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Abstract

We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter e
with vanishing initial data at complex time ¢ = 0 and whose coefficients depend analytically on (¢, t) near
the origin in C? and are bounded holomorphic on some horizontal strip in C w.r.t the space variable.
This problem is assumed to be non-Kowalevskian in time ¢, therefore analytic solutions at ¢ = 0 cannot
be expected in general. Nevertheless, we are able to construct a family of actual holomorphic solutions
defined on a common bounded open sector with vertex at 0 in time and on the given strip above in
space, when the complex parameter ¢ belongs to a suitably chosen set of open bounded sectors whose
union form a covering of some neighborhood 2 of 0 in C*. These solutions are achieved by means of
Laplace and Fourier inverse transforms of some common e—depending function on C x R, analytic near
the origin and with exponential growth on some unbounded sectors with appropriate bisecting directions
in the first variable and exponential decay in the second, when the perturbation parameter belongs to €.
Moreover, these solutions satisfy the remarkable property that the difference between any two of them is
exponentially flat for some integer order w.r.t e. With the help of the classical Ramis-Sibuya theorem, we
obtain the existence of a formal series (generally divergent) in ¢ which is the common Gevrey asymptotic
expansion of the built up actual solutions considered above.
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1 Introduction

In this paper, we consider a family of parameter depending nonlinear initial value Cauchy
problems of the form

D
(1) Q3:)(Brult, 2,€)) = (Qu(D:)ult, 2,€)(Q2(:)ult, 2, €)) + _ eMEHD Ri(D:)u(t, 2, €)

=1
+ eolt, 2, O Ro(D.)ult, 2, €) + f(t 2, €)

for given vanishing initial data (0, z,€) = 0, where D > 2, A;,d;,0;, 1 < 1 < D are integers
which satisfy the inequalities

1=6 , §<641 , dp=0p—-1)(k+1) , Ap=dp—0p+1,

2
dl>(5l—1)(k:+1) , (5[)2(514-% R Al+k(1—5D)+120
forall 1 <[ < D—1 and for some integer £ > 1. Besides, Q(X), Q1(X),Q2(X), Ri(X),0<1< D
are polynomials submitted to the constraints

deg(Q) > deg(Rp) > deg(R;) , deg(Rp) > deg(Q1) , deg(Rp) > deg(Q2),
Q(im) #0 , Rp(im) #0

for all m € R, all 0 < [ < D — 1. The coefficient ¢y(t,z,€) and the forcing term f(t,z,¢€)
are bounded holomorphic functions on a product D(0,7) x Hg x D(0, €), where D(0,r) (resp.
D(0,¢€p)) is a disc centered at 0 with small radius » > 0 (resp. ¢ > 0) and Hg = {z €
C/|Im(z)| < B} is some strip of width 5 > 0. In order to avoid cumbersome statements and
to improve the readability of the computations, we have restricted our study to a quadratic
nonlinearity and monomial coefficients in ¢ in front of the derivatives with respect to t and z but
the method described here can also be extended to higher order nonlinearities, with polynomial
coefficients w.r.t ¢ in the linear part on the right handside of the equation (1).

This work can be seen as a continuation of the study described in [23] where the second
author has studied nonlinear integro-differential initial values problems with the shape

@) R(0)P(8,0.)Y (1, 2) = /0 bt — 5, 2)02Y (5, 2)ds + /O 0NV (1 — 5. 2)0Y (s, 2)ds

where R(X) € C[X]|, P(T,X) € C[T,X] and s, s1,s2 > 0 are non negative integers. The
coefficient b(t, z) = 3, o br(2)t" is a polynomial in ¢ and its coefficients b (z) are Fourier inverse
transform of some function by(m) belonging to a Banach space E g,y of continuous functions
h: R — C endowed with the norm ||h(m)|[(3,.) = sup,er(1 + |m|)* exp(8|m|)|h(m)| and define
bounded holomorphic functions on any strip Hg/, 0 < 8’ < 8. The initial conditions are defined
by Y (0,2) = Yo(2), (Y)(0,2) =0, for all 1 < j < degyP(T, X) — 1, where Yj is also assumed
to be the Fourier inverse transform of some )o(m) belonging to Eg,)- We focused on the case
when the degree of R(X)P(T, X) with respect to T is smaller than its degree in X. In that case
the classical Cauchy-Kowalevski theorem (see [12]) cannot be applied and the unique formal
power series solution Y (¢, z) = > 50 Yi(2)t!, with coefficients belonging to the Banach space of
bounded holomorphic functions on H g equipped with the sup norm, is in general divergent.
Nevertheless, under suitable constraints on the roots of the polynomial T+ P(T2,im) and for
sufficiently small data |[b|[ (3, [|Doll(s,.), One can construct by means of classical Borel-Laplace



procedure and Fourier inverse transform an actual holomorphic solution Y (¢, z) on C x Hg of
(2) for the given initial data (C; denotes the set of complex numbers ¢ such that Re(t) > 0),
which possess the formal series Y as Gevrey asymptotic expansion of order 1 as ¢ tends to 0,
meaning that for any compact subsector YW C C,. centered at 0, there exist constants C, M > 0
with

n—1
sup |Y(t,2) — > YVi(2)t!] < CM™nl|t|”
z€Hy 1=0
forallm > 1, all t € W.
Compared to the work [23], the problem (1) now involves an additional complex parameter
e. Provided that 6p + deg(Rp) > deg(Q) + 1 holds, the problem (1) is singularly perturbed in
the parameter ¢ and belongs to a class of so-called PDEs with irregular singularity at ¢ = 0 in
the sense of [25]. In the paper [22], the second author has already considered a similar problem
of the form

(3) et?0,02 Xp(t, z,€) = F(t, 2,¢,04,0,) Xp(t, 2,€) + P(t, 2, ¢, X, (t, 2, €))
for given initial data
(4) (02Xp)(1,0,6) = djpltie) , 0<p<c—1,0<j<S—1,

where S,¢ > 2 are some positive integers, F is some differential operator with polynomial
coefficients and P a polynomial. The initial data ¢;,(t, €) were assumed to be holomorphic on
products T x &, C C? for some sector T centered at 0 and where £ = {&,}o<p<c—1 denotes a
family of open bounded sectors with aperture larger than m which form a so-called good covering
in C*, meaning that £, N &E,41 # 0 for all 0 < p < ¢ — 1 (with the convention that & = &) with
the property that the intersection of any three different elements in {&,}o<p<c—1 is empty and
that U;;%)Sp = U\ {0}, where U is some neighborhood of 0 in C. Under convenient assumptions
on the shape of the equation (3) and on the initial data (4), the existence of a formal series
X(t, z,€) = > ps0 hi(t, 2)€f /k! solution of (3) is established with coefficients hy(t, z) belonging
to the Banach space F of bounded holomorphic functions on 7 x D(0,d) (for some § > 0 small
enough) equipped with the sup norm. This formal series X (t,z,€) is the Gevrey asymptotic
expansion of order 1 of actual holomorphic solutions X, (¢, z,€) of (3), (4) on &, as F—valued
functions, for all 0 < p < ¢ — 1, in other words for any closed subsector W C &, centered at 0,
there exist constants C', M > 0 such that

n—1
sup [ Xp(t,z,6) = Y hi(t,2)€ /Kl < CM™nle[”
teT,z€D(0,0) k=0
forallm > 1, all e € W.

In this work we address the same queries as in [22], [23], namely our main purpose is the
construction of actual holomorphic solutions u,(t, z, €) to the problem (1) on domains 7 x Hg X &,
using some Borel-Laplace procedure and Fourier inverse transform and the analysis of their
asymptotic expansions as € tends to 0. More specifically, we can present our main statements
as follows.

Main results Assume the existence of an unbounded sector
Sq.rp ={2 € C/lz[ Zrqry , larg(z) —do.rpl <MQ.Rp}

with direction dg r, € R, aperture ng r, > 0 and radius rq r, > 0 such that the quotient
Q(im)/Rp(im) belongs to Sq r, for all m € R. This sector Sg r, is prescribed in such a



way that there exists a set of adequate directions 0, € R, 0 < p < ¢ — 1, with the feature
that the distinct complex roots q(m), 0 < I < (0p — 1)k — 1, of the polynomial Pp (1) =
Q(im)k — Rp(im)kS27Cp=Vk fifill estimates of the form : there exist constants My, My > 0
such that

[T —q(m)| = Mi(1+|7]) , |7 —a,(m)| = Ma|q,(m)]

for all 0 <1 < (0p — 1)k — 1, some integer ly € {0,...,(0p — 1)k — 1}, for all m € R, all
T € S, U D(0, p), for some well chosen unbounded sectors Sy, centered at 0 with direction 0
and for some radius p > 0. Then, we choose a family € = {Ep}to<p<c—1 of sectors with aperture
slightly larger than w/k which defines a good covering of C* and we take an open bounded sector
T centered at 0 such that for every 0 < p < ¢—1, the product et belongs to a sector with direction
0, and aperture slightly larger than 7/k, for all e € &,, allt € T. We make the assumption that
the coefficient cy(t, z,€) and the forcing term f(t,z,€) can be written as convergent series of the

special form
o(t, z,€) Zc()nze )et)™ , f(t, z,€) anzeet
n>0 n>1

on a domain D(0,7) x Hg x D(0,€) (where Hg is a strip of width B') such that T C D(0,r),
Uo<p<c—1Ep C D(0,€0) and 0 < ' < B are given positive real numbers. The coefficients coo(z,€),
con(z,€) and fn(z,€), n > 1, are supposed to be inverse Fourier transform of functions m
Coo(m,€), m = Con(m,e) and m — F,(m,e€) that belong to the Banach space Eg ) for some
> max(deg(Q1) + 1,deg(Q2) + 1) and that depend holomorphically on € in D(0, €).

Our first result stated in Theorem 1 claims that if the norm ||Co o(m, €)||(3,.) and the radius €
are chosen small enough and if the radius rq g, is taken sufficiently large then we can construct
a family of holomorphic bounded functions up(t,z,€), 0 < p < ¢ — 1, defined on the products
T x Hg x &,, which solves the problem (1) with vanishing initial data uy,(0,z,€) =0 and which
can be written as Laplace-Fourier transform

+o0 d
up(t, z,€) = 1/2/ / wkumee(ﬁ)e :dm

where the inner integration is made along some halfline L., C S, where wzp(u,m,e) denotes
a function with at most exponential growth of order k in u/e and exponential decay in m € R
which satisfies more precisely estimates of the form

€l

0 - —
y? (1., )] < O+ )6~y

u
exp(v|-|")

€
for some constants C,v > 0, for allm € R, allu € Sy, UD(0,p), all e € D(0,¢) \ {0}.

Our second main result, described in Theorem 2, asserts that the functions u,, 0 <p <¢—1,
turn out to be the k—sums on &, of a common formal power series

it z,€) = Y hu( tz—EIF[[]]

m>0

where IF is the Banach space of bounded holomorphic functions on T x Hg' equipped with the sup
norm. Namely, for any closed subsector W C &, centered at 0, there exist constants C, M > 0
such that
n—1 em n
n n
sup  |up(t, z,€) = > hn (1, 2) | < CMT(1+ el

tET,ZEHﬁ/ m=0



forallm>1, all e € W.

It is worth remarking that when deg(Q)+1 > dp+deg(Rp), the equation (1) is not singularly
perturbed in € and possess no irregular singularity at ¢ = 0. However, the asymptotic expansion
@ of u, as € tends to 0 on &, remains divergent in general. The reason for this phenomenon
to appear relies on the way one constructs the actual solutions w, as Laplace transforms of
order k in the new variable et and from the fact that for any fixed e € D(0,¢p) \ {0}, the
problem (1) is not Kowalevskian with respect to ¢ at 0 (meaning that formal series solutions
0(t, z,€) = >, Un(2, €)t", with coefficients z — v,(z, €) bounded holomorphic on Hg, are in
general divergent, as a consequence of Propositions 8 and 9) as it was already the case in our
previous paper [23].

