proof, it remains to give upper bounds for the integral

+o00
0 0 0 0
- | 1/2 / /L ACCkall (wyy ) (u,m, €) = Acey? o (wyr) (u,m, 6))

0,pv,k/2, Gp p+1
U ko izm du
x exp(—(— e —dm)|.
xp(—(4)2)et W)
By construction, there exists d; > 0 such that cos(ka (6, p+1 — arg(et))) > 61 for all e € £,NEp41,
all t € 7. From Lemma 7, we get that

ko [T [renl? oy ~1g—Biml M;!
(182) J5 < (%)1/2/_00 /0 K (1+|m|)""e exp(—rﬁ)

COS(kQ(QPJH-l B arg(ﬁt))) k —mIm(z dr
p(= |et|k2 e o r dm

ko KA oo ,
S (22)1p>2\/\ ei(ﬁiﬂ )‘m‘dm X J5(€t)
™ —o0

X ex
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where

py7n/2 M.A d
(183) J5(6t):/ exp(——2) exp( 01 rk2)—r.
0

re et|F2 r
The study of estimates for J5(et) as € tends to zero rests on the following two lemmas.

Lemma 8 (Watson’s Lemma. Exercise 4, page 16 in [1]) Let b > 0 and f : [0,0] — C
be a continuous function having the formal expansion ) - ant™ € C[[t]] as its asymptotic
expansion of Gevrey order k > 0 at 0, meaning there exist C; M > 0 such that

< CMNNIEN,

FE) =) ant”

‘ N-1
n=0

for every N >1 and t € [0,9], for some 0 < § < b. Then, the function

b
I(x):/o f(s)e =ds

admits the formal power series Y, ~qannlz™™ € Cl[z]] as its asymptotic expansion of Gevrey
order k + 1 at 0, it is to say, there exist C,K > 0 such that

N-1

I(z) — Z apnlz™

n=0

< CYIN(N—H(N + 1)!1+K|ZE’N+1,

for every N >0 and x € [0,4'] for some 0 < §' < b.

Lemma 9 (Exercise 3, page 18 in [1]) Let d,q > 0, and ¢ : [0,6] — C be a continuous
function. The following assertions are equivalent:

1. There exist C,M > 0 such that |(x)] < CM"™nl?|x|", for every n € N, n > 0 and
x € [0,0].

1
2. There exist C', M' > 0 such that |¢p(z)| < C'e=™'/*  for every x € (0,0].
We make the change of variable 7¥2 = s in the integral (183) and we get

1 [lpvs/2)k2 MA 51 .ds
J5(et) = 162/0 exp(—ﬁ)exp(fms)?.

A
We put ¥ 4,(s) = exp(—;\:[fp,@)/s. From Lemma 9, there exist constants C, M > 0 such that
ko
[ap(s)] < CM™(nl)= s
for all n > 0, all s € [0,(py/2)"]. In other words, 1)4,(s) admits the null formal series

0 € C[[s]] as asymptotic expansion of Gevrey order ka/k on [0, (p,,./2)*2]. By Lemma 8, we
deduce that the function
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has the formal series 0 € C[[z]] as asymptotic expansion of Gevrey order %2 +1= % on some

segment [0,8] with 0 < &' < (p,./2)*2. Hence, using again Lemma 9, we get two constants
C’, M' > 0 with
/

[A,p(m') S C/ exp(—m)

for x € [0,0’]. We deduce the existence of two constants Cj, > 0, My, > 0 with

My,
(184) Js(et) < Oy, exp(— \et|kl)

for all e € £,NEpq1, allt € TN D(0,hyy), for some hg, > 0. Gathering the last inequality
(184) and (182) yields

2C 1 ko KA M,
185 Js < > P exp(———2—
(185) °= 223 -8 ( hﬁg’pqul)

foralle € E,NEpy1, allt € TND(0,hay).

In conclusion, taking into account the above inequalities (181) and (185), we deduce from
the decomposition (180) that

ks k2
‘u p (t7z,e) u P(t,z,6)| < (27‘(‘)1/2 (5 — ﬁ/)&Zkz(PVT,H)kz—l eXp( 09 ’e|k’2 )
2k P pu/2 )i
T e 2= 8) (CwZ§+1 P = ppia| szim N Gp,p+1> 2 exp(_(SQ(T) K
A
+ 2CJ5k2Kp exp(— MJ5 )
(2%)1/2(5 — B hill,p|€|kl

for all t € T with [t| < (ﬁ)l/kz’ and [t| < hg, for some constants 1,92, ha, > 0, [Im(2)] <
2+,
B, for all € € £, N Eyq1. Therefore the inequality (163) holds. O

6 Existence of formal series solutions in the complex parameter
and asymptotic expansion in two levels

6.1 Summable and multisummable formal series and a Ramis-Sibuya theo-
rem with two levels

In the next definitions we recall the meaning of Gevrey asymptotic expansions for holomorphic
functions and k—summability. We also give the signification of (ke, k1 )—summability for power
series in a Banach space, as described in [1].

