On a Model of Miscible Liquids in Porous Media
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Abstract In this paper we study interaction of two miscible liquids in porous media. The
model consists of a system of equations coupling hydrodynamic equations with Korteweg
stress terms and reaction-diffusion equation for the concentration. We assume that the fluid
is incompressible and its motion is described by the Darcy law. The global existence and
uniqueness of solutions is established for some optimal conditions on the reaction source term
and external forces functions. Numerical simulations are performed to show the behavior of
two miscible liquids subjected to Korteweg stress.
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1 Introduction

There exists transient interfacial phenomena between two miscible liquids similar to interfa-
cial tension [1]. However they are rather weak and they decay in time because of the mixing
of the two liquids due to molecular diffusion [1, 2]. Investigation of such phenomena is mo-
tivated by enhanced oil recovery, hydrology, frontal polymerization, groundwater pollution
and filtration [3, 7, 8, 9, 10].

In 1901 Korteweg introduced additional stress terms in the Navier-Stokes equations in
order to describe the influence of the composition gradients on fluid motion [11]. In 1949,
Zeldovich studied the existence of a transitional interfacial tension and described it with the
following expression [12]:

[CP

o=k——,

J

where [C] is the variation of mass fraction through the transition zone, and ¢ is the width
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this zone. This relationship was generalized by Rousar and Nauman to the systems far from
equilibrium, for linear concentration gradients [13]. In 1958, Cahn and Hilliard introduced
the free energy density for a non-homogeneous fluid [14]:

e =eo+ k|Vp|?

where eq is the energy density of a homogeneous fluid and p denotes the density of the fluid.

A miscible liquid model with fully incompressible Navier-Stokes equations is studied in
[15]. Modelling and experiments of miscible liquids in relation with microgravity experiments
were carried out in [3]-[6]. The existence and uniqueness of solutions for miscible liquids
model in porous media is studied in [16].

In this paper, we continue of miscible liquids in porous media. We consider a three-
dimensional formulation and introduce the source terms in the equation of motion and in
the equation for the concentration. The paper is organized as follows. The next section
is devoted to the model presentation, while Section 3 deals with the existence of solutions.
We establish the uniqueness of solutions in Section 4 followed in Section 5 by numerical
simulations.

2 Model presentation

The model describing the interaction of two miscible liquids is written as follows:

oC
N +u.VC = dAC — Cy, (2.1)
ou
— 4+ —u=- T 2.2
5 Tt Vp+V.T(C)+f, (2.2)
div(u) = 0. (2.3)
We consider the boundary conditions:
Z—g =0, un=0, on T, (2.4)
and the initial conditions:
C(z,0) = Cy(z), u(z,0) =ug(x), x € Q. (2.5)

Here wu is the velocity, p is the pressure, C' is the concentration, d is the coefficient of mass
diffusion, p is the viscosity, K is the permeability of the medium, I' is a Lipschitz continuous
boundary of the open bounded domain €2, n is the unit outward normal vector to I', f is
the function describing the external forces such as gravity and buoyancy while the term, g
stands for the reaction source term. The stress tensor terms are given by the relations:

oC \ 2 oC oC oC 0C
Ty =k <8—> s Tieo=Tn =k —-—, Tis=Tsn =~k ———

Hi) 6:1;1 61;2’ 8931 8933,
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oC oC oC oC
Ty = Tho = —ko—r e T Ty =
23 32 kafL’Q 81’3 k(@:m) 33 k<8x3> ’

where £ is nonnegative constant. We set

aTvll aTIZ aTIS
afL’l * 81’2 + 8373

8T21 a7—122 8T23
afL’l * 81’2 + 8373

0T 0T 07133
afL’l * 81’2 + 8373

In order to state the problem in the variational form we need to introduce function spaces:

oC
S, = {u € H(div;Q);div(u) = 0,un=00nT}, Sc={C¢c H*Q); o= 0 on T'}.
The variational form of the problem is to find C, u such that for all B, v the following
equalities hold:

(%—f,B) +d(VC,VB) + (w.YC, B) + (4C, B) = 0, (2.7)
(O )+ iyl ) — (i T(O),0) — () = 0 (2.9

Here 11, = 1/ K. The functions f(z,t) and g(z) are assumed to be a sufficiently regular in
such that the first is bounded in L>°(0,t; L?(€2)), the second is bounded in L>°() and both
of them are positive.

3 Global existence of solutions
We begin the proof of existence of solutions with the following lemmas.
Lemma 3.1 The concentration C is bounded in the L>(0,t; L?) space.

