
Translator’s Errata for INT, Ch. 9

IX.1. Footnote (†) added:

(†) Note by the Translator : Ch. IX of GT was translated from the 2nd edition of the
French original, whereas the present chapter refers to the 3rd edition; references to items
not in GT will be routed to TG.

IX.10. In the footnote (1), change the reference to TG, IX, §6, No. 10,
Th. 6.

IX.18. Revise footnote 1 as follows, and indicate at the end that the
footnote has been added by the Translator:

1 The cited appendix on Lindelöf spaces does not appear in GT. Lindelöf spaces are
defined in GT in Ch. I, §9, Exer. 14. Souslin spaces (and Lusin spaces) are defined in
TG for Hausdorff spaces (TG, IX, §6, No. 2, Def. 2 and No. 4, Def. 7); in GT they are
required to be metrizable (GT, IX, §6, No. 2, Def. 2 and No. 4, Def. 6). (Transl.)

IX.31, `. 9. In the reference, replace GT by TG.

IX.31. Revise footnote (1) to the following:

(1) A capacity f on T is said to be right-continuous if, for every compact set K
in T , f(K) = inf

U
f(U) as U runs over the open sets U ⊃ K . In GT, a “capacity” is

defined by three axioms (GT, IX, §6, No. 9, Def. 8). In TG, a function satisfying only the
first two is called a capacity, but a right-continuous capacity also satisfies the third (TG,
loc. cit., Remarque). (Transl.)

IX.40. Revise footnote (1) as follows:

(1) If f · ϕA is not universally measurable, cf. Remark 2) below. (Transl.)

QUESTION to the Author: Is it known that the set A is universally
measurable, and, if so, can a reference be given here? If not, is there a better
reference for filling the gap in the argument?

IX.40. Revise footnote (2) as follows:

(2) Cf. the footnote to Remark 1 of §1, No. 9. (Transl.)

IX.48. Revise footnote (2) to the following:

(2) In GT, every Souslin space has a countable base for open sets (GT, IX, §6,
No. 2, Prop. 4), hence is Lindelöf (GT, I, §9, Exer. 14); but see the footnote on p. IX.18.
(Transl.)

IX.48. In the line following the first display in the proof of Prop. 3,
change the reference to TG, IX, §6, No. 10 and add to its right
the following footnote (3):

(3) See footnote (1) on p. IX.31. (Transl.)
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2 translator’s errata

IX.49. Delete footnote (4) and revise footnote (3) to be the following
new footnote (4):

(4) In GT, every Borel set in a Souslin space is a Souslin set (GT, IX, §6, No. 3,
Prop. 11); but see the footnotes on pp. IX.18 and IX.31. (Transl.)

IX.63, `. −3,−2. Return the reference to its form in the French original:
loc. cit., Cor. 1 of Th. 1.

IX.64. Add the following footnote (1) to the statement of Cor. 2:

(1) Cf. the footnote on p. IX.18. (Transl.)

IX.64. In the references in ``. 14, 18, 19, change GT to TG.

IX.64. In the references in ``. 18 and 19, change Prop. 12 to Prop. 11.

IX.73, `. 5. Add “(Transl.)” to footnote (1):

(1) Also called a ‘projective system’. (Transl.)

IX.87. Revise footnote (2) as follows:

(2) The term espace mesuré was used in the first edition of Ch. III (§2, No. 2, p. 52)
for a space (locally compact, there) equipped with a measure. (Transl.)

IX.90, Footnote (3). QUESTION to the Author: Is this the correct
interpretation of “place no weight at 0” (a term that appears
not to have previously been defined)? The term also occurs in
IX.91, `. 13. (Of course, “place no mass at 0” has been defined
in connection with discrete measures.) The term is never used
again in INT; as it would be a nuisance to rearrange the index of
terminology to accomodate it, the simplest strategy is to let it be
defined in the footnote, and if the word “weight” is required for
some other context, introduce it into the index of terminology for
that context. Incidentally, an alternative to “weight” might be
“burden” (possibly more consistent with the term encumbrance).

(3) That is, the measures on I that are concentrated on T = I --- {0} . (Transl.)