Definition 9 Let (E,||.||g) be a complex Banach space and let £ be a bounded open sector
centered at 0. Let k > 0 be a positive real number. We say that a holomorphic function
f: & = E admits a formal power series f(€) = 3., <o ane” € E[[€]] as its asymptotic expansion
of Gevrey order 1/k if, for any closed proper subsector W C & centered at 0, there exist C, M > 0
with

N-1
(186) 1£() = Y anc"|ls < CMN(N1)E|e[N

n=0
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forall N > 1, alle e W.

If moreover the aperture of £ is larger than  + & for some § > 0, then the function f is the
unique holomorphic function on & satisfying (186). In that case, we say that f 18 k—summoable
on € and that f defines its k—sum on . In addition, the function f can be reconstructed from
the analytic continuation of the ki— Borel transform

Bkl Z an

ﬂ
n>0 T
on an unbounded sector and by applying a k1— Laplace transform to it, see Section 3.2 from [1].

Definition 10 Let (E, ||.||g) be a complex Banach space and let 0 < ki < ky be two positive real
numbers. Let £ be a bounded open sector centered at 0 with aperture ]:—2 + &9 for some 69 > 0
and let F be a bounded open sector centered at 0 with aperture kll + 01 for some §1 > 0 such that
the inclusion € C F holds.

A formal power series f(€) = 3, oo an€” € E[[e]] is said to be (ka,ki)—summable on € if
there exist a formal series fg( ) € El[e]] which is ka—summable on € with ka—sum fo : € — E
and a second formal series fi(e) € E[[e]] which is ki —summable on F with ky—sum fi : F = E
such that f = fi+ fo. Furthermore, the holomorphic function fle) = fi(e)+ fa(e) defined on & is
called the (ky, k1)—sum of f on E. In that case, the function f(€) can be reconstructed from the
analytic continuation of the ki— Borel transform off by applying successively some acceleration
operator and Laplace transform of order ka, see Section 6.1 from [1].

In this section, we state a version of the classical Ramis-Sibuya theorem (see [13], Theorem
X1-2-3) with two different Gevrey levels which describes also the case when multisummability
holds on some sector. We mention that a similar multi-level version of the Ramis-Sibuya theorem
has already been stated in the manuscript [32] and also in a former work of the authors, see [15].

Theorem (RS) Let 0 < k1 < ko be positive real numbers. Let (E,||.||g) be a Banach space
over C and {&;}o<i<y—1 be a good covering in C*, see Definition 7. For all 0 < i < v — 1,
let G; be a holomorphic function from &; into the Banach space (E, ||.||g) and let the cocycle
A;(€) = Giy1(€) — Gi(€) be a holomorphic function from the sector Z; = 41 N &; into E (with
the convention that &, = & and G, = Gy). We make the following assumptions.

1) The functions G;(e) are bounded as € € & tends to the origin in C, for all 0 <i <wv — 1.

2) For some finite subset I; C {0,...v—1} and for all i € I;, the functions A;(e€) are exponentially
flat on Z; of order kq, for all 0 < ¢ < v — 1. This means that there exist constants K;, M; > 0
such that

M;
k)

(187) I[Ai(e)||e < K; eXP(—M

for all € € Z;.

3) Forall i € I = {0,...,v — 1} \ I1, the functions A;(e) are exponentially flat of order k2 on
Z;, for all 0 < i < v — 1. This means that there exist constants K;, M; > 0 such that

M;
(158) L e

for all € € Z;.
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~ Then, there exist a convergent power series a(e) € E{e} near ¢ = 0 and two formal series
G'(¢€),G?(¢) € E][¢]] such that G;(e) owns the following decomposition

(189) Gi(e) = ale) + Gi(e) + G?(e)

where G (e) is holomorphic on & and has G'(¢) as asymptotic expansion of Gevrey order 1/k;
on &;, G?(e) is holomorphic on & and carries G*(¢€) as asymptotic expansion of Gevrey order
1/kaon &, forall 0 <i<wv-—1.

Assume moreover that some integer ig € I is such that Iy, ;,5, = {io — 01,...,%0,...,%0 +

02} C Iy for some integers d1,d2 > 0 and with the property that

(190) 51‘0 C Sﬂ/kl C U En

h6151~i0’52

where S/, is a sector centered at 0 with aperture a bit larger than 7/k;. Then, the formal
series G/(e) is (ko, k1) —summable on &, and its (ko, k1)—sum is Gy, (€) on &, .

Proof We consider two holomorphic cocycles Al(e) and A?(e) defined on the sectors Z; in the

following way:
A; ifiel 0 ifeel
INIGER e A o weeh
0 ifi eI AZ(E) ifi € Iy

foralle € Z;, all 0 < i < v — 1. We need the following lemma.