The Cauchy problem (1) we consider here comes within the new trend of research concerning
Borel-Laplace summability procedures applied to partial differential differential equation going
back to the seminal work of D. Lutz, M. Miyake and R. Schéfke on the linear complex heat
equation, see [19]. We quote below some important results in this field not pretending to
be exhaustive. This construction of Borel-Laplace k—summable or even multi-summable formal
series solutions has been extended to general linear PDEs in two complex variables with constant
coefficients by W. Balser in [3] and [4] provided that their initial data are analytic functions
near the origin that can be analytically continued with exponential growth on some unbounded
sectors. A similar result has been obtain for the so-called fractional linear PDEs with non-
integer derivatives by S. Michalik, see [24]. Latter on, linear complex heat like equations with
variable coefficients have been explored by several authors, see [5], [7], [21]. Recently, general
linear PDEs with time dependent coefficients taking for granted that their initial data are entire
functions in CV, N > 1, have been investigated by H. Tahara and H. Yamazawa in [28]. In the
context of nonlinear PDEs, we mention the work [20] of G. Lysik who constructed summable
formal solutions of the one dimensional Burgers equations with the help of the so-called Cole-
Hopf transform. We also point out that O. Costin and S. Tanveer have constructed summable
formal series in time variable to the celebrated 3D Navier Stokes equations in [9]. We also refer
to the work of S. Ouchi who constructed multisummable formal solutions to nonlinear PDEs
which come from perturbations of ordinary differential equations, see [26]. We also mention the
fact that, these last years, a lot of attention has been payed to singularly perturbed PDEs in
the complex domain partly motived by a conjecture of B. Dubrovin which concerns the question
of universal behaviour of generic solutions near gradient catastrophe of singularly Hamiltonian
perturbations of first order hyperbolic equations, see [10]. In this active direction, we refer
namely to the works of B. Dubrovin and M. Elaeva who investigated the case of generalized
Burgers equations in [11] and of T. Claeys and T. Grava in [6] who solved the problem for KdV
equations. We indicate the recent important studies of T. Koike on Garnier systems, [15], [16]
and of S. Hirose on the reduction of general singularly perturbed holonomic systems in two
complex variables to Pearcy systems normal forms, [13].

In the sequel, we explain our principal intermediate key results and the arguments needed
in their proofs. In a first part, we depart from an auxiliary parameter depending initial value
differential and convolution equation which is singular in its perturbation parameter € at 0, see
(72). This equation is formally constructed by making the change of variable T' = et in the
equation (1) (as done in our previous works [22], [17]) and by taking the Fourier transform
with respect to the variable z. Under the constraint (70) and the assumption that d; > d;,
0 <1 < D —1 (which follows from the hypothesis (69)) we can construct a formal power
series solution U(T,m,€) = 3, 5 Un(m, €)T™ of (72) whose coefficients m ~ U, (m, €) depend
holomorphically on € € C* near the origin and belong to a Banach space E,,,) of continuous



function with exponential decay on R introduced in the paper [9] by O. Costin and S. Tanveer.
This series turns out to be in general divergent as we will see below.

In the next step, we follow the strategy developped recently by H. Tahara and H. Yamazawa
in [28], namely we multiply each hand side of (72) by the power T* which transforms it into an
equation (76) which involves only differential operators in T' of irregular type at T = 0 of the
form TP0r with 8 > k + 1 due to our assumption (69) on the shape of the equation (72).

Then, we apply a formal Borel transform of order k (defined as a slightly modified version
of the classical Borel transform of order k from the reference book [1]), that we call mj—Borel
transform in Definition 3, to the formal series U with respect to T', denoted

K
wi(T,m,€) = Z Up(m, G)T%)

n>1

From the commutation rules of the mj—Borel transform with respect to the weighted convolution
product % of formal series (introduced in Proposition 5) and the differential operators 7797 for
B > k + 1 described in Proposition 6, we get that wg (7, m,€) formally solves a convolution
equation in both variables 7 and m, see (80).

Under some size constraint on the Eg ,)—norm of the constant term Cp g of one coefficient
of the equation (80) and for all e € C* close enough to 0, we show that wg (7, m,€) is actually
convergent for 7 on some fixed neighborhood of 0 and can be extended to a holomorphic functions
wg(T, m, €) on unbounded sectors Sy centered at zero with bisecting direction d and tiny aperture
provided that Sy stays away from the roots of some polynomial P,,(7), for all m € R. Besides,
the function w,‘cl(T, m, €) satisfies estimates of the form : there exist constants v > 0 and wy > 0
with

W (r.m. €)| < wy(1 + |m]) Fe Blml
1 ANR) ) =~ d

for all 7 € Sz, m € R, all ¢ € C* near the origin (see Proposition 9). The technical constraints
(69) and (87) together with (81), (84) and (85) allow, by means of lower bound estimates
(86) for the polynomial P,,(7), the transformation of equation (80) into a fixed point equation
He(wy) = wi, where the map H, is given by (89) for which we can find a solution w¢ in some

Banach space of holomorphic functions F| (‘i B k) studied in Section 2. It is worth noting that

the formal series U (T, m, €) diverges since the function wy (7, m, €) cannot in general be extended
everywhere on C w.r.t 7. But, as a result, we get that these series U are mj—summable w.r.t
T (see Definition 3) in all the directions d chosen as above. In other words, some Laplace
transform of order k of w{ denoted U%(T,m,€) can be constructed for all T belonging to a
sector Sg y p With bisecting direction d, aperture slightly larger than /k and radius hle| (for
some h > 0). This function T + U%(T,m,€) is the unique Eg ) —valued map which admits
ﬁ(T, m, €) as Gevrey asymptotic expansion of order 1/k on Sy, 5| Moreover, U(T, m, €) solves
the auxiliary problem (72) with vanishing initial data U%(0,m, €), see Proposition 10.

In Theorem 1, we construct a family of actual bounded holomorphic solutions u,(t, z, €),
0 < p < ¢ —1 of our original problem (1) on domains of the form 7 x Hg x &,. The sectors
Ep, 0 < p < ¢ —1 constitute a so-called good covering in C* (Definition 4). The strip Hg has
width 0 < 8/ < 8 and T is a fixed bounded sector centered at 0 which fulfills the constraint
€t € Sy, for all e € £, t € T, and Sy, is a sector of bisecting direction 9, and aperture
slightly larger than 7/k where 0, are suitable directions for which the unbounded sectors Sy,
with small aperture and bisecting direction 0, satisfy the restrictions described above. Namely,
the functions u, are set as Fourier inverse transforms of U,

up(t, z,€) = FYm — U (et,m, €))(2)



where the definition of F~! is pointed out in Proposition 7. In addition to that, one can prove
that the difference of any two neighboring functions w,11(t, z,€) — up(t, 2, €) tends to zero as
e = 0 on &, N &y41 faster than a function with exponential decay of order £, uniformly w.r.t.
teT and z € Hy, see (119).

The last section of the paper is devoted to deal with this latter growth information in order
to show the existence of a common asymptotic expansion 4(t,z,€) = >, ~ohm(t,2)e™/m! of
Gevrey order 1/k for all the functions w,(t, z,€) as € tends to 0 on &,, uniformly w.r.t. t € T
and z € Hg, see Theorem 2. The key tool in proving the result is the classical Ramis-Sibuya
theorem (Theorem (RS)).

The layout of this work reads as follows.

In Section 2, we define some weighted parameter depending Banach spaces of continuous func-
tions on C x R with exponential growth on sectors w.r.t the first variable and exponential decay
on R w.r.t the second one. We study the continuity properties of several kind of linear and
nonlinear integral operators acting on these spaces that will be useful in Section 4.

In Section 3, we give a definition of k—summability (that we call m;—summability) which is a
minor modification of the classical one given in the textbook [1] and which is appropriate for the
problem we have to deal with. We also give conditions for the set of mj—sums of formal series
to be a differential algebra. This fact will be important in the next section where we construct
actual solutions of the auxiliary equation (72). We provide explicit commutation formulas for
the mg—Borel transform w.r.t products and differential operators of irregular type.

In Section 4, we introduce an auxiliary differential and convolution problem (72) for which we
construct a formal solution. We show that the m;—Borel transform of this formal solution sat-
isfies a convolution problem (80). Under suitable assumptions, we can solve uniquely this latter
problem in the Banach spaces described in Section 2 using some fixed point theorem argument.
Then, applying Laplace transform, we can give a uniquely determined actual solution to (72)
having the formal solution mentioned above as Gevrey asymptotic expansion.

In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions to
our initial Cauchy problem (1) on a full neighborhood of the origin in C* w.r.t the perturbation
parameter €. We show that the difference of any two neighboring solutions is exponentially flat
for some integer order in e (Theorem 1).

In Section 6, we show that the actual solutions constructed in Section 5 share a common formal
series as Gevrey asymptotic expansion as € tends to 0 on sectors (Theorem 2). The result relies
on the classical so-called Ramis-Sibuya theorem.

2 Banach spaces functions with exponential growth and decay

We denote by D(0,r) the open disc centered at 0 with radius » > 0 in C and by D(0,r) its
closure. Let S4 be an open unbounded sector in direction d € R and £ be an open sector with

finite radius r¢, both centered at 0 in C. By convention, these sectors do not contain the origin
in C.

Definition 1 Let v,3,u > 0 and p > 0 be positive real numbers. Let k > 1 be an integer and
let e € £. We denote F(ijﬁﬂke) the vector space of continuous functions (7,m) — h(T,m) on

(D(0,p) USy) x R, which are holomorphic with respect to T on D(0,p) U Sy and such that

B LI TP
AT m) g .pke) = sup (L [m[)f =

Tk
i = exp(B|m| — v[-[")[h(T,m)|
7€D(0,p)USy,meR | e| €



is finite. One can check that the normed space (F(Cf,ﬁ’u’k@), I[-[l(v,8,,k,¢)) s @ Banach space.

Remark: These norms are appropriate modifications of the norms defined by O. Costin and S.
Tanveer in [9] and by the second the author in [22] and [23].

Throughout the whole section, we assume € € &£, u, 5, > 0 are fixed. In the next lemma,
we check the continuity property by multiplication operation with bounded functions.

Lemma 1 Let (1,m) — a(T,m) be a bounded continuous function on (D(0,p) U Sy) x R, which
is holomorphic with respect to T on D(0,p) U Sy. Then, we have

) lla(r, m)h(r, m)H(u,,B,u,k,e) < ( sup la(T, m)’) || (T, m)H(u,ﬁ,u,k,e)
T€D(0,p)USq,me
for all h(r,m) € I ((f/,ﬂ,u,k@)'

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 1 Let v > 0 be a real number. Let k > 1 be an integer such that 1/k < v < 1.
Then, there exists a constant C; > 0 (depending on v, k,~y2) with

k
. ds
(6) H/O (% - S)Wf(sl/k,m)?||(u,ﬂ,u7k7€) < Gl 1)l
fOT‘ (lll f(7_7 m) € F(dl/,ﬁuuykfe).

Proof Let f(r,m) € F(‘lyﬁu ko) Forany 7 € D(0, p) U Sg, the segment [0, 7*] is such that the

map s € [0,7%] = f(s'/¥,m) is well defined, provided that m € R. By definition, we have that

k
T ds
@ N[ =6 m) Dl
1+ |7 T
= sup (1 + [m|)# —==— exp(B|m| - v|-[")
7€D(0,p)USg,meR \;\ €
2
g . Blml it \Ls\l% 1k
<| [ AQ A+ m])" "™ exp(—vls|/le[") — 5 p— f(s /7, m)}
° g
x A(1,s,m,e€)ds|
where . Uk
1 1
Alrnm )= A P B
(i [ 1 BE I
Therefore,

k
T ds
(8) | /0 (TF — s)2 f(s'/* )Nl s ey < CLONFT M50k



14|72 T T exp(vh/|e|F) b1
Ci(e) =  sup #exp(—yl—\k) X / p( {LL ) (|| — h)2dh
rebOpuss | € 0 1+ Te[2F €]

Making the change of variable h = |¢[*h/ in the integral inside C1(¢) yields

14 |22
©) ()=l sup

Tk
exp(—v|=[")
reDO,puss el €

12" exp(vh!
< p(vh') 1y, Tk k
X /0 W(h/)"’ (‘E| — W)2dn" < |e|? ig%A(x)

where

1+a° “exp(vh), 14
Az) = —E exp(—uac)/o T2 h* = (z — h)"?dh

For any x > 0, we have A(x) < A(x), where

A(x) = (1 4 222 ¥ exp(—va) /0’” exp(vh)

o hi~Ldh.

Using L’Hospital rule, we know that

~ 11 2
lim A(z) = lim exp(vz)axr /(1 + z*)

r—+00 T—+00 ) ( exp(vz) 1)
(1+x2)x72—p

i (1 +x2)m2(72_%)m%_1
= 1m

v=00 (1 4 a:2)a:”/2*% _ (23372*%“ + (e — %)x'yr%fl(l + 22))

and this latter limit is finite if 79 < 1 holds. Hence, we deduce that there exists a constant
A > 0 such that

(10) sup A(z) < A
x>0
Gathering the estimates (8), (9), (10), we see that (6) holds. O

Proposition 2 Letv; > 0 and x2 > —1 be real numbers. Let vo > 0 be an integer. We consider
a holomorphic function a., (1) on D(0,p) U Sy, continuous on D(0,p) U Sy, such that

1
|ay 1 (T)] < (FELE
for all T € D(0,p) U Sy.

i) Assume that x2 > 0.
If vy + x2 — 71 < 0, then there exists a constant Co1 > 0 (depending on v,va, x2,71) such that
k

(11) [las () /0 (% — 5P (M5 m)ds|| g

< CQ.1|6‘k(1+V2+X27%) | ’f(7-7 m)”(u,ﬁ,u,k,e)
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for all f(t,m) € ngﬁuke).
ii) Assume that x2 = ¥ — 1 for some real number x > 1.
If vo + % — 1 <0, then there exists a constant Ca9 > 0 (depending x, k,v,v1,v2) on such that

k

(12) [las,x(r) /0 (% — sp22 (M5 m)dsl|sne)
< Coale[FHHx= £ () o

for all f(T,m) € F(li,ﬂ#,kﬁ)'

Proof In the first part of the proof, let us assume that i) holds. Let f(7,m) € F((iﬂu fe) By
definition, we have

k

(13) H%,k(T)/O (7% — )22 (1%, m)ds|| 4 .