IX.91, `. 13. See the preceding QUESTION.

IX.91. “(Transl.)” added to footnote (4):

(4) In the cited Cor. 2, read ‘second’ (axiom of countability) instead of ‘first’.
(Transl.)

IX.93, `. 6. In the reference to TVS, replace “No. 2, Th. 1” by “No. 1,
Scolium”.

IX.97. In the reference to TVS in line 4 of the Remark, replace “No. 2,
Th. 1” by “No. 1, Scolium”.



CHAPTER IX

Measures on

Hausdorff topological spaces

If T is a set, and A is a subset of T , we denote by ϕA the characteristic

function of A , provided this does not lead to any confusion. The set R
T

+

of numerical functions > 0 (finite or not) defined on T will be denoted by

F+(T) , or simply F+ if there is no ambiguity as to T ; this set will always

be equipped with its natural order structure. Recall that the product of two

elements of F+ is always defined, thanks to the convention 0 · (+∞) = 0 .

If A is a subset of T , and f is a function defined on T , the restriction f
∣∣A

of f to A may be denoted fA in this chapter, if this creates no confusion;

an analogous notation will be employed for induced measures. On the other

hand, if f ∈ F+(A) we shall denote by f 0 the extension by 0 of f to T ,

that is, the function defined on T that coincides with f on A and with 0
on T --- A .

All topological spaces considered in this chapter are assumed to be Haus-

dorff, absent express mention to the contrary.(†) From §1, No. 4 on, except

for §5, all measures will be assumed to be positive, absent express mention

to the contrary.

§1. PREMEASURES AND MEASURES ON A TOPOLOGICAL SPACE

1. Encumbrances

Definition 1. — Let T be a set. One calls encumbrance on T any

mapping p of F+(T) into R+ that has the following properties:
a) If f and g are two elements of F+ such that f 6 g , then

p(f) 6 p(g) .
b) If f is an element of F+ , and t is a number > 0 , then

p(tf) = tp(f) .

(†)Note by the Translator : Ch. IX of GT was translated from the 2nd edition of the
French original, whereas the present chapter refers to the 3rd edition; references to items
not in GT will be routed to TG.



INT IX.10 measures on hausdorff topological spaces §1

of T (loc. cit., Cor. 3), and the Souslin sets (Ch. IV, §5, No. 1, Cor. 2 of
Prop. 3)(1). The usual algebraic operations on numerical functions preserve
measurability (Ch. IV, §5, No. 3), as do the operations of countable passage
to the limit (loc. cit., No. 4, Th. 2 and Cor. 1). The following property
merits more explicit mention:

Proposition 4. — Let f be a positive function and (gn)n>1 a sequence

of µ-measurable positive functions on T . Setting g =
∑
n>1

gn , one has

(4) µ•(fg) =
∑

n>1

µ•(fgn) .

Set hn =
n∑

i=1

gi for all n > 1 . For every compact subset K of T ,

µ•K
(
(fhn)K

)
=

n∑

i=1

µ•K
(
(fgi)K

)

by Prop. 2 of Ch. V, §1, No. 1 applied to the compact space K . Passing
to the limit with respect to the increasing directed set of compact subsets
of T , one obtains

µ•(fhn) =

n∑

i=1

µ•(fgi) .

Now, fg is the limit of the increasing sequence (fhn)n>1 , whence µ•(fg) =
lim

n→∞
µ•(fhn) ; the preceding formula then immediately implies (4).

Corollary. — Let (An) be a sequence of pairwise disjoint measurable

subsets, with union A . For every subset B of T ,

µ•(A ∩ B) =
∑

n

µ•(An ∩ B)

and in particular

µ•(A) =
∑

n

µ•(An) .

Among the properties of measurable functions or sets that extend as
above to Hausdorff spaces, we cite also Prop. 12 of Ch. IV, §5, No. 8 (µ-dense
families of compact sets). Thus, a function f with values in a topological

(1) The proof of this corollary is valid without modification for Souslin sets in a
nonmetrizable locally compact space (TG, IX, §6, No. 10, Th. 6).
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moderated. The remarks following Def. 2 of Ch. V, §1, No. 2 can immediately be
extended to the present context. In particular, the sum of a sequence of moderated
positive functions is moderated.