Lemma 10 1) For all 0 < i < v — 1, there exist bounded holomorphic functions \I'Zl & — C
such that

(191) Al(e) = Vi (€) — T (e)

for all € € Z;, where by convention Wl(e) = Wi(e). Moreover, there exist coefficients pl, € E,

m > 0, such that for each 0 <1 < v —1 and any closed proper subsector YW C &, centered at 0,
there exist two constants Kj, M; > 0 with

M-—1
(192) 191 (6) = Y wme™lle < Ki(My)M (M1 F |
m=0

foralle e W, all M > 1.
2) For all 0 <i < v —1, there ezist bounded holomorphic functions \1122 : & — C such that
(193) Af(e) = Ui (e) — ¥i(e)

for all € € Z;, where by convention V2(¢) = W3(e). Moreover, there exist coefficients @2, € E,
m > 0, such that for each 0 <1 <wv —1 and any closed proper subsector YW C &, centered at 0,
there exist two constants Kj, M; > 0 with

—_

M
(194) 107 () = Y wme™lle < Ki(M)M (M1)H/F2 |
m=0

foralle e W, all M > 1.
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Proof The proof is a consequence of Lemma XI-2-6 from [13] which provides the so-called
classical Ramis-Sibuya theorem in Gevrey classes. O

We consider now the bounded holomorphic functions
aile) = Gile) — WH(e) — W¥(e)
forall 0 <i<wv—1,all € € &. By definition, for ¢ € I or i € I», we have that
ai1(e) = ai(€) = Giyi(e) = Gi(e) = Al(e) = Af(€) = Giga(e) = Gi(e) = Ai(e) =0

for all € € Z;. Therefore, each a;(e) is the restriction on &; of a holomorphic function a(e) on
D(0,7) \ {0}. Since a(e) is moreover bounded on D(0,r) \ {0}, the origin turns out to be a
removable singularity for a(e) which, as a consequence, defines a convergent power series on
D(0,r).

Finally, one can write the following decomposition

Gi(e) = a(e) + Ul (e) + ()

for all e € &, all 0 < i < v — 1. Moreover, a(e) is a convergent power series and from (192)
we know that W} (e) has the series Gl(e) = 3, o, ph¢™ as asymptotic expansion of Gevrey
order 1/k; on & and due to (194) W?(e) carries the series G2(e) = 3, o, ¢2,€™ as asymptotic
expansion of Gevrey order 1/ks on &, for all 0 < i < v — 1. Therefore, the decomposition (189)
holds.

Assume now that some integer iy € I is such that I5, ;, 5, = {i0—01,...,%0,...,90+ 2} C I>
for some integers d1, 02 > 0 and with the property (190). Then, in the decomposition (189), we
observe from the construction above that the function G}O (€) can be analytically continued on
the sector Sy, and has the formal series Gl(e) as asymptotic expansion of Gevrey order 1/k;
on Sy, (this is the consequence of the fact that Aj(e) = 0 for h € Is, ;. 5,). Hence, Gj (e) is
the kj—sum of él(e) on S;/p, in the sense of Definition 9. Moreover, we already know that the
function G%O(e) has G’Q(E) as asymptotic expansion of Gevrey order 1/ks on &;,, meaning that
G7 (€) is the ky—sum of G?(e) on &;,. In other words, by Definition 10, the formal series G/(e) is
(k2, k1)—summable on &;, and its (kg2,k1)—sum is the function G;,(¢) = a(e) + Gilo (e) + G?O(e)
on &;,. O

6.2 Construction of formal power series solutions in the complex parameter
with two levels of asymptotics

In this subsection, we establish the second main result of our work, namely the existence of
a formal power series (¢, z, €) in the parameter e whose coefficients are bounded holomorphic
functions on the product of a sector with small radius centered at 0 and a strip in C?, that
is a solution of the equation (195) and which is the common Gevrey asymptotic expansion of
order 1/k; of the actual solutions u® (¢, z,€) of (154) constructed in Theorem 1. Furthermore,
this formal series @ and the corresponding functions u®» own a fine structure which involves two
levels of Gevrey asymptotics.

We first start by showing that the forcing terms f°(t, z, €) share a common formal power series

A~

f(t,z,€) in € as asymptotic expansion of Gevrey order 1/k; on &p.
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Lemma 11 Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal
power series
f(t, z,€) Z fm(t, 2)e™/m]!
m2>0

whose coefficients fn(t,z) belong to the Banach space F of bounded holomorphic functions on
(TN D(0,h")) x Hp equipped with supremum norm, where k" > 0 is constructed in Theorem
1, which is the common asymptotic expansion of Gevrey order 1/ky on &, of the functions f°r,
seen as holomorphic functions from &, into IF, for all0 <p < ¢ —1.

Proof We consider the family of functions f° (¢, z,¢), 0 < p < ¢ — 1 constructed in (159). For
all 0 < p <¢—1, we define Gf (€) := (t,z) = f»(t,2,€), which is by construction a holomorphic
and bounded function from &, into the Banach space IF of bounded holomorphic functions on
(TND(0,h")) x Hgr equipped with the supremum norm, where 7T is introduced in Definition 8
and h” > 0 is set in Theorem 1.

Bearing in mind the estimates (162) and (163) and from the fact that ky > ki, we see
in particular that the cocycle @5 (e) = Gg (€)= Gg (€) is exponentially flat of order k; on
Zp=E N&pqr, forall 0 <p <¢—1.

From the Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent
power series af (¢) € F{e} and a formal series G (¢) € F[[¢]] such that G}: (e) owns the following
decomposition

Gl(e) = al (e) + G} (e)

where G’Il,’f (€) is holomorphic on &, and has GLf (¢) as its asymptotic expansion of Gevrey order
1/k1 on &, We define

f(t, z,€) metz ™ /ml = al (€) + GY (e).

m>0

The second main result of this work can be stated as follows.