L+ |7 T
= sup (1 + [m| ) —F— exp(8|m| — v|-[")
T7€D(0,p)USg,mER ‘E‘ €
- 1+ L
€
g r) [ L0 e expvls) 1)~ (6% )

le]

x B(t,s,m,e€)ds|

where i "
B(T S.1m, 6) — 1 e—ﬁ|m|eXp(V’8’/|6| ) ’3’ / (Tk _ S)xgsug‘
(T fm])* A

Therefore,

Tk
(14) Ha’}’l,k(T) /0 (Tk - 3)X2 SVQf(Sl/kv m)dSH(V,,B,,u,k,e) < CQ(G)Hf(Tv m)”(l/,ﬁ,,u,k,e)
where

1+ |Z|% T

o= s ST T
T7€D(0,p)USy | 6| ¢

: / " exp(vh/|e[*) b
0

SEEELE o)

k 1%
T — h X2h 2dh

Making the change of variable h = |e|*h’ in the integral inside Ca(e) yields

14+|2 2k
(15) Co(e) = |e/ 202 sup #exp(—ulzlk)
reDopUss el
: e exp(vh') 1T g v
g (1+\6\k\7\k)71/0 Tz BRI = h)yXen™=dn

< JePOFr2tx2) qup B(x, €)

>0
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where

hEtv2 (2 — R)X2dh.

1+ 22 1 ¥ exp(vh)
B(z,e) = ey exp(—vz) A+ [dFa)m / Ty

For any x > 0, we get that B(z,¢) < B(z, ), where

~ (14 22)zX2 /x exp(vh)
B(z,e) = =" exp(— S pdn
(z,€) (1 + |elfx)m exp(—vz) o 1+ h?

Let 29 > 0. From the inequality 1 + le|F2 > 1, for all x € [0,20] and € € &, there exists a
constant B > 0 such that

(16) sup  B(z,€) < B.
z€[0,x0],e€E

On the other hand, since 1+ |e[*z > |¢e|¥z holds for all z > 0 and € € &, we get that B(z,¢) <

Bo(z)/|€e]*" where

- ) 3 T exp(vh) .,
(17) BQ(II?) = (1 +x )CL’XQ " eXp(—V:E)/(; Wh th

for all x > x¢. By L’Hospital rule we get that

1_ ~ l (1 + $2)x2(X2_71)xV2
:c—1>r—&r-100 Ba(z) = x—1>r-ir-1c>o V(14 22)pxe=m — (2px2=n+l 4 (yg — )Xz —1(1 4 22))

which is finite if we assume that 1 > (1 + v2 4+ x2 — v1). We deduce that there exists a constant
By > 0 such that

(18) sup B(zx,e) <

xr>x0

Bearing in mind the estimates (14), (15), (16) and (18), we obtain (11).

sup Ba(x) <

r>x0

|€|k71 |€|k’Yl

In the second part of the proof, assume now that the condition ii) holds. Let f(7,m) €
F(dyﬂ Jke) By definition, we have

k

(19) [las, () /0 (% — ) E 5% F(sY% m)dsl s

L+ |22 T
= sup (1 + |m|)" ——=—— exp(Bm| — v|-|¥)
T7€D(0,p)USg,meER ‘E‘ €
|s|?

7 1+ o
lanar) [+ e exp(—vfsl /1) (5% )
lel

g2
|78 — 5| L+ Tpm

x {exp(—v o

|7k —s|t/k (Tk B 8)%} X %(T,S,m,G)dS‘

le]

where

e—ﬂ‘m‘ ( ’S‘) ( |Tk_s|>|s|1/k ‘Tk_8|1/k
—— X V—--—)ex 1%
(1 + e PV TP T e e

1 1

k -1 _vo
X e B (7% —s) s

1+|€|W1+ ‘6|2k

B(T,s,m,e) =
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Hence,

k

(20) H%,k(ﬂ/ﬂ (7% = s)b 2 (515 m)ds| | (,uke) < Co2(€)Cas(e)||f (mym))|

(V757/"1/7k7€)
where
v 145w
€ X
(21) Caa(e) = ig%eXp(_ywc)zl/kxk’
1+ |Z|%* 1
Cy3(e) =  sup .
reDopus, el @ H[TF)m
T k
% /l | hl/k (|T’k — h)l/k 1 1 (‘T|k _ h)flhl/zdh
2 k_H)2 °
S N ¥ R A A G )
By using the classical estimates
(22) 81;10) ™ exp(—maz) = (%)mlg*ml
x>
for any real numbers m; > 0 and mso > 0, we get that
X —1 x-1 —(x1 2+ XT_I 24X (24 x71
(23) Ca.a(e) < |elX (7ky )Y E e ) 4 (7y )2t e =)

Making the change of variable h = |e|h’ in the integral involved in the definition of Cs 3(€)
yields

1+ |Z|%* 1
(24) Ca3(e) = sup ¢
rebopus, =l (L4 [elF[TfF)m
<
0

k
I<l

1
T+ (W21 (2~ W)

T T _ y Y
R (G R o1 (el e e e G 3

< \e\k” sup Ba 3(x,¢)
>0

where

2
1+a 1 1 L gy,

Bas(z,€) = 21/k (1—|—|e|k:l7)71/0 (1+R2) (14 (z—h)?) (x —h)1 ™k

For any x > 0, we have that By 3(z,€) < Bg.g(l}, €), where

1+ 22 1 1
e _h”2dh.

By y(x,€) = 1+ |z /0 (L +h2)(1+ (= h)?) (7 — p)1-%

Let xg > 0. From the inequality 1 + le|F2 > 1, for all 2 € [0,z0], € € £, there exists a constant
By 3 > 0 such that

(25) sup 32,3(93, 6) S Bg,g.
z€[0,z0),e€€
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On the other hand, since 1 + ||z > |¢[F2 holds for all z > 0 and € € £, we get that

BQ_4(1I)
efFn

(26) 32.3(337 6) S

where
1 1

Brafa) =+ )™ /0 T+ R+ D) @t

for all x > xg. Now, we make the change of variable h = zu in the integral inside B2.4(:1:). We
can write

Bou(z) = (1 + 222”25 M Fy ()

where

uv2

1
Fy(z) = / —du.
0 (I4+22u?)(14+22(1 —uw)?)(1 —u) " *
Using a partial fraction decomposition, we can split Fj, = Fy y(x) + F5 (), where

1 1 2u + 1)u*?
Fyp(x) = 5 / ( ) —du,
4422 Jo (14 22u2)(1 —u)'~*

_ 1 (3 = 2uju”
Farl®) = 10 /0 (14221 —u)?)(1 - U)k%du'

In particular, we observe that there exist two constants §1 1,82, > 0 such that

S1,k S2,k
F < : < 2
(27) l,k(a:) =4 + .’E2 ) F2,k(£) =4 T 272

for all © > xy. Hence, if one assumes that vy + % —~v1 < 0, then we get a constant 32.4,1 >0
such that

~ 1 5 By
28 sup Bas(x,e) < sup Bog(xr) <
) Jup ol = g b Pal®) = 1,
Finally, gathering all the estimates (20), (23), (24), (25), (28), we get (12). O

Proposition 3 Let k > 1 be an integer. Let Q1(X), Q2(X), R(X) € C[X] such that

(29) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im) #0

for allm € R. Assume that p > max(deg(Q1)+1,deg(Q2)+1). Let m +— b(m) be a continuous
function on R such that

1
P = Tt

for all m € R. Then, there exists a constant C3 > 0 (depending on Q1,Q2, R, p, k,v) such that

k

T 1 S +o0
(30) Ib(m) /0 (r — )k ( /0 Qi (i(m — m) F((5 — 2)* m — my)

—00

. 1
X Qz(lml)g(l“l/k,m1)md$dml)d5| (v.B,11.k.€)

< Cslel[|f (7, m) w,8,,,0) 119 (Ts M) 0,8, 11k6)

for all f(r,m),g(T,m) € Fé,&mhﬁ)'
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For any 7 € D(0,p) U Sy, the segment [0, 7%] is such
1/k 1/k

Proof Let f(T, m),g( ) S Fuﬁ,uke)'

that for any s € [0,7"], any = € [0, s], the expressions f((s —x)¥* m —m;) and g(z
well defined, provided that m,m; € R. By definition, we can write

my) are

Sl

’T'k S 400
o(m) /0 (* —5) </0 Qu (i(m — m)) F((5 — 2)* m — ma)

—0o0

) 1
X Qg(zml)g(ﬂcl/k,M1)md$dml>ds"(v,/ﬁ,u,k,e)
+ |7 T
= sup (1 + |m|)# —=5— exp(B|m)| _V’*|k)
7€D(0,p)USq,meR <l ¢

|s—a|?

g 1/k Blm—m |1+ |e[?* K
< [T = et T e — e

1+
X F((s =) m =)} x {1+ e exp(—val /| )g (2, mo)}

le]

x C(s,z,m, my,€)dxdmy)ds|

where

_ exp(=flmal) exp(—flm — mi|) :
C(s,m,m,ml,e) = (1 T+ |m — ml,)u(l + ‘mll)u ( )Ql( (m m1)>Q2(2m1)
|s—a| /K |z|1/k
2 k N
1 LT ‘f,cl T ”jlzi) x exp(v|s — z[/]e]") exp(v|z|/|€| )(37

—z)x

Now, we know that there exist Q1,Q5,R > 0 with

(31) |Q1(i(m —m))| < Q1 (1 + Jm — my|)38@) | [Qa(imy)| < Qo(1 + |my )@,
|R(im)| = R(1 + |m]|)desD)

for all m, m; € R. Therefore,

Tk 1 s +00
(32) Hb(m)/o (% ~ S)k(/o Qu(i(m —m)) f((s = 2)"/*,m —my)

—00

X Qa(imq)g(a/* my) dzdma)ds||(,,u,k.e)

_
(s —z)x
< 03(6)”]0(7-7 m)”(uﬁ,u,k,e)Hg(Ta m)”(u,ﬁ,u,k,e)
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where
’ ’2k T k 1
AP BIml = D) G 5 e

(33) Cs(e) = sup (1+][m I)
T€D(0,p)USy,meR | |

k
x/ITl (j7[F — 1/k/ /+°°6Xp Blma|) exp(=B|m — my|)
0 (L+[m —ma[)#(1 + |[ma|)¥

(hfa:)l/kml/k
le[?

(1+ &350+ Z)

x 9192(1 + |m — mq|)38Q (1 + |my|)des(@2)

x exp(v(h — z)/|e[F) exp(va/|e| )(h_lm)xdwdml)dh

Using the triangular inequality |m| < |mi| + |m — mq|, for all m,m; € R, we get that

Cs(e) < CU3.1C32(€) where

39) Coa = 22 qup (1 4y [ 1 dm

' R mer oo (14 |m —my|)r=des(@1) (1 4 |myy | )#—des(@2)
which is finite whenever 1 > max(deg(Q1) + 1,deg(Q2) + 1) under the assumption (29) using
the same estimates as in Lemma 4 of [23] (see also the Lemma 2.2 from [9]), and where

+ I T

(35) Coal)= swp ———exp(—v|Z[)
reDOpuss el €

(hfx)l/kxl/k

|7[* h \hz) a7 1
K Je|?
< [ el =y espon/ ) [T dadh
0 0 (14821 + j2) (h— o)z

Making the changes of variables h = |e[*h/ and = = |e|*z’, we get that

I7|* h (h=a)!/Eal/k 1
62
(36) /0 (\Ty’f—h)l/’fexp(yh/yey’f)/o ] dedh
1 1

(14 G35) (1 + 23) (b= 2)w
h/
— n1/k /
| | / h eXP(Vh )/0 (1 4 (h/ _ x’)Q)(l + $’2) (h’ . w’)l_%xll_%

From (35) and (36), we get that Cs.2(e) < |e|Cs5.3, where

H’“

dx'dh’

1+ a2 ‘ N1/k /
37) (33 =sup ———— exp(—vx x —h')Fexp(vh')
1k )

>0 T

h/
1
X
(/0 A+ (W —2')2) (1 +a) (i — g w2l %
Again by the change of variable 2’ = h'u, for u € [0, 1], we can write

R 1 1
(38) /0 (1+ (W —2))(1 + 27) (h’—x/)l_%xll_%
1 /1 1
WYE o (L (21— w))(1+ k) (1 — u)' = Ful R




16

Using a partial fraction decomposition, we can split Ji(h') = Jy x(h') + Jo1(R'), where

1 /1 3—2u
WUER2+4) Jo (14 h2(1 —w)2)(1 —u) kel k

1 1 2u+1
JZk(hl) = T2 / 1—4 1—ldu
RYE(R2+4)Jo (14 h2u?)(1 —w)' " ku' "k

(39) Jip() = du

From now on, we assume that k > 2. By construction of Jy (k") and J; 1 (h'), we see that there
exists a constant ji > 0 such that

40 Ji (B <j—k
(40) k() = h/l—%(h/2+4)

for all A’ > 0. From (37) and (40), we deduce that C33 < sup,>g C3.3(x), where

(41) Cas(x) = (1 + 22) exp(—vz) /0 ’ mClh’.