Remarks. — 1) On a Lindelöf space T (TG, IX, Appendix I, Def. 1),1 and in
particular on a Souslin space (ibid., Cor. of Prop. 1), every measure is moderated.
For, the open sets of finite measure form a covering of T , from which one can
extract a countable covering of T .

2) Beware, however, that the existence of a sequence of Borel sets of finite
measure for µ , with union T , does not necessarily imply the existence of a sequence
of open sets of finite measure with union T (in other words, does not imply that µ
is moderated). See Exer. 8.

Proposition 14. — Let f ∈ F+(T) . If f is µ-moderated, then

µ*(f) = µ•(f) ; if f is not µ-moderated, then µ*(f) = +∞ .
If µ*(f) < +∞ , there exists a lower semi-continuous function g > f

such that µ•(g) < +∞ . For every n ∈ N , let Gn be the set of t ∈ T such
that g(t) > 1/n ; the set Gn is open, one has µ•(Gn) 6 nµ•(g) < +∞ ,
and f is zero outside the union of the Gn: the function f is therefore
moderated.

Next, let us show that µ* and µ• have the same value for moderated
functions. Since µ* and µ• are encumbrances, it suffices to establish the
relation µ*(f) = µ•(f) when f is a positive function, bounded above by
a constant M , and zero outside an open set G of finite measure, which we
shall now do.

The measure µ is the supremum, in M (T) , of an increasing directed
family (µi)i∈I of measures with compact support: this follows at once from
Prop. 9 of No. 8. Let g be a lower semi-continuous function on T , be-
tween f and the lower semi-continuous function MϕG . Set νi = µ − µi ;
then µ• = µ•i + ν•i (No. 2, Remark 1), consequently

µ•(g) − µ•(f) =
(
µ•i (g) − µ•i (f)

)
+

(
ν•i (g) − ν•i (f)

)

6
(
µ•i (g) − µ•i (f)

)
+ ν•i (MϕG) .

One has ν•i (MϕG) = µ•(MϕG) − µ•i (MϕG) and µ•(MϕG) = sup µ•i (MϕG)
(No. 7, Prop. 6); the number ν•i (MϕG) may therefore be made arbitrarily
small by a suitable choice of i. Thus everything comes down to showing
that one can find, for any number c > 0 and any index i ∈ I, a lower semi-
continuous function g between f and MϕG, such that µ•i (g) − µ•i (f) 6 c.
Now, let L be the compact support of the measure µi, and let λ be the meas-
ure (µi)L; since µi is concentrated on L, one has µ•i (h) = µ•i (hϕL) = λ•(hL)
for every function h ∈ F+(T) (No. 1, Lemma 1 and No. 2, Prop. 2); therefore

µ•i (g) − µ•i (f) = λ•(gL) − λ•(fL) .

1The cited appendix on Lindelöf spaces does not appear in GT. Lindelöf spaces are
defined in GT in Ch. I, §9, Exer. 14. Souslin spaces (and Lusin spaces) are defined in
TG for Hausdorff spaces (TG, IX, §6, No. 2, Def. 2 and No. 4, Def. 7); in GT they are
required to be metrizable (GT, IX, §6, No. 2, Def. 2 and No. 4, Def. 6). (Transl.)



No. 5 operations on measures INT IX.31

The two measures µ and µ′ thus have the same essential upper integral,
which implies their equality (§1, No. 2, Cor. of Prop. 2).

Remark. — Suppose that π is injective. Let θ be a complex measure such
that π is θ-proper and π(θ) = 0 ; then θ = 0 . Indeed, by separating θ into its
real and imaginary parts, one can reduce to the case that θ is real. We then have
π(θ+) = π(θ−) , therefore θ+ = θ− (Prop. 8), and finally θ = 0 .

Here is an important case where condition a) of Prop. 8 is always sat-
isfied.