Theorem 2 a) Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a
formal power series

u(t, z, €) Zh (t,2)e™/m]!

m>0

solution of the equation

(195)  Q(9:)(8vi(t, z,€)) = c1,2(€)(Q1(9:)u(t, 2, €))(Q2( )A(t z, 6))
+ 6(5D*1)(’€2+1)*5D+1t(5D*1)(l€2+1)a;SDR (82)a(t, z, €) Z Altdza5z .)alt, z,€)
+ CO(t, 2 E)Ro(az)U(t, 2, 6) + CF(E)f(ta 2 6)
whose coefficients hpy(t, z) belong to the Banach space F of bounded holomorphic functions on

(T N D(0,h")) x Hp equipped with supremum norm, where h” > 0 is constructed in Theorem
1, which is the common asymptotic expansion of Gevrey order 1/ky on &, of the functions u®»,
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seen as holomorphic functions from &, into I, for all 0 < p < ¢ — 1. Additionally, the formal
series can be decomposed into a sum of three terms

u(t, z,€) = a(t, z,€) +u1(t, z,€) + Ua(t, 2, €)

where a(t, z,€) € F{e} is a convergent series near € = 0 and 1 (t, z,€), U2(t, z,€) belong to F[[e]]
with the property that, accordingly, the function u® shares a similar decomposition

u®(t,z,€) = a(t, z,€) + u?” (t,z,€) + ug” (t,z,¢€)

where € — ugp (t,z,€) is a F—valued function owning 11 (t, z, €) as asymptotic expansion of Gevrey
order 1/ky on &, and where € — ug” (t,z,€) is a F—valued function owning us(t, z,€) as asymp-
totic expansion of Gevrey order 1/ky on &y, for all 0 <p <¢—1.

b) We make now the further assumption completing the four properties described in Definition
8 that the good covering {Ep}to<p<c—1 and that the family of unbounded sectors {Us,}o<p<c—1
satisfy the following property:

5) There exist 0 < py < ¢ — 1 and two integers 61,02 > 0 such that for all p € I, o5, =
{po—01,...,p0,...,p0+ 02}, the unbounded sectors Uy, are such that the intersection Uy, NUy,

contains the sector Uy, o,,, = {7 € C*/arg() € [0,,0,41]} and such that

Ew CSym < U &

h61517p0’52

where Sy, is a sector centered at 0 with aperture slightly larger than m Jk1.

Then, the formal series u(t, z,€) is (ka, k1)—summable on &, and its (kg, k1)—sum is given by
u®o (t, 2, €).

Proof We consider the family of functions u® (¢, z,¢), 0 < p < ¢ — 1 constructed in Theorem
1. For all 0 < p < ¢ — 1, we define Gp(e€) := (t,2) — u’(t, z,€), which is by construction a
holomorphic and bounded function from &, into the Banach space F of bounded holomorphic
functions on (7 N D(0,h”)) x Hg equipped with the supremum norm, where 7 is introduced in
Definition 8, " > 0 is set in Theorem 1 and 8’ > 0 is the width of the strip Hg on which the
coefficient co(t, z, €) and the forcing term f°#(t, z, €) are defined with respect to z, see (155) and
(159).

Bearing in mind the estimates (162) and (163) we see that the cocycle ©,(e) = Gpt1(€)—Gp(€)
is exponentially flat of order ky on Z, = £, N &y, for all p € I C {0,...,¢ — 1} such that
the intersection Uy, N Uy, ,, contains the sector Uy, o,,, and is exponentially flat of order k; on
Zy=E NEpy1, forallpe Iy € {0,...,¢ — 1} such that the intersection Uy, N Vs, is empty.

From the Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent
power series a(e) € F{e} and two formal series G'(¢), G%(¢) € F[[¢]] such that G,(¢) owns the
following decomposition

Gple) = ale) + Gllj(e) + Glg,(e)

where G (€) is holomorphic on &, and has G1(¢) as its asymptotic expansion of Gevrey order

1/k1 on &, Gg(e) is holomorphic on &, and carries GQ(E) as its asymptotic expansion of Gevrey
order 1/ks on &, for all 0 <p < v —1. We set

it z,€) = Y ha(t,2)e™ /m! = a(e) + G (e) + G*(e).

m>0
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This yields the first part a) of Theorem 2.

Furthermore, under the assumption b) 5) described above, the Theorem (RS) claims that the
formal series G(€) = a(e) + G (€) + G?(e) is (ka, k1) —summable on &,, and that its (ko, k1 )—sum
is given by G, (€).

It remains to show that the formal series u(t, z, €) solves the main equation (195). Since
% (t,z,€) (resp. f°2(t,z,€) ) has a(t,z,€) (resp. f(t, z,€)) as its asymptotic expansion of
Gevrey order 1/k; on &,, we have in particular that

(196)  lim sup |0 u® (t, 2,€) — hin(t, 2)| = 0,
€20,6€8p teTND(0,h""),2€H s

lim sup 07 2 (t, 2, €) — fn(t, 2)| = 0,
€20,€€8p teTND(0,0"),2€H g

forall 0 < p <¢—1, all m > 0. Now, we choose some p € {0,...,¢ — 1}. By construction,
the function u®(t, z e) is a solution of (154). We take the derivative of order m > 0 w.r.t €
on the left and right handside of the equation (154). From the Leibniz rule, we deduce that
O™ (t, z, €) verifies the following equation

m!
(197) Q(3.)adur(t,z,e) = Y. m@;ﬂlcu()(Ql(az)az"zu%(t,z,e))
mi+mae+mz=m

ms, 0 m! (6—1)(k2+1)—5p+11 1 (6 —1) (k1)
X (QQ(aZ)ae u p(t’z,e)) + JFZ ml'TrLQI86 ( v ’ Y )t Y ’
mi+mo=m