Proof Choosing C' as test function in (2.7) and taking into account that g is a positive
function, we get the inequality:

10
20t

Since u € S, the last term vanishes. The second term is positive, so integrating by time we
obtain:

Z(C,C) +d(VC,VC) + (u.VC,C) < 0



1C(t = 9)[I72 < [IColl7:-
From this inequality, it follows that C' is bounded in L>(0,t; L?).

<

Lemma 3.2 The concentration C' is bounded in L*°(0,t; H') and the velocity u is bounded
in L>(0,t; L?).

Proof Choosing —kAC as test function in equation (2.7), we have:

2
ot’

Next, since the reaction source term g is bounded, we get from the previous estimate:

—kAC) + (u.VC, —kAC) = d(AC, —kAC) + (9C, kAC).

g%(va VC) + dk(AC, AC) — k(u.VC,AC) < kgy(VC,VC).

Then

%%(vc, VC) + d(AC, AC) < (w.VC, AC) + go(VC, V). (3.1)

Also, by choosing in (2.8), u as test function we obtain:

20 0 w) + iyl ) — (VT(C), ) = (). (32)

In order to have an explicit expression of V.T'(C'), we calculate its first component:

0Ty 0Ty, 0Ty _,, 0C 9°C _, &#C oC ,0C9°C | &C oC , 9C &°C
8931 61;2 61;3 N 8932 61;161;2 89318932 8932 8931 893% 6:1;16:1;3 61;2 6:1;1 61;% ’

(3.3)

Hence

oTy, 0Ty 07113 oC  9°C oC  9°C oC 0>C oC
=k k k —k AC.
0x, + 0o + 0, 0x1 011024 + 0x1 011013 + Oz, Ox? 0x, ¢

¢ oT; T, oT; kE 0 oC
11 12 13 2
81’1 8372 81’3 2 81’1 ( C) k&xl ¢

Following the same steps for the second component, we conclude:

vV.T = ngcf — EACVC.

Replacing this last equality in (3.2) and since u € S, we have:



%%(u, W) + 1y (1, w) — K(ACYC,u) = (£, ). (3.4)

Adding (3.4) to the inequality (3.1), and with the fact v € S, and C' € S,, we have:

%% ((u,w) + k(VC,VC)) + pp(u, u) + dk(AC, AC) < (f,u) + go(VC, VO).
%% ((u,u) + k(VC,VC)) + py(u, u) + dk(AC, AC) < %(f, f)+ %(u, u) +go(VC,VC).

Since the third and the fourth terms in the left hand side inequality are positives, we have:

% ((u,u) + K(VC,VC)) < (f, ) + (u,u) +290(VC, VO).

Therefore

0 (f,f) , maxz(1;2g)
ot ((w,u) + (VC, VC)) < min(1; k) + min(1; k)

By integrating over time, and since f is bound in L*°(0,¢; L?), we have:

(u,u) + (VC, V).

Jo
min(1; k)

/0 (Ju(s)||z2 + [[VC(5)]|12) ds.

[u(t = 8)[[2 + IVC(t = $)l[r2 < [luollr2 + [V Col[ > +

max(1;2go)
min(1; k)

From the Gronwal Lemma, it follows:

Ju(t = )2 + [V = )z < (luollzs + [T Collzz +—°

n(l;k))xexp( n(1; k) )

We conclude that C'is bounded in L*>(0,¢; H') and u is bounded in L*(0, t; L?) for t € [0;T7.
o

oC
Lemma 3.3 The time derivative of the concentration —— is bounded in L*(0,t; L?).

ot

Proof From the equation (2.7), since ¢ is a positive function and by the triangle inequality,
we have:

oC
157 llz2 < dlAC]z2 +[Ju. VO]l ..
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Using Holder inequality, we obtain:

oC
157 llz2 < dlAC]|z2 + [Jull 4 [[VC]| s,

and from the Gagliardo-Nirenberg inequality, it follows that 3N > 0 such that:

ocC
1555 122 < dlIAC |22 + Nlull 2 | Vul 2 VOV O 7
oc . T2 2
We conclude that 5 bounded in L*(0,¢; L?).

0
Lemma 3.4 The time derivative of the velocity 8_:; is bounded in L*(0,t; L?).

Proof To prove this lemma, it is sufficient to remark that V.7 (C) is a sum of the expressions

0
of the form AD;(D;CD,C), where D; = .