Proposition 9. — Let T be a Souslin space (TG, IX, §6, No. 2, Def. 2),
X a Hausdorff space, π a continuous mapping of T onto X , and ν a

bounded measure on X . Then there exists a bounded measure µ on T such

that π(µ) = ν .
The hypotheses obviously imply that X is a Souslin space.
Let us consider the set function c : A 7→ ν•

(
π(A)

)
on P(T) . The

relation A ⊂ B implies c(A) 6 c(B) ; if (An) is an increasing sequence
of subsets of T , and if A =

⋃
n∈N

An , then c(A) = sup
n

c(An) from the

fact that ν• is an encumbrance. Finally, let A ⊂ T and let ε be a num-
ber > 0; choose an open subset G of X containing π(A) , such that ν•(G) 6

ν•
(
π(A)

)
+ ε (§1, No. 9, Prop. 13); the open subset H =

−1
π (G) of T

contains A , and c(H) 6 c(A) + ε . The function c is therefore a right-
continuous capacity on T (TG, IX, §6, No. 10, Def. 9)(1) and the theorem
on capacitability (loc. cit., Th. 6) implies the equality c(T) = sup

K
c(K),

where K runs over the set of compact subsets of T . Prop. 8 then implies
the existence of the desired measure µ .

5. Product of two measures

Let S and T be two topological spaces, equipped respectively with two
(positive) premeasures λ and µ , and let X be the product space S × T .
Let K be a compact subset of X ; let us denote by A and B the projections
of K on S and T respectively, and set

(3) νK = (λA ⊗ µB)K .

We thus define a premeasure on X . For, let L be a compact subset of X
containing K , and let C and D be its two projections; then A ⊂ C , B ⊂ D ,

(1)A capacity f on T is said to be right-continuous if, for every compact set K
in T , f(K) = inf

U
f(U) as U runs over the open sets U ⊃ K . In GT, a “capacity” is

defined by three axioms (GT, IX, §6, No. 9, Def. 8). In TG, a function satisfying only the
first two is called a capacity, but a right-continuous capacity also satisfies the third (TG,
loc. cit., Remarque). (Transl.)
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immediate that the mapping t 7→ λt satisfies the conditions a) and b) of
the statement.

D) Proof of c):
Let f be a universally measurable function on X that is positive and

bounded; we are going to show that the universally measurable function
hf : t 7→ λ•t (f) on T is a density for the measure µf = p(f · ν) with

respect to µ = p(ν) . Let K be a compact subset of T and let A =
−1
p (K) .

For every t ∈ T , the measure λt is carried by
−1
p (t) ; if t belongs to K

then
−1
p (t) ⊂ A , whence λ•t (fϕA) = λ•t (f) ; on the other hand, if t belongs

to T --- K then
−1
p (t) ⊂ X --- A , whence λ•t (fϕA) = 0 . Applying the for-

mula (12) to f · ϕA ,(1) we obtain

µf (K) =

∫ •

A

f(x) dν(x) =

∫ •

K

dµ(t)

∫ •

X

f(x) dλt(x) =

∫ •

K

hf (t) dµ(t) ,

which establishes the relation µf = hf · µ .
Letting f = 1 , one sees that the function h1 : t 7→ ‖λt‖ is a density of

the measure µ1 = µ with respect to µ , hence is equal to 1 locally µ-almost
everywhere in T .

E) Uniqueness:
Let t 7→ λi

t (for i = 1, 2 ) be two mappings of T into M+(X) satisfying
the conditions a) and b) of the statement. As in C), choose a µ-crushing
(Xn)n∈N of X such that pXn

is continuous for every n ∈ N , and set
N = X ---

⋃
n∈N

Xn . For every integer n ∈ N , choose a countable set Dn of

positive functions on X , zero outside Xn , whose restrictions to Xn form a
dense set in the normed space C (Xn) (apply Th. 1 of GT, X, §3, No. 3 to
the metrizable compact space Xn ). We set D =

⋃
n∈N

Dn .

Let f ∈ D ; by D), the functions t 7→ (λ1
t )
•(f) and t 7→ (λ2

t )
•(f) are

densities of the measure µf with respect to µ , and so there exists a locally
µ-negligible set Ef in T such that (λ1

t )
•(f) = (λ2

t )
•(f) for t ∈ T --- Ef .