D-1
x )P Rp(0:)0mu® (t,z,6) + > (>

=1 mit+mo=m

- Z m1'm2'aln co(t, 2, €) Ro(0:)0u™ (¢, 2, €)

mi1+mao=m

A O Ry (9.)0™2ul (t, 2, €))

ml'm2

m!
D e (9O (k7
mi1+mo=m

for all m > 0, all (¢,z,€) € (TND(0,h")) x Hg x &y. If we let € tend to zero in (197) and if we
use (196), we get the recursion

(198)
m! .
Q(02)0thm(t, 2) = > m(a 101.9)(0) (Q1(82) humy (£, 2)) (Q2(0:) oy (£, 2))
m1+mo+mz=m
m!

(6p—1)(k2+1) 50

" (m—((6p — 1) (ko + 1) — 0p + 1))!t bmIERTIONP Rp(02) hn— (5 —1) (ka+1)—5p+1) (£5 2)
D-1
m m oy

+ : WtdlaalRl(a )hm—Al <t7 Z) + _FZ m(a )(t, z, O)R0<8z)hm2 (t7 Z)

=1 mi-+ma=m

m!
M1
" ml%:m milms! (0" cr)(0) fins (L, 2)

for all m > maxlSlSD_l{Al, (5D — 1)(/€2 + 1) —dp + 1}, all (t, Z) € (Tﬂ D(O, h”)) X Hﬁ" Since
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the functions ¢ 2(€), co(t, z,€) and cp(€) are analytic w.r.t € at 0, we know that

(199) era()= 3 GO 2 5 @G0

m! m!
m>0 m>0

CF(€) _ Z (86mCF)(0)6m

m!
m>0

for all € € D(0,€p), all z € Hg. On the other hand, one can check by direct inspection from
the recursion (198) and the expansions (199) that the series (¢, 2,€) = >, o hm(t, 2)e™/m!
formally solves the equation (195). O

7 Application. Construction of analytic and formal solutions
in a complex parameter of a nonlinear initial value Cauchy
problem with analytic coefficients and forcing term near the
origin in C?

In this section, we give sufficient conditions on the forcing term F(T,m,¢) for the functions

% (t,z,€) and its corresponding formal power series expansion (¢, z,€) w.r.t € constructed in

Theorem 1 and Theorem 2 to solve a nonlinear problem with holomorphic coefficients and forcing
term near the origin given by (224).

7.1 A linear convolution initial value problem satisfied by the formal forcing
term F(T,m,¢€)

Let k1 > 1 be the integer defined above in Section 5 and let D > 2 be an integer. For 1 <[ < D,
let d;,0;,A; > 0 be nonnegative integers. We assume that

(200) 1=461 , 0, <6141,

forall 1 <[ <D — 1. We make also the assumption that

(201) dp = (bp—-1)(k1+1) , Ay > (6;—1)(k1+1) , Ay—dj+6;—-1 >0, Ap=dp—-dop+1
forall 1 <1 <D —1. Let Q(X),Ri(X) € C[X], 0 <1< D, be polynomials such that

(202) deg(Q) > deg(Rp) > deg(Ry) , Q(im) £0 , Rp(im) £0

forallm e R, all 0 <1 <D —1. Let 8,u > 0 be the integers defined above in Section 5. We
consider sequences of functions m +— Cg ,(m,€), for all n > 0 and m — F,,(m,¢), for all n > 1,
that belong to the Banach space E(g ) and which depend holomorphically on € € D(0,¢p). We
assume that there exist constants Ky, Ty > 0 such that

1 n 1 n
(203) |Con(m, €)]l(s.) < Ko(ﬁ) o Fn(m, )l < Ko(ﬁ)
for all n > 1, for all e € D(0,¢p). We define
o(T,m,e€) Zanme , F(T,m,e) ZF m,e)T

n>1 n>1
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which are convergent series on D(0, To/2) with values in Eg ). Let co(€), copo(€) and cr(e) be
bounded holomorphic functions on D(0, ¢p) which vanish at the origin € = 0.

We make the assumption that the formal series F'(T,m,€) = > - F(m,€)T", where the
coefficients F),(m,€) are defined after the problem (154) in Section 5 satisfies the next linear
initial value problem

D
(204) Q(im)(OpF(T,m,€)) =Y Ry(im)e =4O tmd gl P(T, m, e)
=1

+oo
1 cole '
+ € 1(27231)/2 /OO Co(T,m — my,e)Ro(im1)F (T, my,€)dm,
-1 C070(6)

te (27.[-)1/2

+00
/ Co,0(m —mu, €)Ro(im1)F (T, mq, €)dm + 6_1CF(€)F(T, m,e€)

for given initial data F'(0,m,¢) = 0.