From L’Hospital rule, we know that

; (1+22)2
' ~ o k x2+4
Jim Ca(e) = lim i v(l+22) -2z

is finite when k£ > 2. Therefore, we get a constant 6’3,3 > 0 such that

(42) 81;]8 C’g,g(x) S C~'3_3.

Taking into account the estimates for (33), (34), (35), (37), (41) and (42), we obtain the result
(30) when k > 2.

In the remaining case k = 1, from Corollary 4.9 of [8] one can check the existence of a constant
71 > 0 such that

N < J

for all A’ > 0. From (37) and (43), we deduce that C33 < sup,>q C~'3,3,1(33), where

~ T 4 h/
(44) Caan(o) = (14 ) explv) [ 2Ry
From L’Hospital rule, we know that
. A L (1 +2?%)
:cgr-ir-loo 03'3'1(1:) o xEI-Poo I/(l + .7}2) — 2z

is finite. Therefore, we get a constant 03,3.1 > 0 such that

(45) Sl;lg C~'3.3.1(£U) < C331.

Taking into account the estimates for (33), (34), (35), (37), (44) and (45), we obtain the result
(30) for k = 1. O
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Definition 2 Let 8,u € R. We denote by Eg, the vector space of continuous functions
h:R — C such that

1A (m)[l(5,) = sup (1 + |m|)" exp(B|m])|h(m)]
meR
is finite. The space Eg ) equipped with the norm ||.||(s ) is a Banach space.
Proposition 4 Let k > 1 be an integer. Let Q(X), R(X) € C[X] be polynomials such that

(46) deg(R) > deg(Q) , R(im)#0
for allm € R. Assume that p > deg(Q) + 1. Let m — b(m) be a continuous function such that

1
[b(m)] < RG]

for all m € R. Then, there exists a constant Cy > 0 (depending on Q, R, u,k,v) such that

k 40

T ) d
@) Im) [ =)k [ fom = ma) QU )6 s s
0 —00
< Calelll ()]l g llg(ms M)l 8,00
for all f(m) € B, all g(1,m) € F(dl/,ﬁ,y,,k,e)'

Proof The proof follows the same lines of arguments as those of Propositions 1 and 3. Let
f(m) € Eg,y, g(1,m) € F(Cf/b’,u,ke)' We can write

Tk 1 +oo d
(48) N := ||b(m)/0 (" — S)k/ f(m — ml)Q(iml)g(Sl/k,ml)dmlfH(uﬁ,u,k,e)

—00
Hia
= sup (1+ |m|)*

T€D(0,p)USg,meR ‘ E‘

Tk —+o00
MW@A [m{u+m—mmwmwm—mmﬂm—mm
| |2
vls|, 1

exp(Blm| — v| - ")

x {(1 4+ |m1)" exp(B|m1]) exp(— T) r ll/e Q(SI/k’ml)} x D(1,8,m,m1, €)dmids|
lel
where
j —Blmi|g—Blm—ma] exp( ) 1/k 1
Drs.m,my, ) = Q(im1)e e " i |s| _ gl
(L4 |m —ma[)#(1 + [m|)# 1—|—ﬂ €] 5

|e[2*
Again, we know that there exist constants Q,9 > 0 such that
QEm1)| < QL+ |ma )4 @), |R(im)| = R(L + m][)?e)
for all m,m; € R. By means of the triangular inequality |m| < |m| + |m — m|, we get that

(49) No < Cya(e)Casl|f(m)lg,mlla (T, M) ,8.1k.)
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where
14 |Z[** T Irl* exp(vh/|el* hr—1
Cual) = s e T [ SRR op gk
reDOpUSs | € 0 1 Te[2® €]
and q N
%0 1
R p—deg(R) / dm.
2w fnlé%( i) oo (14 |m —my|)H(1 + [my|)r—des(@) 1

From the estimates (9) and (10), we know that there exists a constant Cy; > 0 such that
(50) Cy1(€) < Cyalel

and from the estimates for (34), we know that Cy 5 is finite under the assumption (46) provided
that u > deg(Q) + 1. Finally, gathering this latter bound estimates together with (49) and (50)
yields the result (47). O

In the next proposition, we show that (Eg ., ||-|/(3,,) is a Banach algebra for some non-
commutative product * introduced below.

Proposition 5 Let Q1(X),Q2(X), R(X) € C[X] be polynomials such that

(51) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im) #0,

for all m € R. Assume that pn > max(deg(Q1) + 1,deg(Q2) + 1). Then, there exists a constant
C5 > 0 (depending on Q1,Q2, R, pu) such that

+0oo
(52) HR(;‘lm) 3 Q1(i(m —ma)) f(m —m1)Q2(im1)g(m1)dmal| .

< Gs[[f(m)llg,mllg(m)ll s,

for all f(m),g(m) € Eg,y. Therefore, (Eg ), |-ll(3,,) becomes a Banach algebra for the prod-
uct x defined by

o :O Qu(i(m — my)) f(m — ma)Qa(imy )g(my )dm,.

fxg(m)=

As a particular case, when f,g € Eg,y with 8> 0 and pp > 1, the classical convolution product

Fegtm= [ fm = mi)glm)ims

—0o0

belongs to Eg,,,)-

Proof The proof is similar to the one of Proposition 3. Let f(m), g(m) € E(g ). We write

R(;m) _:O Q1(i(m —mq)) f(m — m1)Q2(im1)g(m1)dmal| )

(53) |l

= sup (14 e b [ e o))
_mE% R(Zm) —00 ! !

X A+ |ma el g(ma)} x € (m,ma)dm |
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where
e~ Blm—m1|—Bmi|

(L |m —mi)#(1 + |ma)

Using the triangular inequality |m| < |m1| + |m — m1| and the estimates in (31), we get that

E(m,my) =

2 Q1(i(m —m1))Qa2(im).

1 teo . .
(54) ||R(im) - Q1(i(m —m1)) f(m — m1)Qz2(im1)g(ma)dma|| (s )
< Cs|[f(m)|l (5, l19(m)][(5,10)
where
o QIQQ pu—deg(R) oo 1
e I e e e

which is finite whenever ;> max(deg(Q1)+1, deg(Q2)+1) provided that (51) holds as explained
in Proposition 3 (see (34)). O

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We give a definition of k—Borel summability of formal series with coefficients in a Banach space
which is a slightly modified version of the one given in [1], Section 3.2, in order to fit our
necessities.

Definition 3 Let k > 1 be an integer. Let my(n) be the sequence defined by

my(n) = T(2) = /+Ootz_le_tdt
k L 0

for allm > 1. A formal series

X(T) = ianT” € TE[[T]]

n=1

with coefficients in a Banach space (E, ||.||g) is said to be my—summable with respect to t in the
direction d € [0, 2) if

i) there exists p € Ry such that the following formal series, called a formal my— Borel
transform of X

P(%)T" e TE[[7]],

By (X)(7) =
n=1

is absolutely convergent for |T| < p.

ii) there exists & > 0 such that the series B, (X)(7) can be analytically continued with
respect to T in a sector Sg5 = {17 € C* : |d — arg(7)| < 0}. Moreover, there exist C' > 0 and
K > 0 such that

B (X)(7) e < CeTF

forall T € S4;.
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If this is so, the vector valued Laplace transform of B,,, (X)(7) in the direction d is defined by

£l (B))(T) = k / By (X)(u)e— (/T Y
k u ’
along a half-line L, = Re” C S5 U {0}, where v depends on 7" and is chosen in such a way

that cos(k(y — arg(T"))) > 01 > 0, for some fixed d;. The function 5?,% By, (X))(T) is well
defined, holomorphic and bounded in any sector

Spomin ={T€C:|T| < RYE |d—arg(T)| < 6/2},

where 7 < 6 < 7 +20 and 0 < R < 01/K. This function is called the my—sum of the formal

series X (T') in the direction d.

b

We now state some elementary properties concerning the mjg—sums of formal power series.

1) The function £, (B, (X))(T) has the formal series X (T') as Gevrey asymptotic expansion
of order 1/k with respect to ¢ on Sgqp.ri/e- This means that for all £ < 61 < 6, there exist
C, M > 0 such that

(55) 1L, (B, (X))( ZapT”HE<CM"P<1+ =)
p=1

for all n > 2, all T € S, pi/x. Moreover, from Watson’s lemma (see Proposition 11 p. 75 in

[1]), we get that L2, (B, (X))(T) is the unique holomorphic function that satisfies the estimates
(55) on the sectors Sd,gth/k with large aperture ¢ > 7

2) Let us assume that (E,||.||g) also has the structure of a Banach algebra for a product x. Let
X1(T), X5(T) € TE[[T]] be my—summable formal power series in direction d. Let g1 > go > 1 be
integers. We assume that X1 (T) + Xo(T), X1(T) * Xo(T) and T% 8%2)21 (T"), which are elements
of TE[[T]], are mi—summable in direction d. Then, the following equalities

(56) L5, (B, (X))(T) + L3, (B, (X2))(T) = (Bmk(XlJer))( );
Lo, (B, (X0))(T )*Efnk(Bmk(Xz))(T) i By (X1 % X2))(T)
TUOP L5, (B (X0))(T) = L5, (B, (T 0 X1))(T)

hold for all " € S; g p1/k. These equalities are consequence of the unicity of the function having
a given Gevrey expansion of order 1/k in large sectors as stated above in 1) and from the fact
that the set of holomorphic functions having Gevrey asymptotic expansion of order 1/k on a
sector with values in the Banach algebra E form a differential algebra (meaning that this set is
stable with respect to the sum and product of functions and derivation in the variable T') (see
Theorem 18,19 and 20 in [1]).

In the next proposition, we give some identities for the mg—Borel transform that will be
useful in the sequel.

Proposition 6 Let f(t) = Y ons1 [ty G(t) = 32,51 gnt™ be formal series whose coefficients
fr, gn belong to some Banach space (E, ||.||g). We assume that (E, ||.||r) is a Banach algebra for
some product x. Let k,m > 1 be integers. The following formal identities hold.

(57) By (85710, (£)) (1) = k"B (F(1)(7)
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m 7 T Tk k 1 ; 1/k ds
(58) B (" F0)7) = gy [ (7 =) F B (FO))T
and
59 B (0 * a0 =7 [ B (FONE =) B (1)) s

Proof First, we show (57). By definition, we have that

tht 7( kf” otk
(60) Bmk(T ZI‘

By application of the addition formula for the Gamma function which yields I'(% 4- 1) = 2I'(%)
for any n > 1, we deduce (57) from (60).
Now, we prove (58). By definition, we can write

(61) By (")) = iy 3 F{ZL) Fﬁ%ﬂ%%mw
n>1 k

CERLG) _ o ™ my ay
(62) F(m;m) :Tm+n/0 (7% —8)F 'sxlds

for any m,n > 1. Plugging (62) into (61) yields (58).
Finally, we show (59). By definition, we have

YA f 90 TR
(63) B, (f(1) % §(£) (1) = > _( Z p q) X 1’3(%)’“ )"
n>2 p+q= n

Using again the Beta integral formula, we can write

I(2)r(4 koot
(64) 7(’6)”(’9 = T/ (7% — s)E sk 1ds

(%) ™ Jo

when p+ g =n and p,q > 1. By the substitution of (64) into (63), we deduce (59). O

In the following proposition, we recall some properties of the inverse Fourier transform

Proposition 7 Let f € E(g ) with 8> 0, u > 1. The inverse Fourier transform of f is defined
by

+oo
FUO@) = oz || S explizm)am

(2m)
for all x € R. The function F~1(f) extends to an analytic function on the strip
(65) Hs = {z € C/|m(2)| < 8.

Let ¢(m) =imf(m) € Eg,—1). Then, we have

(66) 0. FH(f)(2) = FH(9)(2)
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for all z € Hg.
Let g € Eg,y and let (m) = Wf*g(m), the convolution product of f and g, for allm € R.

From Proposition 5, we know that ¢ € Eg . Moreover, we have

(67) FHHEF o)) = FHW)(2)

for all z € Hg.