Moreover, by (12), the set Fi of t ∈ T such that (λi
t)
•(N) 6= 0 is locally

µ-negligible for i = 1, 2. Since D is countable, the set G =
( ⋃

f∈D

Ef

)
∪F1∪F2

is locally µ-negligible; for t ∈ T --- G , we have (λ1
t )
•(N) = (λ2

t )
•(N) = 0

and (λ1
t )Xn

= (λ2
t )Xn

, whence λ1
t = λ2

t by Prop. 9 of §1, No. 8.
Q.E.D.

Remarks. — 1) If X is a Souslin space, then every compact subspace of X

is a Souslin space, hence is metrizable (TG, IX, Appendix I, Cor. 2 of Prop. 3),(2)

(1) If f · ϕA is not universally measurable, cf. Remark 2) below. (Transl.)
(2) Cf. the footnote to Remark 1 of §1, No. 9. (Transl.)
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Set K′ =
⋃

n∈N

Kn ; K′ is Borel in X , K′ ⊂ T ⊂ C , λ•(K′) = λ•(C) ,

therefore these three sets differ only by λ-negligible sets, and so T is
λ-measurable. This completes the proof of a).

Let us pass to b). Suppose that X is a Radon space, and that T is
universally measurable in X . Let I be a positive function on B(T) that
is countably additive and bounded; the function A 7→ I(A ∩ T) on B(X)
is then positive, countably additive and bounded, therefore there exists a
bounded measure ν on X such that I(A ∩ T) = ν•(A) for all A ∈ B(X) .
Now, T is ν-measurable; the preceding relation shows that ν•(K) = 0
for every compact subset K of X that is disjoint from T , therefore ν is
concentrated on T . Consequently, for every Borel set A of X , we have
I(A ∩ T) = ν•(A ∩ T) = µ•(A ∩ T) , where µ is the measure induced by ν
on T . Finally, it follows that I(B) = µ•(B) for every set B ∈ B(T) (GT,
IX, §6, No. 3, Remark 2), and I is indeed inner regular.

Corollary. — If X is a Radon space, then every Borel subset T of X
is Radon.

For, T is universally measurable in X .

Proposition 3. — Every Souslin space (in particular, every Polish or

Lusin space) is strongly Radon.
Let T be a Souslin space; since T is a Lindelöf space (TG, IX, Appen-

dix I, Cor. of Prop. 1),(2) it suffices to show that T is Radon (Prop. 1). Let I
be a function defined on B(T) , positive, countably additive and bounded.
We extend I to P(T) by setting, for every subset A of T ,

I(A) = inf
B∈B(T)

B⊃A

I(B) .

Let us show that this extension is a capacity on T (TG, IX, §6, No. 10).(3)

It is clear that the relation A ⊂ A′ implies I(A) 6 I(A′) . Let (An) be an
increasing sequence of subsets of T , and let A =

⋃
n

An . The set of Borel

sets that contain An being stable for countable intersections, there exists for
each n a Borel set Bn such that An ⊂ Bn and I(An) = I(Bn) (cf. the proof
of Prop. 2). Set Cn =

⋂
p>n

Bp ; Cn is Borel, and An ⊂ Cn ⊂ Bn , therefore

I(An) = I(Cn) . On the other hand, the sequence (Cn) is increasing. Let
C =

⋃
n

Cn : the relation A ⊂ C implies that

I(A) 6 I(C) = lim
n

I(Cn) = lim
n

I(An) ,

(2) In GT, every Souslin space has a countable base for open sets (GT, IX, §6,
No. 2, Prop. 4), hence is Lindelöf (GT, I, §9, Exer. 14); but see the footnote on p. IX.18.
(Transl.)

(3)See footnote (1) on p. IX.31. (Transl.)
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whence the equality I(A) = lim
n

I(An) is immediate. Consequently, I is a

capacity.