, i=1,2,3 and A depending on i,j and [ (see
for example (3.3)). We have the following: Z

|Di(D;C DO s, < [|D;CDC| 120
< |D;iCll @ |1 DiCl| 2oy
1/2 1/2 1/2 1/2
< M||Djo||L/‘2(Q)||Dlo||L/2(Q)||DjC|| /(Q)“DlC“ /

H! HY(Q)
We notice that f is a bounded function. Using the the same reasoning as for the previous

lemmas, we prove that a—ltt is bounded in L?(0,t; L?).

We can now formulate the main result of this section.
Theorem 3.5 The problem (2.1)-(2.5) admits a global solution.

Proof It is easy to see that the problem admits a finite-dimensional solutions C,, and u,,
defined on the interval of time [0; 7,,,[. From the previous Lemmas applied to C,, and u,, we
deduce the global existence of those solutions.

Furthermore, the previous Lemmas provide the existence of subsequences, still denoted
by C,, and u,,, such that

C,, — Cin L*(0,T; S¢) weakly,
Cp — Cin L™®(0,T; H") weak-star,

C! — C"in L*(0,T; S.,) weakly,
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and

U, — w in L?(0,T; S,) weakly,
Um — w in L>(0,T; Hy;,) weak-star,

ul — ' in L*(0,T;S!) weakly,

By some classical compactness theorems (see for example [17, 18]), we also obtain the
strong convergence of (Cy,; u,,) and by passing to the limit we obtain the existence of solu-
tions.

o

4 Uniqueness of solution

In order to prove uniqueness of solution, we will assume that the problem (2.1)-(2.5) has two
different solutions (C4,u1) and (Cy, us). From (2.1), we have:

0
a(cl — 02) — dA(Cl — 02) + u1V01 - UQVCQ + g(Cl - 02) = 0, (41)

and from (2.2), we also get:

0 k

&(Ul — UQ) + Mp(ul — UQ) + V(pl — p2) = §V ((VC’l)Q — (VCQ)Q)
—k(ACVC, — ACV(Cy). (4.2)

Multiplying (4.1) by —kA(C; — C5) and integrating, we obtain:

0
G
+(U1V01, _kA(Cl_CQ))+(U2v02, kA(C'l—C'g))—l-(g(Cl—C'g), _kA(Cl_CQ)) =0.
Similarly, multiplying (4.2) by u; — us and integrating, we have:

(C1 — Cy),—kA(Cy — %)) + dEk(A(Cy — Cy), A(Ch — Cy))

2(Ujl — Ug), Uy — UQ) + ,up(ul — U2, U] — UQ) = g(v ((V01)2 — (VCQ)2) , Uy — Ug)

(Bt
—k(ACIVCI — ACQVCQ, Uy — UQ).

Adding the two last equalities, using Green formula and the fact that u; € S, we conclude
that



(||U1 — /|72 + B[ VO = VCOo||7:) + ppllur — usll72 + kd[[A(C) — Co) |7 =
k(u1V(C'1 — CQ), A(Cl — CQ)) + k((u1 — UQ)VCQ, A(Cl — CQ))—
k(A01V(Cl — 02), Uy — Ug) —+ k(—A01VCQ —+ ACQVCQ, Uy — U2)+

k(g(Cr = C2), A(Cr = Cy)).

DN | =
Q’)|Q_>

Therefore

(||U1 — us|7> + k|| VO — VCal|75) + ppllur — us||72 + kd||A(C) — Co) |7 =

k(U1V(Cl — CQ), A(Cl — CQ)) — k(A01V(Cl — CQ), Uy — U2)+
k(g9(C1 — C2), A(Cr = Cy)). (4.3)

DN | —
Q.)|Q_>

We will now estimate the right-hand side of this equality. We put C' = C; — (5 and u =
up — ug. From the Holder inequality it follows that:

(ACVC, u)| < |AC| IV Catll i < [ACH 12 [V e full ey
Also, from the Gagliardo-Nirenberg inequality we get:

(ACYVC,u)| < NyJ|ACY| o [V O NACEE [ull 2V ul 12
Next, applying the Young inequality, we obtain:

3N
(ACVC,u)| < —||A0||Lz+—1||Acl||4/3||vo||2/3|| [E2 S

Using that same technics, we obtain the following inequality:

(wVC,AC) < IAC] 2V Canlze < IACH I VC el oy

Therefore

(w1 VC, AC)| < Nol|ACIBZ IV CI5 un||57 |V |14

Finally

3N,
[ VC,AC)| < —QHAC“LZ + 2||VC||%2|IU1||%2||VU1||iz-

From (4.3) and assuming that Ny 4+ 3N, < 4d, we have:

10 3Nk

5o lullze + EIVOIE:) < == A VOl 72| Vull 2
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Nyk
+— - IVCIL a7V urllzz + kgol VOIIZ < (lullzz + EIVClE2) %

Ny 3Nk 4/3 2/311 11—4/3 92/3
(7||vo||%2||u1||%2||w1||%2 + 5 IACUEZ IV I 72 9l 75 + ko
Denote
4/3 2/3 4/3 2 3
3(t) = |VC||2:l[ur |||V |22 + |ACL S IV CIE 2 [Vl 75
and
Ny 3Nk
M = max(f, Tl’ kgo)

Then we have the following estimate

S ean(M [ o(s)ds)(Julls + HIVCI) <0

for all ¢ > 0. From this we deduce that
t
ewp(M/O ¢(s)ds)([|ull72 + K[| VC[[72) < [[u(0)[|72 + K[V (0)[|7-.

Since u(0) = C(0) = 0, we conclude the uniqueness of solution. We can now statee the
theorem on the uniqueness of solution.

Theorem 4.1 The problem (2.1)-(2.5) admits a unique solution.

5 Numerical simulations

For numerical simulations, we will consider the 2D problem without reaction term and
external forces. We will introduce the stream function defined by the equalities

u 81& Uy = —a—w
L 81’2 2 afL’l ’
and the vorticity w = rot(u) The problem becomes:
aw 6 8T21 8T22 8 6T11 6T12
- - — .1
ot T = 5 B, T o) T 0y 0y T Oy (5:1)
C oy

— 4+ (=—,——=—).VC =dAC 5.2
at +(8$2, Bxl)v ’ ( )
w=—Ay (5.3)



Numerical method. We begin with equation (5.2). It is solved by the alternative direc-
tion implicit finite difference method with Thomas algorithm:

n+% n n+% n—l—% n+% n n n
Cij " = Cij _ o[ Gimra =205 "+ Gy L Gl = 207 + Chjn
o 2 2
e 12 n2
_wi,]‘-i'l = Wig—1 Vit - i—1,7 + i+1,5 = Yi—1,7 Yig+1 T Yig—1
)
oh, 2y 2y oh,
1 1 1 1
n+1 n+ty n+y n+ty n+y n+1 n+1 n+1
Cij =G " _ [ Cig =260, " + Gy | Gy = 2055 + G
a2 n2 h2
+1 n+i
n . C” 2 _ "2 n _hn Cn-i—l B Cn+1
Vi = Wi Gy = Cingy | Wiy — Wity Cign — Ciga
oh, 2hy 2hy 2h,

In equation (5.1) we replace T;; by their expressions through the concentrations:

Ow N k oC [03C 0*C oC [(03C 0*C (5.4)
— w = — )
or 1 0z, \ 923 022015 )  Ozs \ 077 | 01,022
We use the finite difference scheme
T S N R Ol — Oy [ Onfs = 207 + 207 — O L
" 1 + htlfl’p J 1 + ht,up 2hx th
n (C?+Jr1{j+1 - Zl++1{j—1) - 2(02;;11 - an+_11) + (Cgl—ﬁ{jﬂ - f—ﬁ{j—ﬁ
2h2h,
b — Ol [ Oy — 203 + 2010, — Gt
2h, 2h3
+( ZL++1%j+1 - zn—+1%j+1) —2( ;l++119 - zn—+113) + ( zn—:—l}j—l - ?—ﬁ}j—ﬁ
2h§hx '

Equation (5.3) is solved by the fast Fourier transform method.

Numerical results. An example of numerical simulations is shown in Figures 1 and 2.
Figure 1 shows the evolution of the miscible drop in time. The transient interfacial tension
affects the geometry of the drop and its shape becomes more spherical. At the same time,
the maximum of the concentration decreases due to diffusion (Figure 2, left). The stream
lines is shown in Fig. 2 (right). Though transient interfacial phenomena are sufficiently
weak, they provoke the motion of fluid which is initially quiescent.
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Figure 1: Evolution of the concentration during 100 seconds for d = 3 x 1073, k = 10~" and
tp = 100 .

I -4
0 0 2 N 4 %0 @ 0 8 % 1.0 4 4 2 4 0 1 2 3 4
Time

Figure 2: The maximum of stream function as function of time for for d = 3x 1073, k = 10~7
and p, = 10 (left). The stream lines for the same parameters and after 100 s (right)
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