Proof Let f € Eg ). It is straight to check that F~L(f) is well defined on the real line. The fact
that F~1(f) extends to an analytic function on the strip Hz follows from the next inequality.
There exists C' > 0 such that

|f(m)||exp(izm)| < WGXP(@/ — B)|m|)

for all m € R, z € Hg, with 8’ < . The relations (66), (67) are classical and can be found for
instance in [27]. O

4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

Let £ > 1 and D > 2 be integers. For 1 <[ < D, let d;, d;, A; > 0 be nonnegative integers. We
assume that

(68) 1=461 , & <41,
forall 1 <1< D — 1. We make also the assumption that
(69) dD:(5D—l)(/€+1) , dl>((5l—1)(k‘+1) , Ap=dp—46p+1

forall 1 <1< D-—1. Let Q(X),Q1(X),Q2(X), Ri(X) € C[X], 0 <1< D, be polynomials such
that

(70) deg(Q) = deg(Rp) > deg(Ry) , deg(Rp) > deg(Q1) , deg(Rp) = deg(Q2),
Q(im) #0 , Rp(im) #0

for all m € R, all 0 <1 < D — 1. We consider sequences of functions m — Cp ,(m,¢€), for all
n > 0 and m + Fy(m,e), for all n > 1, that belong to the Banach space E(g ) for some 5 > 0
and p > max(deg(Q1) + 1,deg(Q2) + 1) and which depend holomorphically on € € D(0, ¢). We
assume that there exist constants K, Ty > 0 such that

1 1

(71) 1Co.n(m; €)ll(g,) < Ko(fo)” s N E(ms )l g < Ko(fo)”

for all n > 1, for all e € D(0,¢p). We define

Co(T,m,€) =Y Con(m,e)T" , F(T,m,e) = Fn(m,e)T"

n>1 n>1
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which are convergent series on D(0,7p/2) with values in Eg,). We consider the following
singular initial value problem

“+00
o1

(72)  Q(im)(0rU(T,m,¢€)) =€ @ |

Ql( (m —mq))U(T,m —my,e€)

D
X Q2(tm1)U (T, my,€)dmy + Z Ry (im)eM—dta—Lpd G?U(T, m,€)
=1
1 oo
(2m)1/2
1 +os
( 71') C070(m —mi, G)Ro(iml)U(T, mi, e)dm1 + Gle(T, m, 6)

for given initial data U (0, m,€) = 0.

+ el — C()(T,m — ml,e)Ro(iml)U(T,ml,e)dml

-1
1

Proposition 8 There exists a unique formal series

Tme ZUme

n>1

solution of (72) with initial data U(0,m,€) = 0, where the coefficients m — Uy (m,€) belong to
Eg,) for B >0 and p > max(deg(Q1)+1,deg(Q2)+1) given above and depend holomorphically
on € in D(0,¢€p) \ {0}.

Proof From Proposition 5 and the conditions in the statement above, we get that the coefficients
Un(m,e) of U(T,m,¢) are well defined, belong to Eg ) for all € € D(0,¢g) \ {0}, all n > 1 and
satisfy the following recursion relation

(73) (n+1)Upns1(m,e)
€ 400
0 > Gy Q) U (m =, QiU (s, s

ni+n2=n,n1>1na>1

Ry (im) _ - - ;
+ Z i (EAI di+0; 11—[?;:01 (n+6 —dy — .7)) Un+5,—d, (m, €)

€ 1 Foo .
+ Q(im) Z W Cony (m —my, €)Ro(im1)Up, (m1, €)dmy

ni+na2=n,n1>1n2>1

-1 +o0 B
m Co,0(m — my, €)Ro(im1)Un(m1, €)dm + m

for all n > maxj<j<p d;. O

E,(m,e)

k+1)8§f

Using the formula from [28], p. 40, we can expand the operators T in the form

(74) T = (THop) + D" Ay ,TEOPN (TR g

1<p<é;—1

where As, ,, p=1,...,0; — 1 are real numbers. We define integers d;;, > 0 to satisfy

(75) dl+k+1=5l(l{7+1)+dl7k
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for all 1 <[ < D. Multiplying the equation (72) by T**! and using (74), we can rewrite the
equation (72) in the form

(76)  Q(im)(T*H1opU (T, m, €))

—+00
—1pk+1 1

=e T (27‘(‘)1/2 Q1( (m ml))U(T,m—ml,e)Qg(iml)U(T,ml,e)dml

D
+3 " Ry(im) (eAl—dl”l—lelak (T 97U (T, m, €)

Z Aél . EAl—dz+5l—1Tk(5l —p)+dy (Tk+18T)pU(T, m, E))

1<p<—-1
+ E_ITIH'I; +OOC (T, m — mq, €)Ro(im1)U(T, my,€)dm
(27T)1/2 . o\L, 1 0 1 5 1101, 1
1 too
+ eIkt (2m)1/2 Coo(m — my,€)Ro(im1)U (T, my, €)dmy + e *T*LE (T, m, €)
—0oQ

We denote wg(7,m,€) the formal my—Borel transform of U(T,m,e) with respect to T,
or(T,m,€) the formal my—Borel transform of Cy(T, m,e€) with respect to T and (7, m,€)
the formal my—Borel transform of F(T',m,¢) with respect to T,

(T,m,€) ZU (m,€) ﬁ),c,okTme ZC@nme (
k

n>1 n>1

)

1/%(7,”% 6) = nz>:1 Fn(m7 G)F(%)

?T\S

n

Using (71) we get that (7, m,€) € F(Crl/ﬁuke and Yy (7,m,€) € F(yﬁyke), for all e € D(0,€g) \
{0}, any unbounded sector S; centered at 0 and bisecting direction d € R, for some v > 0.
Indeed, we have that

+ 2P e Il

(77) ller(rm llwspure < Y N1Con(m, llggm(  sup ﬁm@(wlﬂ’“)F )
n>1 T7€D(0,0)USy € ( k)
1+ |2 T ey 7]

V(T ms Ol s ke < D 1Ea(m llu( sup  ——z=—exp(=v|— ") 577)

(o) nz;l " a0 7€D(0,p)USq %] e T'(%)

By using the classical estimates (22) and Stirling formula I'(n/k) ~ (277)1/2(71/1@)%7%6_"/]“ as n
tends to +00, we get two constants Ay, A2 > 0 depending on v, k such that

+le exp(—v|Z|¥
) s S eI g (ra o Tyt el
reDOpuss el e "T(%)  reD(o.p)us, € e (%)

< a1+ %" fr < 6 ()" e F o (Bt 2 e R )

< Areg(A2)"
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for all n > 0, all € € D(0,¢) \ {0}. Therefore, if €y fulfills eg A2 < T, we get the estimates

n A1A2KQ €0
(79) H‘Pk(7—7 m, 6)|’(V,,B,u,k,e) < Al Z HC()m(m, G)H(/B,M)(GOA2> < Ay 7
n>1 TO 1= Toeo
n AlAQKO €0
9(r, 0 €)lls ) < A1 Y 1Ealm, €)lliagn (0d2)" < —p—1—7

n>1 T, €0

for all e € D(0,¢€) \ {0}.
Using the computation rules for the formal mj—Borel transform in Proposition 6, we deduce
the following equation satisfied by wy (7, m, €),

k Tk
im) (kr*wi (1, m, €)) = ¢~ T T g)l/k
80) Qumbrten(rm.) = s [ 609

< mme [ @uitm = mntis = m - e

ds

dmdm1> —

ng(iml)wk(xl/k,ml,e)( .

s—x)x
+ Rp(im) (kdiTéDkwk(T, m,€)
T Tk k s 1 1/k ds
+ Z A(SD’pF((S ) / (7% — 5)°P P70 (kPsPwy(s / ,mje))(g)
1<p<op—1 b=P)Jo

k

-« Ar—dyrbm1 T Tk Wk _y 5.8 1/k ds
Ri(i 1—di+6;— — gk (g ,m, €))—
+ l_gl 1(im) | € dlk) /0 (7% —9) (k% s%wi (s /7, m,€)) .

L=
Ay—dy+6,-1 T S TP 1/k ds
+ Y Ay et (7% — 5) 7 TP (RPsPLy (s m, €))
b T(%E 15, —p)Jo s
1<p<;-1 (% +a—p

k

s T+ /T (7% — g)1/k
L1+ 1) Jo

! A 1/k - 1/k 1 ds

(s [ enlls = om = Rl oo s, ) dd )
K Tt 400

—1 T k 1/k 1 ] 1/k ds

+e lw/o (rF — s)V/ (277)1/2( . Co.o(m — mq, €)Ro(im1)wg(s ,m1,€)dm1)?

7" Tk ds

-1 k_ \1/k 1/k as

), et m oS

We make the additional assumption that there exists an unbounded sector
Sq.rp = {2 €C/lzl ZrqQrp,  larg(2) —dqrp| < nQ.Rp}
with direction dg g, € R, aperture g r, > 0 for some radius rg g, > 0 such that

(81) ]?D(z:’:r% € S0.Rrp

for all m € R. We factorize the polynomial Pp,(7) = Q(im)k — Rp(im)k°>7®p=Dk in the form

(82) Po(r) = —Rp(im)kP I~V (0 gy (m))
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where

QUM)| 5t — Q(im) 1 2nl
oGm0 e el ) Gy — 1k G — D

(83) q(m) = ( )
forall 0 << (6p—1)k—1,all m e R. )

We choose an unbounded sector S; centered at 0, a small closed disc D(0, p) and we prescribe
the sector Sg g, in such a way that the following conditions hold.

1) There exists a constant M; > 0 such that
(84) [T —@(m)| = Mi(1+ |7])

forall 0 <1 < (6p — 1)k — 1, all m € R, all 7 € Sy U D(0,p). Indeed, from (81) and the
explicit expression (83) of ¢;(m), we first observe that |g;(m)| > 2p for every m € R, all 0 <[ <
(0p — 1)k — 1 for an appropriate choice of 7g r,, and of p > 0. We also see that for all m € R,
all 0 <1< (dp — 1)k — 1, the roots ¢;(m) remain in a union U of unbounded sectors centered at
0 that do not cover a full neighborhood of the origin in C* provided that 7¢ gr,, is small enough.
Therefore, one can choose an adequate sector Sy such that Sg N = () with the property that
for all 0 <1 < (p — 1)k — 1 the quotients g;(m)/7 lay outside some small disc centered at 1 in
C for all T € Sy, all m € R. This yields (84) for some small constant M; > 0.

2) There exists a constant My > 0 such that
(85) ™ = @i (m)] = Ma|qiy (m)

for some Iy € {0,...,(6p — 1)k — 1}, all m € R, all 7 € Sy U D(0, p). Indeed, for the sector Sy
and the disc D(0, p) chosen as above in 1), we notice that for any fixed 0 <l < (6p — 1)k — 1,
the quotient 7/q;,(m) stays outside a small disc centered at 1 in C for all 7 € Sy U D(0, p), all
m € R. Hence (85) must hold for some small constant My > 0.

By construction of the roots (83) in the factorization (82) and using the lower bound estimates
(84), (85), we get a constant Cp > 0 such that

Sp—1)k— : Q(im L )k
(86) 1Pn(r)] = M2 Ny R i) | P (1] 000

1)k koD 1
> MV My = (rq R,,) T F | Rp (im)|
(kSp—1)Tp-TF
1 (6p—1)k—1
X (min (1+2)

1 k\(6p—1)—1
220 (1 —|—xk)(6D—1)—%)( + |71%) %

1
= Cp(rq.rp) T~ |Rp(im)|(1 + |7|F)0r=D~%

for all 7 € SqU D(0, p), all m € R.
In the next proposition, we give sufficient conditions under which the equation (80) has a
solution wy (7, m,€) in the Banach space F(‘f, B ke) where 3, i are defined above.

Proposition 9 Under the assumption that

(87) (SDZ(sl—i-% , Al—i-k(l—ép)—f—lZO,
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foralll <1< D—1, there exist a radius rq r, > 0, a constant w > 0 and constants (y, (1,¢2 > 0
(depending on Q1,Q2,k,Cp, u, v, €9, Ry, Ay, 01, dy for 0 <1< D) such that if

(88) HCO,O(mv €)||(,6’,/L) < CO ; HQOk(T,m, €)||(V,B,M,k,€) < (1 s ’|7/)/€(7—7m7 €)||(l/,6,lt,k,€) < <2

foralle € D(0,¢€0)\{0}, the equation (80) has a unique solution wi(T, m, €) in the space F(Cf,ﬁ k)

where B, > 0 are defined in Proposition 8 which verifies ng(r,m,e)H(y’@%hd < w, for all
€€ D(O,Go) \ {0}

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 2 One can choose the constant rq r, > 0, a constant w small enough and three con-
stants (o, C1,C2 > 0 (depending on Q1,Q2,k,Cp, u, v, €0, Ry, A, 61,d; for 0 < 1 < D) such that
if

HCO,U(mv 6)”(5,#) < CO ) ||90k(7_a m, E)”(Vﬁ,u,k,e) < Cl ) ||77Z}k(7-a m, E)”(Vﬁ,u,k,e) < CQ
for all e € D(0,€) \ {0} the map H. defined by

89) H.(w(r,m ::L Tka_Sl/k
(89) Helwlrm)i= e [ =)
X (13/5 +ooQ (i(m —m ))w((s_x)l/k m —mi)
em2” Jo ) 1 1 , 1
X Qo (ima)w(z"/*, my) @dﬂﬁdml) d*
Rp(im) Aspp [Tk epp PPk ) &S
Pn(7) 1§p§;—1r(5D—p)/o (=9 (k" s"w(s 7m))s
D—1 . k
Rl(lm) eAl—dH-&—l T . lekal 5 o " ds
P> Pmm{ r(%e) / (= s R (s m) 2

A§ eAl_dl+6l_1 Tk k dlf,k S —p—1 1/k ds
S A T e e, ) 2
1<psa1 D(%E+6,—p) Jo

k

1 T
€ ok )1k
T P+ 1) /0 (™" =3)

S “+o0

" (mlw/ /oo pulle =) /Esm = ma, ) Rofimy (el m) <_1)d‘””> 5
+ e’ /Tk( k S)l/k 1 ( +OOC (m —mq,€)Ro(imq) (sl/km)dm)ds
S — i — € 7 w —
PO+ D) o COTEVANEE
e ! * ds

s k 1/k 1/k we

+ Pm(T)F(l + %) /0 (T S) W:(S ,m, 6) s

satisfy the next properties.
i) The following inclusion holds

(90) H(B(0,w)) C B(0,w)
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where B(0,w) is the closed ball of radius w > 0 centered at 0 in F(Cflﬁu o) Jor all e € D(0,¢e0) \

{0}
ii) We have

1
(91) [1He(wi) = He(w2)llw ke < 5llwt = w2llo,puk.e)
for all wi,ws € B(0,w), for all e € D(0,¢) \ {0}.