If (Hn) is a decreasing sequence of closed sets in T, obviously I
(⋂

n
Hn

)
=

inf
n

I(Hn). It follows that every Souslin subset F of T is capacitable for I

(TG, IX, §6, No. 10, Prop. 15). In particular, every Borel set A of T is
capacitable (loc. cit., §6, No. 3, Prop. 10).(4) In other words,

I(A) = sup
K

I(K) ,

where K runs over the set of compact sets contained in A ; we have proved
that I is inner regular.

Remark. — Let X be a Lusin space (in particular, any Polish space), and f
a bijective continuous mapping of X onto a (Lusin) regular space Y . One knows
(TG, IX, §6, No. 7, Prop. 14) that the mapping B 7→ f−1(B) is a bijection of the
Borel tribe of Y onto the Borel tribe of X . The spaces X and Y are Lusin, hence
strongly Radon (Prop. 3). It follows immediately that the mapping µ 7→ f(µ) is
a bijection of the set of bounded measures on X onto the set of bounded measures
on Y .

§4. INVERSE LIMITS OF MEASURES

Throughout this section, I denotes a nonempty set, equipped with a

preorder relation, denoted i 6 j , and directed for this relation. Recall (GT,
I, §4, No. 4) that an inverse system of topological spaces indexed by I is

a family (Ti, pij) where Ti is a topological space and pij is a continuous

mapping of Tj into Ti for i 6 j , where pii is the identity mapping of Ti ,
and where pik = pij ◦ pjk for i 6 j 6 k . Let T be a topological space and

(pi)i∈I a family of continuous mappings pi : T → Ti . The family (pi)i∈I is

said to be coherent if pi = pij ◦pj for i 6 j , and it is said to be separating if

for distinct x, y in T there exists an i ∈ I such that pi(x) 6= pi(y) . When

T = lim
←−

Ti and pi is the canonical mapping of T into Ti , the family

(pi)i∈I is coherent and separating.

(4) In GT, every Borel set in a Souslin space is a Souslin set (GT, IX, §6, No. 3,
Prop. 11); but see the footnotes on pp. IX.18 and IX.31. (Transl.)
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total masses of the measures in A are bounded by a number M ; it therefore
suffices to verify that

(5) lim
λ, F

∫

X

g d
(
i(λ)

)
=

∫

X

g d
(
i(µ)

)

for functions g ∈ C b(X) forming a total set in C b(X) . Now, this equality
is satisfied when g has compact support in T , because of the vague conver-
gence of F to µ , and also when g is a constant function on X , from the
fact that lim

λ, F
λ(1) = µ(1) . Since the functions of the preceding two types

form a total set in C b(X) (Ch. III, §1, No. 2, Prop. 3), this completes the
proof.

4. Application: topological properties of the space M b
+(T)

We first observe that if T is completely regular, then M b(T) is a Haus-
dorff topological vector space, hence is completely regular. Consequently,
M b

+(T) is completely regular.

Proposition 10. — Let T be a Polish space; the space M b
+(T) is then

Polish for the tight topology.
We begin by treating the case that T is Polish and compact. The

set U of positive measures with mass 6 1 is then compact (Ch. III, §1,
No. 9, Cor. 2 of Prop. 15), and the topology induced on U by the tight
topology (which here coincides with the vague topology) is also induced by
the topology of pointwise convergence on a total subset of C (T) (loc. cit.,
No. 10, Prop. 17). Now, there exists in C (T) a countable total set (GT,
X, §3, No. 3, Th. 1); consequently, U is a metrizable compact space. The
set V of positive measures of mass < 1 is open in U , hence is a Polish

locally compact space. Now, the mapping µ 7→
1

1 + µ(1)
µ of M b

+(T)

onto V is a homeomorphism, the mapping λ 7→
1

1 − λ(1)
λ being the inverse

homeomorphism.
Let us pass to the case that T is Polish; we can suppose that T is

the intersection of a decreasing sequence (Gn) of open sets in a metrizable
compact space X (GT, IX, §6, No. 1, Cor. 1 of Th. 1); the space M b

+(T) is
then homeomorphic to the subspace W of M b

+(X) consisting of the mea-
sures concentrated on T (No. 3, Prop. 8), and it will suffice to show that W
is the intersection of a sequence of open sets in the Polish space M b

+(X) (loc.
cit., Cor. 1 of Th. 1). Now, let Wn be the set of measures µ ∈ M b

+(X) con-
centrated on Gn ; the mapping hn : µ 7→ µ•(X --- Gn) on M b

+(X) is upper
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semi-continuous (No. 3, Prop. 6), and the set An
k of measures µ ∈ M b

+(X)
such that hn(µ) < 1/k is therefore open for every k > 1 and every n ∈ N .
The proof is completed by observing that W =

⋂
n

Wn =
⋂
n,k

An
k .

