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Abstract

We present a simple formula for the generating function for the polynomials in the
d—dimensional semiclassical wave packets.

1 Introduction

The generating function for 1-dimensional semiclassical wave packets is presented in formula

(2.47) of [2]. In this paper, we present and prove the d-dimensional analog.

This result has also been proven from a different point of view by Helge Dietert, Johannes
Keller, and Stephanie Troppmann. See Lemma 3 and Section 3 (particularly Proposition 16)
of [1]. We have also received a conjecture from Tomoki Ohsawa [3] that this result could be
proved abstractly by using the formula for products of Hermite polynomials and the action

of the metaplectic group.
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The semiclassical wave packets depend on two invertible d x d complex matrices A and

B that are always assumed to satisfy
A*B+B*"A = 21 and A'B—-B'A = 0.

They also depend on a phase space point (a, ) that plays no role in the present work. After

chosing a branch of the square root, we define

©wo(A, B, b, a,nm, x) = m VARV (det A)71/2

¢ oLz asa) e ma)

Here, and for the rest of this paper, we regard R? as being embedded in C%, and for any two

vectors a € C? and b € C?, we use the notation

(ab) = > b,

j=1

For 1 <[ < d, we define the [*" raising operator

R, = AA, B, B, 0,00 — \/%i (Bey (—a)) — i (A, (i BV —n))).

Then recursively, for any multi-index k, we define

1
Spk-i-ez(Av B, h, a, 1, {L‘) - \/m Rl(‘ﬁk(Aa B» h» a, 77))(1‘)

For fixed A, B, h, a, n, these wave packets form an orthonormal basis indexed by k. It

is easy to see that
or(A, B, hya,n, x) = 272 (k)72 P(A, By (- a)) (A, B, by a,n, ),

where Py(A, ki, (x—a)) is a polynomial of degree |k| in (z —a), although from this definition,
it is not immediately obvious that Py (A, A, (x — a)) is independent of B.

Since they play no interesting role in what we are doing here, we henceforth assume a = 0

and n = 0.

Our main result is the following:



Theorem 1.1 The generating function for the family of polynomials Py(A, h, x) 1is

G(z, 2) = exp (— (z, A7V Az) + %_L (z, A1x>) .

Le.,

Zk:

Gz, 2) = > Pu(A h, o) o

Remark We make the unconventional definition |A| = v/ A A*. By our conditions on the
matrices A and B, this forces |A| to be real symmetric and strictly positive. We also have

the polar decomposition A = |A| Uy, where Uy is unitary. With this notation, we can write

G(z, z) = exp (— <UAE, U_Az> + %i <UAE, |A[1x>)

This equivalent formula is the one we shall actually prove.

Acknowledgements It is a pleasure to thank Raoul Bourquin and Vasile Gradinaru
for motivating this work. It is also a pleasure to thank Johannes Keller, Tomoki Ohsawa,

Sam Robinson, and Leonardo Mihalcea for their enthusiasm and numerous comments.

2 Proof of the Theorem

We begin with a lemma that provides an alternative formula for R;. From this formula and

an induction on |k|, one can easily prove that Py (A, h, x) is independent of B, because

A —2
ol B R 0.0, 7) oA, B, 1, 0,0,2) = 72 b |det A exp (— %)

Lemma 2.1 For any ¢ € S,

h 1
(Riy)(z) = — \@ T <Ael,V(cp0(A, B. 10,0, 2) 2/1($))>.

Proof: The gradient on the right hand side of the equation in the lemma can act either on

the g or on the . So, we get two terms when we compute this:

(55 5 (e (o (737 + 032 3)) o



1
The second term here is precisely the second term et (—i(Ae, (—1hV)y(z))), in the

expression for (Rjy)(z). So, we need only show the first term here equals the first term,

\/%_h (Bey, x)1(x), in the expression for (Rjy)(z).

To do this, we begin by noting that the first term here equals

; i <A€l, (ej <(ej, BA - x) + (z, BA - €j>>> U(x)

- Zd: <Ael, (ej (<ej,§z 2y + (BA T ej,x>)> W(x)

Because of the relations satisfied by A and B, B A™!is (real symmetric) + i (real symmetric).
So, its conjugate, B A ! has this same form. Thus, B A ! equals its transpose, which

is (A71)" B*. So, the quantity of interest here equals

1 S1\* o
\/ﬁ@élel, (A ) B x>¢(x)

- %ﬁ (e, A* (A7) B* z) ¢(z)
1
= A (er, B" z) ()
1
= 7T (Bey, z) (),
which is what we had to show. |



Proof of the Theorem: We prove the theorem by an induction on |k|. For k = 0, the

result is trivial since Py(A4, h, ) = 1.