Proof We first check the property (90). Let ¢ € D(0,¢g) \ {0} and w(7,m) be in F¢ We

V?/B’M7k76.
take (o, (1,2, > 0 such that

||'LU(7’, m)“(u,ﬁ,u,k,e) <w , ||CO,0(m¢ 6)||(ﬁ,u) << , ngk(Tamve)H(u,B,u,k,s) < (1,
Hwk(Tv m, 6)‘ |(u,ﬁ,,u,k,e) < (o,

for all e € D(0,¢) \ {0}.
Using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

e ™ 1/k
o) g e b

s +oo
8 ((27r1)1/28/0 . Q1(i(m —my))w((s — z)Y* m —my)

X Qo (imy )w(z*, my)

1 ds
(8 — x)xdl'dﬂ‘n) ?‘ (V,ﬂ,,u,k,ﬁ)

1 C3||w(7_7 m)”?y,ﬁ“u,,k,e)

< 1 1/2 1
L1+ ¢)(2m) Cp(ro.ry) @0 DF
Cato?
S I'(1 1 1/2 1
L+ 7)Y Cp(rg p,) To-1F
Moreover, for 0 < p < §p — 1 and by means of Proposition 2 i), we deduce
Rp(im)  Aspp /Tk k_ Nop—p—1 1/k ds
93 ’ ™ — )P (kP Py (MR m)) = ]| o, ¢
( ) H Pm(T) F((;D _p) 0 ( ) ( ( )) s H( B,k €)
Asp, pkPCo 1 e
>~ Db 1 H’I,U(T,m)’ (Vﬂ,%kvﬁ)
['(0p — p)Cp(rq,r) Co~—DF
Asp pkPCa 169

~ T .
I'(6p = p)Cp(rq.r)r—H*

With the help of Proposition 2 ii) and due to the assumptions of (87) we also get that

- Aj—d;+6;—1 Tk d d
(94) HRl(lm) € / (Tk N 8)%71<k51861w(81/k’m))75|
0 S

Pp(1) I‘(le”“) (v,B,:k.€)
kK1 Cy.o _ _ Ry (im)
< y ! |€|Az di+6;+k(6;—0p)+dy & sup |R ) I[|w(r, m)”(yﬁ%k’e)
L(3)Cp(rq,r,) Co=DF meR 1D
k0 Co (Ar—dito (5 —~0p)d | Ry(im) |

1 =0 -
D(%*)Cr(rqn,) ™" mer Bplim)
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and that

Rl(im) A5l’p6Al_dl+5l_1
Pn(7) T(% 46, — p)
< | A, pl kP Ca.2 (e Atk =8D) bk g | Rz(im)

P(%E + 6 - p)Cr(rgn,) T F mek Fip(im)

‘Atsz ,p‘kpCQ-Z eAl*dl*Hsl*Hf(él*éD)erl,k | Ry(im) |

(95) |l

Tk d ds
/(; (Tk — s)T+6l —p—l(kpspw(sl/k’ m))? H(VvaﬂvkvE)

| | ”UJ(T, ’I’)’L) | ‘(u,ﬁ,,u,k,e)

<
di i

__ 1 =0 -
T(%E 4 5, — p)Cp(ro.p,) P5-F mek Rp(im)

Using Lemma 1 and Proposition 3 again with the lower bound estimates (86) we get that

! g k 1/k
09 Vg
1 s “+00

. 1 ds
X PLQ(ZTnl)u)(xl/k7 ml)(s—x)xdxdm1> ? H(y,ﬁ,,u,k,e)

1 C3H(pk(7_7m7 6)‘

< (V,ﬁ,/i,kﬁ) | ’w(T7 m) | ’(V,,B,,u,k,e)
T I(1+ 4)(2m)1/2

1
Cp(rq,rp) ="
< 1 C3Q1@

T T+ DDV 0 (g g, ) TR

Moreover, using Proposition 4, we also get

k

6_1 T A 1 +oo
97 - — sk C —my,
O g raen ), O 9 (] Contm =m0
_ ds 1 Cyow
x Ro(imy)w(s*,m1)dmi)—|| g0 <
PSS T DO Cp(rg ) T
Finally, from Lemma 1 and Proposition 1, one gets
et T ds
98 E_ N\1/k 1/k as
(98) "Pm(T)F(1+]1€)/() (7% = 8) by (s, my€) 5 ,8,11.8,6)
C
< 1 1 Hwk(T’m7 €)| (v,8,p,k€)
I'(1+ £)Cp(rQ,rp) ®0~DF ming,cr |[Rp(im)|
< “ G2

1
1+ %)CP(TQyRD) Cp=DF min,,egr |Rp(im)|

Now, we choose @, (o, (1,¢2 > 0 and g r,, > 0 such that
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2 sp—1 ,
(99) I(1+3)(@2m)12 ngal_lk - Aooall 02'16051_1,6
P(rQ.rp) P % p=1 T'(0p = p)Cp(rq,r)*P~"
+DZ_1 . k% Co9 ;%Aﬁdﬁaﬁk(aﬁajg)ml,k - |§l(im) |
=1 D(=%)Cp(rq,r,) Co—DF mer Rp(im)
. §—1 | As, p|KPCa.2 1 Eﬁl—dl+5l+k(5l—5m+dl,k ol Rl(im) o
7=1 T(%k 1 6, — p)Cp(ro.p,) T OF mer Rp(im)
n 1 (C3¢1 + Cuo)w
PO+ DENY 0p(rg g, )00 7

O

1
L1+ 4)Cp(rq,rp) ®o~ I minger |Rp(im)]

+ G<w

Gathering all the norm estimates (92), (93), (94), (95), (96), (97), (98) with the constraint
(99), one gets (90).

Now, we check the second property (91). Let wy (7, m), wa(7,m) be in FZ . We take

(V7B7/’L7k76)
wo > 0 such that
wi (7, M) w8 uke) < @,

for 1 =1,2, for all e € D(0,¢p) \ {0}. One can write

(100)  Q1(i(m —my))wi((s — )%, m — m1) Q2 (ima )wi (xz"/*,m1)
— Q1(i(m — m1))wa((s — )% m — m1) Qo (imy )wa (/¥ my)
= Q1(i(m —my)) (wl((s — x)l/k,m —mq) —wa((s — m)l/k,m — ml)) Qg(iml)wl(azl/k, my)

+ Q1(i(m — my))wa((s — 2)Y*,m — m1)Qa(imy) <w1(371/k7m1) — wa(a/k, ml))

and using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

! o 1/k
(101) |Pm(7')1“(1—i—,1€)/0 (" —s)

1 s +oo - -
X <(277)1/28/0 /OO (Q1(i(m — ma))wi((s — )%, m — m1)Qa(imy )wr (z/*, my)

— Qu(i(m — m1))wa((s — ) m — my)

X QQ (iml)WQ ({L‘l/k

1 ds
,m1))(8_x)xd$dm1> ?H(V,,B,/L,k,e)
1 Cs

Spl 1y(21)1/2 1
A+ )@Y Cprg.p, ) To-F

X w7, m) — wa (7, M)l w8, k.6) (w1 (7, M) w,8,05,6) T [[w2(T, ) (1,8,1.0))
1 C32w
< |[w1(7,m) —wa (7, m)|| (1.8 uk,
F(l + %)(277)1/2 CP(TQ,RD) (5D1*1)k WBopskc)
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From the estimates (93), (94), (95), (96), (97), (98) and under the constraints (87), we deduce
that

k

Rp(im) Asp, Tk Sp—p—1 1/k 1/k ds
(102) || P (7) F((SDD—pp)/O (7% — )0 P (KPP (wy (s1/F, m) — wa(s'/ 7m)))?||(l/,ﬁ,lt,k,e)
| Asp plkPC2.1]el
< = 1 le(Tv m) - wQ(Tv m)”(u,ﬁ,,u,k,e)
I'(6p —p)Cp(rq,ry) P~k
A kPCo 1€
< MoalOonco ) — )l
['(ép — p)Cp(rQ,rp) P~ Dk
and
Ry(im) et ditor=1 /Tk k kg5 8 1/k 1/k ds
103 (7 — )7 L (KOs (wy (8%, m) — wa (8%, m)) =] g ke
( ) H Pm(T) F(le’k) 0 s (v,8,1 )
ko Ry (i
< - Coo i ‘6’Az—dz+6z+k(5z—5D)+dl,k sup ‘ l(Zm) \le(T, m) _wQ(Tam)H(V,,B,u,k,e)
I'(5*)Cp(ro,ry) P01k mer Rp(im)
k% Oy, Ay—dy+8,+k(8—8p)+d Ry(im
< PO ek g | T ) )
F(%)CP(TQ’RD)(éDfl)k mer Rp(im)
and that

; Aj—di+8—1 k
(10a) || H0E) Anp [ Rt
Eu(T) D(%E 45, —p) Jo

ds
X (k:psp(wl(sl/k, m) — w2(51/k»m))g“(u,ﬁ,#,k,e)

[ A, pl K Ca.2 e[ A= di+aH (=6 i
= 1
T(%E 4 6 — p)Cp(rq.py) T
R;(im)
X sup . wi(T,m) —wa(T,m
meR ’ RD(lm) H| ( ) ( )H(l/,ﬁ,u,k,e)

’A6l7p|kp02'2 6Al_dl+6l+k(5l_5D)+dl,k

- dy i

1
I'(Z= + 6 —p)Cp(rQ,rp) ®P~ "

< sup |8 (m) w0
and that
(105) |€_1/7k(rk—s)1/k< ! S/S/Jroogp ((s—a:)l/k m—mi,e€)
Po(r)T(1+ 1) Jo @2 fy Jooo T ’ a

) 1 ds
Ro(imq) (wi (2%, my) — wa(a/¥, ml))(s_x)xdwdm1> ?‘|(u,61u,k,e)

- 1 Cslor (T, m, )l (.8 k) w1 (T,m) — w2 (7,m) [ (1,8, k,6)
T D+ ) (2m)/2 Cp(ro.n,) @D
1 C3C1 ‘ ’wl <T7 m) — W2 (T, m) ‘ ’(V,B,u,k,e)
T T+ ) (2m)Y? Cp(ro.p,) T D%
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together with

1 T+ N 1 +00
106 - — 5k C —mq,€)Ry(z
006) gy ) 9 gyl Coolom —mi, OB
ds
x (wi(s"*,my) — wa (s, m))dm) ==,k

_ 1 CaGollwi(T,m) — w2 (T,m)||(1,8,1k,6)
T I(1+ 4)(2m)1/2

1
Cp(rq,rp) *P~ "

Now, we take @ and rg g, such that

C32w

(107)
1+ %)(2%)1/2 CP(TQ,RD)(éDl_l)k

|Asp, p|kPCa.1€0

’ 1<p<sp—11'(6p — p)CP(rQ,RD)m
+ kO Cy o : e()Al_d’Mﬁk(él_éDHdl’k | Rl(im) |
1<I<D-1 F(le”“)Cp(rQ,RD)W mer Rp(im)
+ | As, plkPCa .2 : eOAl_d’H”Lk(él_éDHdl*’“ | Rl(z"m) |
1<p25-1 T(%E + 61— p)Cp(rq p,) T mer Rp(im)
n 1 C3¢1 + Calo < %

1+ %)(2%)1/2 CP(TQ,RD) ((SDl—l)k

Bearing in mind the estimates (101), (102), (103), (104), (105), (106) with the constraint
(107), one gets (91).