Corollary 1. — If T is a metrizable space of countable type, then

M b
+(T) is metrizable of countable type for the tight topology.

For, let T̂ be the completion of T for a metric defining the topology
of T ; the space T̂ is Polish, and M b

+(T) is homeomorphic to the subspace

of the Polish space M b
+(T̂) consisting of the measures concentrated on T

(No. 3, Prop. 8). But every subspace of a Polish space is metrizable of
countable type (GT, IX, §2, No. 8).

Corollary 2. — If T is a completely regular Souslin (resp. Lusin)
space, then the space M b

+(T) is Souslin (resp. Lusin).(1)

For, consider a Polish space P and a continuous mapping f of P
onto T (TG, IX, §6, No. 2, Def. 2). Let f̃ be the continuous mapping
µ 7→ f(µ) of M b

+(P) into M b
+(T) ; the space M b

+(P) is Polish by Prop. 10,

and f̃ is surjective (§2, No. 4, Prop. 9); the space M b
+(T) is therefore

Souslin. Similarly, if T is Lusin, then f may be assumed to be injective
(TG, loc. cit., No. 4, Prop. 11); then f̃ is injective (§2, No. 4, Prop. 8), and
so M b

+(T) is Lusin (TG, loc. cit., No. 4, Prop. 11).

Let T be a completely regular Souslin space (recall that for this, it suffices
that T be Souslin and regular (TG, IX, App. I, Cor. of Prop. 2)), and let H be a
compact subset of M b

+(T) ; then H is compact and Souslin, hence metrizable, for

the tight topology (loc. cit., App. I, Cor. 2 of Prop. 3).

5. Compactness criterion for tight convergence

Definition 2. — Let T be a topological space, and let H be a subset

of M b(T) ; one says that H satisfies Prokhorov’s condition if

a) sup
µ∈H

|µ|(1) < +∞ ;

b) for every number ε > 0 , there exists a compact subset Kε of T such

that

(6) |µ|(T --- Kε) 6 ε for every measure µ ∈ H .

It can be shown that if T is completely regular, the set of conditions a)
and b) is equivalent to the following condition: there exists a real function f > 1
on T , such that the set of points t of T satisfying f(t) 6 c is compact for ev-
ery c ∈ R+ (which in particular implies that f is lower semi-continuous), and

(1)Cf. the footnote on p. IX.18. (Transl.)



No. 1 measures on a locally convex space INT IX.73

It can be shown that the inverse limit of the inverse system Q(E) is
canonically isomorphic to the algebraic dual E′* of E′ , equipped with the
weak topology σ(E′*,E′) .

Definition 1. — Let E be a locally convex space. One calls promeasure

on E every inverse system (1) of measures (§4, No. 2, Def. 1) on the inverse

system of finite-dimensional quotients of E .

In other words, a promeasure µ on E is a family (µV)V∈F (E) , where
µV is a bounded (positive) measure on the finite-dimensional space E/V ,
and where µV = pVW(µW) when V ⊃ W . All of the measures µV have
the same total mass, which is called the total mass of the promeasure µ .

For a subspace V of E to belong to F (E) , it is necessary and sufficient
that there exist a finite number of elements x′1, . . . , x

′
n of E′ such that V

consists of the x ∈ E satisfying 〈x, x′i〉 = 0 for 1 6 i 6 n (TVS, II, §6,
No. 3, Cor. 2 of Th. 1 and No. 5, Cor. 2 of Prop. 7). Moreover, on a finite-
dimensional vector space there exists one and only one Hausdorff topological
vector space topology (TVS, I, §2, No. 3, Th. 2). Consequently, the concept
of promeasure on E depends only on the dual E′ of E .