Without ever computing an explicit formula for the polynomial p; (which may be com-

plicated), we prove inductively that
Pu(A, by x) = p(|Al 2/VR)

and

a\" _
<£> Gz, 2) = pe(|A] ™ 2/Vh —TUa2) Gz, 2).
The result then follows by setting z = 0.

For the induction step, it is sufficient to do the following for an arbitrary positive integer
1 <d:

Assuming we have already proved these for some k, we prove them for the multi—index k+ e;.

To do this, we begin by noting that

on(A, B, h, 0,0, z) = R*(go(A, B, h, 0, 0))(x).

1
VE!
Also,

or(A, B, h, 0,0, 2) = 27*/2 (kN)"Y2 P(A, h, x) po(A, B, k0,0, ).

So,
Rk(ng(/L Ba ha 07 O))(:E) - 2_|k|/2 Pk(A7 hv IL') SOO(Aa Ba ha 07 07 [lﬁ')

Thus, when we apply the I*! raising operator, the polynomial Py(A, h, ) gets changed to

1
E Pk+el (A, h, .T)

k
Assuming the induction hypothesis, when we differentiate —— with respect to z;, the z

0zF
derivative can act on the G(z, z) or it can act on the py(|A|~" z/vh — Uy z). When it acts

on the G(z, z), we obtain
2 <UA el (|A|_1 x/\/ﬁ—U_Az) > pe(4, h, z) G(z, 2). (2.1)

Note that this result depends on the following calculation, with G(x, z) written with the

polar decomposition of A:



. o 2 »
8—%(33, z) = (— (Upe, Upz) — (Uaz, Upey) + E(UAQ, | Al x)) G(z, z)

= 2 <UAel, (|A|’1x/\/ﬁ—U_A2)> G(z, z).

0
When the 5 acts on the polynomial, we get
<l

= (VA e/ VE-Ta2), Uier) Gla, 2)

- <UAel, (Vo) (1A x/\/ﬁ—U_Az)> Gz, 2). (2.2)

Recall that

(Riv)(z) = — g s B}ﬁ) -~ (A V (@ B A 0.0, 2) b)) ).

and that from our induction hypothesis,

E,\A|_2z
vo(A, B, h, 0,0, ) pp(A, B, h, 0,0, z) = 9~ Ikl/2 (k!)’l/ka(A, h, x) e’< R >

The gradient in R; can act on the exponential or the pi(A, h, ). When it acts on the

exponential, we get

2
272 (k)72 (A, by ) \/% (e, [A ) @o(A, B, 1, 0,0, 2)

= 2= (kD2 k11 ((k + 6;)!)_1/2

x 2<UAel, |A|_1x/\/7—i>pk(A, h ) go(A, B, 1, 0,0, ). (2.3)

When the gradient in R; acts on the pi(A4, A, x), we get

- @ 272 (k)72 (Aer, Vaps(A, hy 7)) @o(4, B, B, 0,0, 2)

d
= — o (kHD/2 (f)-1/2 <A er, Z (e, (Vpr)(A, by z))|AIT! ej> vo(A, B, h, 0,0, x)

j=1



= — 27 R (k)12 (Aey, |AI7N (VpR)(A, By 2) ) @o(A, B, k, 0, 0, z)

— 9 (RHD/2 [T ((k + e)l) Y2

x (Uae, (Vpr)(A, hy ) po(A, B, k, 0,0, z). (2.4)

From (2.1) and (2.2) with z = 0, we obtain
2 <UA e, \Arlx/\/ﬁ> pi(A, By @) — <UA e, (Vpr)(JA|" 2/ V) > .

From (2.3) and (2.4) and taking into account the factor of +/k; + 1 in
Ri(vr) = Vki + 1 prie,, we obtain

PkJrel (A, h, I)

_ <UAel, \Arlx/\/ﬁ>pk(A, B o) — <UAel7 (vpk)(|Arlx/\/ﬁ)>.

The quantities of interest contain the same polynomial evaluated at the appropriate
arguments, and Py, (A, A, ) = prie, (A, i, x). Since [ is arbitrary, with 1 < [ < d, the

result is true for all multi-indices with order |k| + 1, and the induction can proceed. |
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