Finally, we choose w and rg gr,, such that both (99) and (107) are satisfied. This yields our
lemma. i

We consider the ball B(0,w) C F (dy Boikie) constructed in Lemma 2 which is a complete metric
space for the norm |[.|[(, 8 ke From the lemma above, we get that . is a contractive map
from B(0,w) into itself. Due to the classical contractive mapping theorem, we deduce that the
map H. has a unique fixed point denoted by wg(7,m,€) (i.e He(wr(T,m,€)) = wi(r,m,€)) in
B(0,w), for all € € D(0,¢p) \ {0}. Moreover, the function wy,(7,m, €) depends holomorphically
on € in D(0,¢€p) \ {0}. By construction, wg (7, m, €) defines a solution of the equation (80). This
yields the proposition. O

In the next proposition, we construct analytic solutions of the equation (72).

Proposition 10 Let the assumption (87) hold. We also choose the sectors Sq and Sq g, in
such a way that (84) and (85) hold. We take the radius rg g, as prescribed in Proposition 9.
We also assume that the inequalities (88) hold for (o, (1, (o constructed in Proposition 9. Notice
that the inequalities for (1,Ca can be satisfied if €y is small enough due to the estimates (79)).

Let Sy (e be a bounded sector with aperture w/k < 0 < 7/k+26 (where 26 is the small aper-
ture of the unbounded sector Sq), with direction d and radius h'|e| for some h' > 0 independent
of e. We choose 0 < 3’ < 3.

Then, the equation (72) with initial condition U(0,m,e) = 0 has a solution (T,m)
U(T,m,e) defined on Sqgp)q x R for some real number h' > 0 for all ¢ € D(0,¢) \ {0}.
Let € € D(0,¢0) \ {0}, then for each T' € Sqg p|e|, the function m — U(T,m,¢) belongs to the
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space E(g ) and for each m € R, the function T' — U(T, m,e) is bounded and holomorphic on
Sa.0.1|c|- Moreover, the function U(T,m,€) can be written as a Laplace transform of order k in
the direction d,

(108) U(T, m, 6) = kj/ wg(uvm’ 6)6_(%)16(17”

L u

along a halfline L, = Rye” € S;U{0} (the direction v may depend on T ), where wi(T,m,€)

defines a continuous function on (D(0,p) U Sq) x R x D(0,€) \ {0} which is holomorphic with

respect to (1,€) on (D(0,p) U Sq) x D(0,¢9) \ {0} and satisfies the estimates : there exists a
constant wy (independent of €) such that

el
€

(109) wi(rym. )] < wall+ fml) e A
€

-
exp(v] =)

€
forall ™€ D(0,p) USy, allm € R, all e € D(0,¢) \ {0}.

Proof Taking into account the requirements stated above in Proposition 10, we get that all
the assumptions of Proposition 9 are fulfilled. Therefore, the formal m;—Borel transform
wp(T,m,e) = > 1 Un(m,€)7"/T'(n/k) of the formal series U(T,m,€) constructed in Propo-
sition 9 is convergent with respect to 7 on D(0,p) as series with coefficients in the Banach
space Eg ). Moreover, this function wi(7,m,€) can be extended as an analytic function with
respect to 7 on the sector S;, denoted wg(T, m, €), that belongs to the Banach space F(Cf/ﬂ’#’k’e)
and satisfies the bounds ||w(r,m, Nl (w,8,u,k,e) < @a Where @y is a constant independent of €
in D(0,€p) \ {0}. This means that (109) must hold. As a result, we get that the formal series
U(T,m,e) € TEg,)([T]] is mi—summable in the direction d (see Definition 3). By construc-
tion, its my—sum U(T,m, €) in direction d defines a holomorphic function on the sector Sy g ||
described above in Proposition 10 with values in E(g ), for all € € D(0,¢€) \ {0}. On the other
hand, the series Co(T',m, €), F'(T,m,¢) € TE4g ,,[[T]] are convergent. Therefore, these series are
mp-summable in any direction d and their mg—sums satisfy

52% (pr(m,m, e))(T) = Co(T,m,€) LZ% (Vg (T,m,e))(T) = F(T,m,e)

for all T € D(0,7y/2). Finally, using the properties for the sum, product and derivative of
my—sums described in (56), we deduce that the my—sum U (T, m,€) in direction d satisfies the
equation (76) as a function of (7, m) on Sy /| X R, for all € € D(0, €o) \ {0}, since the formal
series U(T,m, €) satisfies the equation (76). As a result, the function U(T,m, €) also satisfies
the equation (72) as a function of (7, m) on Sgg | X R, for all e € D(0,¢€) \ {0}. O

5 Analytic solutions of a nonlinear initial value Cauchy problem
with complex parameter

Let £ > 1 and D > 2 be integers. For 1 <[ < D, let d;, d;, A; > 0 be nonnegative integers. We
assume that

(110) 1= 51 s (5[ < (514_1,
forall 1 <1< D — 1. We make also the assumption that

(111) dp=0Up—-1)(k+1) , d>@—-1(k+1) , Ap=dp—9dp+1
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forall 1 <1< D-—1. Let Q(X),Q1(X),Q2(X), Ri(X) € C[X], 0 <1< D, be polynomials such
that

(112)  deg(Q) = deg(Rp) > deg(Fy) , deg(Rp) > deg(Q1) , deg(Rp) > deg(Q),
Q(im) #0 , Rp(im) #0

forallmeR,all0<I<D-—1.
We consider the following nonlinear initial value problem

D
(113)  Q(3:)(Drult, 2, €)) = (Qu(D:)ult, 2,))(Q2(D:)ult, z, €)) + Y e1t48) Ry(:)ult, 2, €)

=1
+ CO(ta 2, E)RO(az)u(t> 2, 6) + f(ta Z, 6)

for given initial data u(0, z,€) = 0.

The coefficient ¢y (¢, z, €) and the forcing term f(t, 2, €) are constructed as follows. We consider
sequences of functions m — Cp,,(m,€), for n > 0 and m — F,(m,¢), for n > 1, that belong to
the Banach space Eg ) for some 3 >0, 4 > max(deg(Q1) + 1, deg(Q2) + 1) and which depend
holomorphically on € € D(0,¢ey). We assume that there exist constants Ky, Ty > 0 such that
(71) hold for all n > 1, for all € € D(0,¢p). We deduce that the functions

o(T), z, €) Z]—" (m— Copn(m,e))(2)T" , F(T,z¢€) Z]—" m— Fp(m,€))(2)T"

n>0 n>1

represent bounded holomorphic functions on D(0,7y/2) x Hg x D(0,€g) for any 0 < ' < f8
(where F~! denotes the inverse Fourier transform defined in Proposition 7). We define the
coefficient ¢y(t, z, €) and the forcing term f(¢, z,¢€) as

(114) co(t,z,€) = Colet,z,€) , f(t,z,€) =F(et, z€).

The functions ¢y and f are holomorphic and bounded on D(0,r) x Hg x D(0, ¢y) where reg <
To/2.
We make the additional assumption that there exists an unbounded sector

SQvRD = {Z € C/’Z’ > TQRp > ‘arg(z> - dQvRD‘ < nQ,RD}

with direction dg g, € R, aperture g r, > 0 for some radius rg g, > 0 such that

Q(im)
Rp(im)

(115) € S0.Rrp

for all m € R.

Definition 4 Let ¢ > 2 be an integer. For all0 < p < ¢—1, we consider open sectors &, centered
at 0, with radius €y and opening T + kp, with £, > 0 small enough such that £, N Epy1 # 0, for
all 0 < p <¢—1 (with the convention that & = &y). Moreover, we assume that the intersection
of any three different elements in (Ep)o<p<c s empty and that U;;lé'p = U\ {0}, where U is
some neighborhood of 0 in C. Such a set of sectors {E,}o<p<c—1 is called a good covering in C*.
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Definition 5 Let {&,}o<p<c—1 be a good covering in C*. Let T be an open bounded sector
centered at 0 with radius r7 and consider a family of open sectors

Sop0.corr = 1T € C*/|T| < eorr , [0, —arg(T)| < 0/2}

with aperture 0 > w/k and where v, € R, for all 0 < p < ¢ — 1, are directions which satisfy the
following constraints: Let q(m) be the roots of the polynomials (82) defined by (83) and S,,,
0 <p <¢—1 be unbounded sectors centered at 0 with directions 9, and with small aperture. We
assume that

1) There exists a constant My > 0 such that

(116) T —@(m)| = Mi(1+ |7])

Jor all0 <1< (6p — 1k —1, allmeR, all 7 € S, UD(0, p), for all0 <p <¢—1.
2) There exists a constant My > 0 such that

(117) |7 — @i, (m)] = Malqi, (m)]

for some lg € {0,...,(6p — 1)k =1}, allm € R, all 7 € Sy, UD(0,p), for all 0 < p <¢—1.
8) For all0 <p <<¢—1, forallt € T, all € € &, we have that et € Sy, g.cory-

We say that the family {(Sy,.0,corr)o<p<c—1, T } is associated to the good covering {Ep}o<p<c—1-

In the next first main result, we construct a family of actual holomorphic solutions to the
equation (113) for given initial data at ¢ = 0 being identically equal to zero, defined on the sectors
&p with respect to the complex parameter e. We can also control the difference between any two
neighboring solutions on the intersection of sectors &, N &,4+1 and show that it is exponentially
flat of order at most k.

Theorem 1 We consider the equation (113) and we assume that the constraints (110), (111),
(112) and (115) hold. We also make the additional assumption that

(118) 5D25l+% , Al+k(1—5D)+120,
hold for all 1 <1< D —1. Let the coefficient co(t, z,€) and forcing term f(t, z,€) be constructed
as in (114). Let a good covering {Ep}to<p<c—1 in C* be given, for which a family of sectors
{(So,.0,cor+)o<p<e—1, T} associated to this good covering can be considered.

Then, there exist a radius rqQ r, > 0 large enough, eg > 0 small enough and a constant
Co > 0 small enough such that if

[1Co,0(m, €)[l(8,) < o

for all e € D(0,€) \ {0}, then for every 0 < p < ¢ —1, one can construct a solution uy(t, z, €)
of the equation (113) with u,(0,2,€) = 0 which defines a bounded holomorphic function on the
domain (T ND(0,h)) x Hgr x &; for any given 0 < ' < 8 and for some ' > 0. Moreover, there
ezist constants 0 < h" < h', K,, M, > 0 (independent of €) such that

_Mp
(119) sup [upt1(t, z,€) — up(t, z,€)| < Kpe ld*
teTAD(0,1"),2€H

foralle € E,11NEp, for all 0 < p < ¢—1 (where by convention u¢ = ug).
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Proof Using Proposition 10, one can choose rg g, > 0 large enough, €¢g > 0 small enough and
(o > 0 small enough such that

[1Co,0(m, €)[l(s,) < Co
for all e € D(0, €9) \ {0} such that for each direction d, with 0 < p < ¢ — 1, one can construct a
function U (T, m, €) which satisfies U (0, m, €) = 0 and solves the equation
1 +o00
(27‘()1/2
X QQ (iml)U(T, mi, e)dm1

(120)  Q(im)(OrU(T, m,€)) = e * Q1(i(m —m))U(T, m —mq,e€)

D
+ Z Ry(im)eMi—dito—Lpd 8%1 U(T,m,e)
=1

1 1 +00
e W oo CO(T’m_mhe)U(Ta mlaﬁ)dml
1 1 +00 3
+ € (9\1/2 Coo(m —my,e)U(T,m1,€)dmy + € " F(T,m,e€)
(2m)1% J o
where
o(T,m,¢) ZCOnme , F(T,m,e) ZFme
n>1 et

are convergent series in D(0,7p/2) with values in Eg ), for all e € D(0,¢p) \ {0}. The function

(T,m) + U%(T,m,e) is well defined on the domain Sy g X R where b’ > 0 is some real

number, for all € € D(0,¢€g) \ {0}. Moreover, U% (T, m, €) can be written as a Laplace transform

of order k in the direction 9,

(121) U(T,m,e) = k:/ wi? (u,m 6)6_(%)kd—u
PRALS) L, k y 11y

along a halfline L, = R, e € S U{0} (the direction v, may depend on T'), where wzp (1,m,€)
defines a continuous function on (D(0, p) U Sg,) x R x D(0,€p) \ {0} which is holomorphic with
respect to (7,¢) on (D(0,p) USy,) x D(0,€p) \ {0} for any m € R and satisfies the estimates :
there exists a constant wp, (independent of €) such that

€l

(122) i (7, ] < @0, (L fm]) e
€

.
exp(v|—|")

€
for all 7 € D(0,p) USy,, all m € R, all e € D(0,¢9) \ {0}. It is worth noticing that all the

. 0 . . . .
functions 7 + w,”(7,m, €) are analytic continuation on the sectors S, of a common function
denoted by

which is a convergent series on D(0, p) with coefficients in Eg ,) and where Uy, (m,¢€) € Eg )

are the coefficients of the formal series U(T,m, e) = > n>1 Un(m, €)T™ solution of the equation
(120), for all € € D(0,¢p) \ {0}. Using the estimates (122), we get that the function

(T,2) = U (T, z,¢) = F 1 (m = U(T,m,e))(2)
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defines a bounded holomorphic function on Sy, g /¢ X Hpr, for all € € D(0,¢0) \ {0} and any
0< B <pB. Forall 0 <p<c¢—1, we define

oo mdu
(123) up(t, z,€) = U (et, 2,€) 1/2/ / wk u,m,e)e —() iz ;dm

By construction (see 3) in Definition 5), the function wy(t, 2, €) defines a bounded holomorphic
function on the domain (7 N D(0,k)) x Hg x &,. Moreover, we have u,(0, z,¢) = 0 and using
the properties of the Fourier inverse transform from Proposition 7, we deduce that u,(t, z, €)
solves the main equation (113) on (7 N D(0,1")) x Hg x &,.