The existence and uniqueness of the formal power series solution of (204) is ensured by the
following

Proposition 17 There exists a unique formal series

F(T,m,e) =Y Fp(m,e)T"

n>1

solution of (204) with initial data F(0,m,€) = 0, where the coefficients m — F,(m,¢€) belong to
Eg,py for B, > 0 given above and depend holomorphically on € in D(0, €o).

Proof From Proposition 4, we get that the coefficients F,,(m,€) of F(T,m,e) are well defined,
belong to Eg ) for all € € D(0, €p), all n > 1 and satisfy the following recursion relation

(205)  (n+ 1)Fpy1(m,e)

yy
=S 1(im) (eAz—dl”l—lngl (n+ 6, —d; - j)) Fot5-a,(m; €)

— Q(im)
e tco(e) 1 +oo ,
=+ 7Q(Zm) X Z>1 3 W /_OO Con, (m —my, €)Ro(im1) F, (M, €)dmy
ni+np=n,n1>1mnp>
00l [T G ORe(imy) E (i, i+ F OB (im0
(27T)1/2Q(Zm) o 0,0 1 € 0 1 n 1 € 1 Q(zm) n 9 €
for all n > maxj<;<p d;. O

7.2 Analytic solutions for an auxiliary linear convolution problem resulting
from a my, —Borel transform applied to the linear initial value convolution
problem

Using the formula (8.7) from [31], p. 3630, we can expand the operators T‘sl(klﬂ)(‘)g’ in the form

(206) oo = (TR o)+ N A TR R (TR gy
1<p<é;—1
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where As, ,, p=1,...,0; — 1 are real numbers, for all 1 <[ < D. We define integers d; ;, > 0
to satisfy

(207) d+k+1=06(k+1)+ d; i,

for all 1 <1 < D. Multiplying the equation (204) by T*1 ! and using (206), (207) we can rewrite
the equation (204) in the form

(208)  Q(im)(T™ 107 F (T, m,¢))
D
= Z R;(im) (eAlfler‘sl*lel»’“l (T*HL970) F(T, m, €)
=1

£ Y Agy ARG (P, (T m, o))
1<p<d;—1

k141 CO(E)
(27[-)1/2

+00
+e ! / Co(T,m — my,e)Ro(im1)F (T, mq,€)dm;
—o0

+oo

+ 6_1Tk1+1(c20’0)(16/)2 / Coo(m —my, ) Ro(imy)F(T,my, €)dmy + ¢ Lep(e) T IR (T, m, ).
™ —00

As above, we denote vy, (1, m,€) the formal my, —Borel transform of F(T,m,¢) w.r.t T and

g, (1, m, €) the formal my, —Borel transform of Cy(7',m,€) with respect to 1" and ), (7,m, €)
the formal my, —Borel transform of F(T',m,¢€) w.r.t T,

Y, (T, m, €) = ZF m,e) ),cpleme ZCOnme (

n>1 n>1

L)’
Yy, (T,m, €) ZF m,e)

n
n>1 ’7)

3‘
E&“:

Following a similar reasoning as in the steps (76), (77), (78) and (79), using (203) we get
0

that ¢, (1,m,€) € F( 0Bk ) A0 ’I/Jkl(T,.m,E)' € E(;ﬁ#{,khh)’ for z'ﬂl €€ D(O,'eo), for‘a.ll the

unbounded sectors Uy, centered at 0 and bisecting direction 9, € R introduced in Definition 8,

for some v > 0.

Observe that dp , = 0. Using the computation rules for the formal my, —Borel transform
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in Proposition 8, we deduce the following equation satisfied by ¢, (7, m, €),
(209) Qim)(k17* ¢, (7, m, ©)) = R (im) (K279, (7,m, ¢

Tkl ™ k1 dp—p—1 /1.Pp.p 1/k1 ds
+ > Aooriien —py f T (kY% (571, m, €)) =

1<p<op-1 (9p —p
D-1 k1 Tkl dl,k d
30 Rim) Aot T [ k) g (516 )
=1 (=) Jo
k1 e dik
_ _ T R 4§ —p—1 ds
T S T [t g 4 m ) )
1<p<di-1 I(Z+ +di—p)Jo
, TR ™ k 1/k
+€e” / (7% — ) /"
F(l%—kfll) 0
co(€) /S /+°° 1/ky , 1/k 1 ds
— - R ! ———dxd —
X ((271-)1/25 - @, ((s =)/ m — my, €)Ro(imy)y, (x ’ml’e)(s—x)x wdmy | —
k1 k1 40
1T ki 17kt €0,0(€) . 1k ds
+e€ F(1_1_11611)/0 ("t —s) lW( . Co,0(m—ma, €)Ro(imq)y, (s 1,m1,6)dm1)?
k1 k1 d
-1 T ki _ o\1/k1 1/k1 as
+e€ CF(G)F(l—I— kll)/o (T 5) by (577, my€) -

We make the additional assumption that there exists an unbounded sector

Sqrp ={# €C/[z| 2 rqRrp , larg(2) — dQRpl < MRy}

with direction dq ry, € R, aperture nqry > 0 for some radius rq r, > 0 such that

(210)

for all m € R. We factorize the polynomial P,,(7) = Q(im)k;1 — Rp (im)k‘fDT(‘sD_Dkl in the
form

(211) P,,,(r) = —Rp(im)kPILD VM1 (7 — gy(m))

where

o Qlm)
@12) ) = (o E )

Q(im) 1 2ml
Ro(im)k?> 0o — Uk (05— Dkt

x exp(v/—1(arg(

forall0 << (dp —1)k1 — 1, all m € R.