Now, we proceed to the proof of the estimates (119). Let p € {0,...,¢ — 1}. Using the
fact that the function u — wy(u, m, €) exp(—(%)¥)/u is holomorphic on D(0, p) for all (m,€) €
R x (D(0,€) \ {0}), its integral along the union of a segment starting from 0 to (p/2)e"»+!, an
arc of circle with radius p/2 which connects (p/2)e?+! and (p/2)e?» and a segment starting
from (p/2)e?? to 0, is equal to zero. Therefore, we can write the difference u,;1 — u, as a sum
of three integrals,

oo 1 u\k du
(124) upyi(t 2, €) — up(t, 2, €) 1/2/ / W2, m, e cim 2 g
27r Los2p14 u
oo ke g d
1/2/ / (u,m,e)e” ()" eizm O gy
p/2 Tp u
+oo w d
1/2 / / u mje)ef(a)kelzmiudm
27T Co/2, TP Yp+1 u
where L,/o. . = [p/2,+00)e™ 1, L, = [p/2,4+00)e" and Cpa, - ., is an arc of circle

with radius connecting (p/2)e"» and (p/2)e?+! with a well chosen orientation.

We give estimates for the quantity

+o00 d
1/2/ / a”“ (u,m,e)e” (&) iz :dm

Lysa, Yp+1

By construction, the direction ,41 (which depends on €t) is chosen in such a way that cos(k(yp+1—
arg(et))) > 01, for all e € E,NEp11, all t € TND(0, '), for some fixed §; > 0. From the estimates
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(122), we get that

k “+o0o +o0o o

@m)12 Jooe Jop2 L+ (jq
< explt o D) by i
<oy [ e [ e~
8 Qg:)lﬂ (8- ﬁ'x'tvjk—lwfﬁ(g’)k-l exo(~(j = %li)k)
< o G P )

forallt € TND(0,1') and |Im(z)| < 8’ with [¢| < (6‘211)1/}‘C for some d2 > 0, for all € € E;NEp41.

In the same way, we also give estimates for the integral

du
(6)
1/2/ / ume)e t 6 udm

Ly, Tp

Namely, the direction +, (which depends on et) is chosen in such a way that cos(k(y,—arg(et))) >
01, for all e € £, NEpy1, all t € TN D(0,1), for some fixed ; > 0. Again from the estimates
(122) and following the same steps as in (125), we get that

2k, Jel*!
(2m)1/2 (B — B')0ak(5)F1

forallt € TND(0,R') and |Im(z)| < 8" with [¢| < (%)1/’“, for some 9, > 0, for all e € E,NEp 1.

(p/Q)k)
el*

(126) I < exp(—0do

Finally, we give upper bound estimates for the integral

oo mdu
(H" o
1/2 / / (u,m, €)e” () e " dm)|.

p/2 TP Yp+1

By construction, the arc of circle C, /5 . ., is chosen in such a way that cos(k(0—arg(et))) > 01,
for all 0 € [yp, Yp+1] (if Yo < p+1), 0 € [ypr1:7p] (f Y1 <7p), forall t € T, all € € & N Epqa,
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for some fixed d; > 0. Bearing in mind (122) and (22), we get that

I LA R ompim
127 < — 1 TheTPIM
120 ds = (2m)1/2 /oo /7 0B, Py (L fml) e L+ ()%
p/2 cos(k(0 — arg(et))) p —mIm(z
Xexp(y(|£| 1) exp( — S5 aF ( )))(Q)k)e mEdg| dm
01
k(maxo<p<c—1@,) [T _(5_pm| p/2 (e =v) p/2.,
i e dm x [y = 3y |27 exp( T — (L)
(i =) p/2
_ Pl e\k
< exp(~— (1))
01
2k(maxo<p<c—1 @a,)|Vp — Yp+1l (e (e = ¥) p/2
: e ) e T e rir ")
2k:max0<<_1wp’y—’yl 1/k _ 1) 2
( <p<¢ 2, P P+ ’( / )1/ke l/kexp(_j(p/ )k)

- (2m)1/2(8 - ) 02 2" el

forallt € TND(0,h') and [Im(2)| < 8’ with [t]| < (%)1/’“, for some d2 > 0, for all e € £E,NEp+1.
Finally, gathering the three above inequalities (125), (126) and (127), we deduce from the
decomposition (124) that

2k(@a, + @oys1) el (p/2)"

gt 20) = plts 2,6 £ =B ST s ey exp(—8 )
2k(maxo<p<c—1 @o,) [V = Wpr1l 1/k vy, _qp 2 p/2\k
2m)2(3 — §) (@) € eXP(—g(W) )

forallt € TND(0,h') and [Im(2)| < 8’ with [t]| < (%)1/’“, for some 63 > 0, for all e € £E,NEp41.
Therefore, the inequality (119) holds. O

6 Existence of k—summable formal series in the complex pa-
rameter of the initial value problem

6.1 k£—Summable formal series and Ramis-Sibuya Theorem

We recall the definition of k—Borel summability of formal series with coefficients in a Banach
space, see [1].

Definition 6 Let k > 1 be an integer. A formal series
00 -
X(e)=>_ ],—J!ej e F[[€]]
§=0

with coefficients in a Banach space (F,||.||r) is said to be k—summable with respect to € in the
direction d € R if
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X i) there exists p € Ry such that the following formal series, called formal Borel transform of
X of order k

o0

Bu(X)(1) =) -

=T+ )

7J
a;T

F{[=1];

is absolutely convergent for |T| < p,

ii) there exists § > 0 such that the series Bi(X)(7) can be analytically continued with respect
to T in a sector Sg5 = {T € C* : |d — arg(r)| < d}. Moreover, there exist C > 0, and K > 0
such that
Bl < CetI

forall T € Sy45.
If this is so, the vector valued Laplace transform of order k of Bj(X)(7) in the direction d is
defined by

LIBUX)) ) = | Br(X)(w)e™ W kub1du,
L"/

along a half-line L, = Ry e"" C Sy U {0}, where v depends on € and is chosen in such a way
that cos(k(y — arg(e))) > 91 > 0, for some fixed d;, for all € in a sector
Suomn ={€€C ]l <RV | |d—arg(e)| < 0/2},

where T <60 < T +20 and 0 < R < 01/K. The function LH(Br(X))(e) is called the k—sum of
the formal series X (¢) in the direction d. It is bounded and holomorphic on the sector Sq.0.R1/k

and has the formal series X (e) as Gevrey asymptotic expansion of order 1/k with respect to €
on S, g gi/e. This means that for all 7 < 601 <6, there exist C, M > 0 such that

n—1
d % a n n n
||L5(Br(X))(e) — pz:% ﬁfp\lw < CM T+ 2)lel

forallm>1, all e € S’d7917R1/k.

Now, we state a cohomological criterion for k—summability of formal series with coeflicients

in Banach spaces (see [2], p. 121 or [14], Lemma XI-2-6) which is known as the Ramis-Sibuya
theorem in the literature. This result is a crucial tool in the proof of our main result (Theorem
2).
Theorem (RS) Let (F,||.||[r) be a Banach space over C and {&€,}o<i<c—1 be a good covering in
C*. For all 0 < p <¢—1, let G, be a holomorphic function from &, into the Banach space
(F,[|.||r) and let the cocycle ©p(e) = Gpi1(€) — Gp(e) be a holomorphic function from the sector
Zp = Epr1 NEy into E (with the convention that & = & and G = Gy). We make the following
assumptions.

1) The functions Gp(e) are bounded as € € &, tends to the origin in C, for all0 <p <¢ —1.
2) The functions Op(€) are exponentially flat of order 1/k on Zy, for all 0 < p < ¢ —1. This
means that there exist constants Cp, A, > 0 such that

1©p(e)llr < Cpe™ /I
forallec Z,, all0 <p <¢—1.

Then, for all 0 < p < v—1, the functions Gp(e) are the k—sums on &, of a common
k—summable formal series G(e) € F[[€]].
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6.2 Construction of k—summable formal series in the complex parameter of
the initial value problem

In this subsection, we establish the second main result of our work, namely the existence of a
formal power series in the parameter ¢ whose coeflicients are bounded holomorphic functions on
the product of a sector with small radius centered at 0 and a strip in C2, that is a solution of
the equation (113) and which is the common Gevrey asymptotic expansion of order 1/k of the
actual solutions wu,(t, z, €) of (113) constructed in Theorem 1.

The second main result of this work can be stated as follows.

Theorem 2 Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal
power series

u(t,z,€) = Z hm(t, 2)€™ /m!

m>0

solution of the equation (113), whose coefficients hy,(t, z) belong to the Banach space F of bounded
holomorphic functions on (T N D(0,h")) x Hg equipped with supremum norm, where h” > 0 is
constructed in Theorem 1, and such that the functions uy(t,z,€) defined in Theorem 1, seen as
holomorphic functions from &, into F, are its k—sums on the sectors &,, for all 0 <p < ¢ —1.
In other words, for all 0 < p < ¢ —1, there ewist two constants Cp, M, > 0 such that

n—1 m
€ n n n
(128) sup up(t, z,€) = Y (2, 2) | < CMIT(1+ 1)l

teTAD(01"),2€H = k

foralln>1, all e € &,.

Proof We consider the family of functions u,(t, z,€), 0 < p < ¢ — 1 constructed in Theorem
1. For all 0 < p < ¢ —1, we define G,(€) := (t,2) — up(t, z,€), which is by construction a
holomorphic and bounded function from &, into the Banach space F of bounded holomorphic
functions on (7 N D(0,h”)) x Hg equipped with the supremum norm, where 7 is introduced in
Definition 5, A" > 0 is set in Theorem 1 and £’ > 0 is the width of the strip Hg on which the
coefficients ¢y and f are defined with respect to z (see (114)). Bearing in mind the estimates
(119), we see that the cocycle O,(€) = Gpir1(e) — Gp(€) is exponentially flat of order k on
Zp=E N&pqq, forany 0 <p <¢—1. K

From Theorem (RS) stated above, there exists a formal power series G((¢) € F[[¢]] such that
the functions G, (e) are the k—sums on &, of G(e) as F—valued functions, for all 0 < p < ¢ — 1.
We set

G(e) = hm(t,2)e™/m! =:i(t, z,€).

m>0
It remains to show that the formal series u(t, z, €) satisfies the main equation (113). Since the

functions G, (e) are the k—sums of G(e), we have in particular that

(129) lim sup |0 up(t, 2, €) — h(t,2)] =0
€0,6€8p teTND(0,h""),2€H s

for all 0 < p <¢—1, all m > 0. Now, we choose some p € {0,...,¢ — 1}. By construction, the
function uy(t, 2, €) is a solution of (113). We take the derivative of order m > 0 with respect to
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e on the left and right handside of the equation (113). From the Leibniz rule, we deduce that
0 up(t, z, €) verifies the following equation

(130) Q0.)(0d M up(t, 2, €)) = Y —= = (Qu(8:)0" up(t, 2,))(Q2(0:) A up(t, 2, €))

mi+mo=m
D
2

mi1+mo=m

ml'mg

ml'mz

A G 0 Ry(8.)02u(t, 2, e))

+ > ml,mQ O colt, 2, €) Ro(0:)0up(t, 2,€) + O F (1, 2, €)

mi1+mo=m

for all m > 0, all (¢,2,€) € (TND(0,h")) x Hg x E,. If we let € tend to zero in (130) and if we
use (129), we get the recursion

(131)  Q0:)(Dehm(t,2)) = >

mi+mo=m

(Ql( ) ml(tvz))(QQ(az)hﬂw(t?Z))

ml'mg
+§:m!tdla‘”3 (8:)hm—n, (t, 2)
£ (m—A )' t AU\Uz ) tm—AG Yy

+ ml§mﬂ%(amlco)(t 2,0)Ro (02 )y (£, 2) + (O (¢, 2,0)

for all m > max;<;<p Ay, all (t,z) € (T N D(0,h"”)) x Hg. Since the functions ¢o(t, z,€) and
f(t, z,€) are analytic with respect to € at 0, we know that

(8?60)(7;2,0) m (aemf)(taz70) m
13 alzo= Y GEOER0m gy g o 5 GG,
m>0 m>0
for all e € D(0,€p), all z € Hg. On other hand, one can check by direct inspection from the
recursion (131) and the expansions (132) that the formal series 4(t, z,€) = >, < hm(t, 2)€™/m!
solves the equation (113). - O
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