We choose the family of unbounded sectors Up, centered at 0, a small closed disc D(0, p)
(introduced in Definition 8) and we prescribe the sector Sq ry, in such a way that the following
conditions hold.

1) There exists a constant M; > 0 such that

(213) [T — aqu(m)| = My (1+|[7])
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forall 0 <1< (dp —1)ki — 1, allm e R, all 7 € Uy, UD(0,p), for all 0 <p < ¢ — 1.

2) There exists a constant My > 0 such that

(214) |7 — a, (m)| > Ma|qy, (m)]

for some Iy € {0,...,(dp — 1)k; — 1}, allm e R, all 7 € UDPUD(O,p), forall 0 <p<¢—1.

By construction of the roots (212) in the factorization (211) and using the lower bound
estimates (213), (214), we get a constant Cp > 0 such that

(215) [Pru(r)] = MM NG R i) 2 (A2 (1 .-
R (im)

koo
(kPP 1) TR
(1 4 x)(5D—1)k1—1

1
X (min 1+ |r]* Op—1)—5;
(ZZO (1+$k1)(6D_1)_k11)( ’ ‘ )

1
(rQRrp) ®P~Y" [Rp (im))|

_ Cesy ' k(6D —1)— 7
= Cp(rq.rp) ®»~ V%1 [Rp (im)[(1 +[7[™) 1

for all 7 € UDPUD(O,,O), allmeR all0<p<¢—1.
In the next proposition, we give sufficient conditions under which the equation (209) has a

solution 1[)2’1’ (1,m, €) in the Banach space F(alj’ﬂ sk ke

Proposition 18 Under the assumption that

) where 3, i are defined above.

(216) op >0, + i
kq

for all 1 < 1 < D — 1, there exist a radius rqrp, > 0, a constant v > 0 and constants
$0,0,50,$1,51,0,SF,S2 > 0 (depending on ki,Cp, u, v, €9, Ry, Ay, 8;,d; for 0 < 1 < D) such that

if

Co(é)
217)  sup || <10, lew (Tm Ol s pm k) < St
e€D(0,e0)
Co,o(ﬁ)
|—— < <00 HCO,O(mvf)H(ﬁ,u) < S0,
e€D(0,e0) €
cr(€)
sup | | <sr s [ (Tms )l w,s,um k) < S2
e€D(0,e0)

foralle € D(0,¢€p), the equation (209) has a unique solution wZ’;(T, m, €) in the space F(aiﬁ,#,kl,kl)

with the property that Hz/JZ’l’(T,m, N Bk k) < v, for all e € D(0,¢e), where B, > 0 are
defined above, for any unbounded sector Uy, and disc D(0, p) that satisfy the constraints (213),
(214), for all0 <p <¢—1.

The proof of Proposition 18 follows exactly the same steps as the corresponding one of Propo-
sition 14, therefore we skip completely the details.

As a result, we get that the my, —Borel transform 1, (7, m, €) of the formal series F/(T,m, ¢)
solution of the equation (204) is convergent w.r.t 7 on D(0, p) as series in coefficients in Eg ),
for all € € D(0,¢), and can be analytically continued on each unbounded sector U, as a

function 7 — 11)2’1’ (1,m, €) which belongs to the space has

( . In other words, the assumed
V767/"’7k17k1)
constraints (156) are fulfilled.
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7.3 A linear initial value Cauchy problem satisfied by the analytic forcing
terms [ (t, z,€)

We keep the notations and the assumptions made in the previous subsection. From the assump-
tion (203), we deduce that the functions

(218) Co(T, z,¢€) = coo(€)F *(m + Coo(m,e) Zco (m = Copn(m,e))(2)T",
n>1
F(T, 2, ¢) Z]: m— Fp(m,e))(z)T"
n>1

represent bounded holomorphic functions on D(0,To/2) x Hz x D(0,¢) for any 0 < 5/ < 8
(where F~! denotes the inverse Fourier transform defined in Proposition 9). We define the
coeflicients

(219) co(t, z,€) = Colet, z,¢) , f(t,z,€) = F(et, z,¢€)
which are holomorphic and bounded on D(0,7) x Hg x D(0, ¢y) where reg < To/2.

Proposition 19 Under the constraints (200), (201), (202), (203) and the assumptions (210),
(213), (214), (216), (217), the forcing term f°»(t, z,€) represented by the formula (159) solves
the following linear Cauchy problem

(220)  Q(8:)(Def % (t, 2,¢)) = ¥D D1+ =0+ @Gp DR+ GPIPR Y (9,) f5 (¢, 2, ¢)

D-1
+ D AUNGIR(8.) 27 (1 2, €) + eolt, 2, ) Ro(0:) [ (L, 2, €) + ep(e)E (L, 2, €)
=1

for given initial data f°(0,z,¢) =0, for allt € T, z € Hg and € € &, (provided that the radius
ry of T fulfills the restriction egr < min(h', Ty/2,To/2)).

Proof From Proposition 18, we know that the formal series F(T,m,€) = > Fy(m,e)T"
is my, —summable w.r.t 7" in all directions d,, 0 < p < ¢ — 1 (in the sense of Definition 4).
Therefore, from the estimates (156), we deduce that the my, —Laplace transform

(e du
£$€k1 (1 ¢Z’f (r,m,e))(T) = k1 /L wzz; (u,m,€)e (722
op

u

defines a bounded and holomorphic function on any sector S, O, b, WL T, for all m € R,
I b 1

all e € D(0,¢p), where Sapﬁkl Y is a sector with bisecting direction 0,, aperture kll < O <

% +ap(Uy,) and some radius h;ﬂ > 0. Moreover, using the algebraic properties of the my, —sums

in the formula (??), we deduce that E?ﬁkl (T — wZ‘l’ (1,m,€))(T) solves the equations (208) and
then (204) for all T € Sy g, s > all m € R, all € € D(0,€p) and vanishes at 7' = 0. Now, let
1

F° (T, m,e) defined in (158).
Lemma 12 The following identity
0 v
F(T,m,¢) = Loy, (T~ Uy (r,m,e))(T)

holds for all T € Sy, on, m € R, € € D(0,¢), as defined just after the definition (158), for
o <O<i+ ap(SDp) and some radius h' > 0.
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Proof By construction, we can write

F° (T, m,¢) = k‘z/

L

Uy (hym, )
op Ly,

kokq h U dv . dh\ _juyke du
< [ emx—<v%1+<ﬁﬂvm+n)e (s L

20 v h U
op,ka,8’

for some 0 < 0’ < T, where Vj, 1, 5 is defined in Proposition 13. Using Fubini’s theorem yields

dh
(221) For (T, m, ) = ky / o (hym, AT, )5
Lo,
where
_k2 k h k u k d’U _(u\ko du
222) A(T,h) =k —Zu™? — (=)™ Z)ke2 (F)2 2%
22) AT =k [t (A%@ymm (D + () gy | B
psk2,

= Lot (> (Bik,, (0= e (u))(T)

for all T € Sy, 0, m € R, € € D(0,€0). But we observe from the inversion formula (110) that
A(T, h) = exp(—(h/T)*"). Gathering (221) and (222) yields the lemma 13. O

From Lemma 13, we deduce that F° (T, m,¢) solves the equation (204) for all T € So,.0,h', all
m € R and all € € D(0,¢y). Hence, using the properties of the Fourier inverse transform from
Proposition 9, we deduce that the analytic forcing term f° (¢, z,€) = F~1(m — F° (et,m,¢))(z)
solves the linear Cauchy problem (220), for all t € T, all z € Hg and all € € &,. O

We are in position to state the main result of this section

Theorem 3 We take for granted that the assumptions of Theorem 1 hold. We also make the
hypothesis that the constraints (200), (201), (202), (203) and the assumptions (210), (213),
(214), (216), (217) hold. We denote P(t,z,€,0;,0,) and P(t, z,€,0¢,0,) the linear differential
operators

(223)  P(t,z,€,0,0,) = Q(8,)d — 0p= Dkt 1) =0p+1;0p=D)(ka+1) 500 R (9, )
D—-1

— > Ph) Ry (0:) — colt, z,€) Ro(D-),
=1

P(t,z,¢,0;,0.) = Q(9.)0; — 6(613—1)(1~c1+1)—6D+1t(5D—1)(k1+1)afDRD(32)

D-1
= 3" RN R (8.) — colt, 2, €)Ro ().
=1

Then, the functions u®®(t, z,€) constructed in Theorem 1 solve the following nonlinear PDE

(224) P(t,z,€,04,0.)P(t, z,€,0p,0,)u’ (t, z,¢)
= c12(e)P(t,2,€,0,0,) (Ql(az)uap (t, 2z, €) X Q2(0,)u’(t, 2, e))
+ cr(e)cr(e)f(t, z,€)
whose coefficients and forcing term £ are analytic functions on D(0,r1) x Hg x D(0,€q), with
vanishing initial data u®r(0,z,€) =0, for allt € T, all 2 € Hy and all € € E,. Moreover, the

formal power series U(t,z,€) = > ~ohm(t,2)e™/m! constructed in Theorem 2 formally solves
the same equation (224).
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Proof The reason why u®(t, z, €) solves the equation (224) follows directly from the fact that
u® (L, z, €) solves the nonlinear equation

P(t,z,€,01,0:)u’ (t, 2, €) = c12(€)(Qu(0:)u™ (£, 2,€) X Q2(0:)u’* (¢, 2, €)) + cp(e) [ (t, 2, €)
according to Theorem 1 and from the additional feature that f°¢ (¢, z, €) solves the linear equation
P(t,z,€,0;,0,)f° (t, z,€) = cp(e)f(t, 2, €)

as shown in Proposition 19. Finally in order to show that u(t, z,€) formally solves (224) we
see that with the help of the second equality in (196) and following exactly the same lines of
arguments as in the last part of Theorem 2, one can show that the power series f (t,z,€) =
Ym0 Jm(t, 2)€™/m! constructed in Lemma 11 formally solves the linear equation

A~

(225) P(t,z,€,0,0,)f(t,z,€) = cr(e)f(t, z,€)
Combining the equations (195) and (225) yields the result. O
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