Let λ be a bounded measure on E . For every V ∈ F (E) , let us denote

by λ̃V the image of λ under the canonical mapping pV of E onto E/V .
One has pV = pVW◦pW for any two elements V and W of F (E) such that

V ⊃ W ; consequently, the family λ̃ = (λ̃V)V∈F (E) is a promeasure on E .

We shall say that λ̃ is the promeasure associated with the measure λ . One
sees immediately that λ and λ̃ have the same total mass.

Proposition 1. — Let E be a locally convex space. The mapping

λ 7→ λ̃ is a bijection of the set of bounded measures on E onto the set of

promeasures (µV)V∈F (E) on E satisfying the following condition:
For every ε > 0 , there exists a compact subset K of E such that

µV

(
E/V --- pV(K)

)
6 ε for all V ∈ F (E) .

One knows that the intersection of the kernels of the continuous linear
forms on E is equal to 0 (TVS, II, §4, No. 1, Cor. 1 of Prop. 2); consequently⋂
V∈F (E)

V = {0} and the family (pV)V∈F (E) is coherent and separating. The

proposition then follows from Th. 1 of §4, No. 2.

In particular, the mapping λ 7→ λ̃ is injective. If µ is a promeasure
on E , and if there exists a bounded measure λ on E such that µ = λ̃ ,
we shall say, by an abuse of language, that µ is a measure. If E is
finite-dimensional, every promeasure µ = (µV)V∈F (E) is a measure: for,
{0} ∈ F (E) , E/{0} = E and pV,{0} = pV , whence µV = pV(µ{0}) for all

V ∈ F (E) ; in other words, µ = λ̃ with λ = µ{0} .

(1)Also called a ‘projective system’. (Transl.)
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In particular, if t1, . . . , tn are elements of T , and c1, . . . , cn are real num-
bers, then

W
( n∑

j=1

cjεtj

)
=

n∑

j,k=1

cjck inf(tj , tk)

and since W is positive, the function (t, t′) 7→ inf(t, t′) is a kernel of positive
type on T .

Theorem 1 (Wiener). — Let w be the image under P : H → C of

the canonical Gaussian promeasure on the Hilbert space H . Then w is a

Gaussian measure on C with variance W .
By construction, W(µ) = ‖tP (µ)‖2

2 ; Prop. 5 of No. 5 shows that w is
a Gaussian promeasure with variance W . It remains to prove that w is a
measure on C .

A) Construction of an auxiliary measured space (2) (Ω,m) :
For every integer n > 0 , denote by Dn the set of numbers of the

form k/2n with k = 1, 2, 3, . . . , 2n . Set D =
⋃

n>0

Dn (the set of dyadic

numbers contained in T ) and Ω = RD . For every t ∈ D , denote by X(t)
the linear form f 7→ f(t) on Ω .

For t, t′ in D , set M(t, t′) = inf(t, t′) ; we have seen that M is a kernel
of positive type on D . Since the set D is countable, one can define the
Gaussian measure m on Ω with covariance M (No. 6, Example 2).

Lemma 3. — For any t, t′ in D ,

(38)

∫

Ω

∣∣∣X
( t + t′

2

)
−

X(t) + X(t′)

2

∣∣∣
3

dm =
1

(8π)1/2
|t − t′|3/2 .

Note that
t + t′

2
belongs to D . One knows (No. 6, Example 2) that

the family
(
X(t)

)
t∈D

is a basis of the topological dual Ω′ of Ω ; there-

fore there exists a symmetric bilinear form M̂ on Ω′ × Ω′ characterized
by M̂

(
X(t),X(t′)

)
= inf(t, t′) . By construction, the variance of the Gaus-

sian measure m on Ω is the quadratic form ξ 7→ M̂(ξ, ξ) on Ω′ . Set, in
particular,

(39) ξ = X
( t + t′

2

)
−

X(t) + X(t′)

2
;

an easy calculation yields

(40) M̂(ξ, ξ) =
|t − t′|

4
.

(2)The term espace mesuré was used in the first edition of Ch. III (§2, No. 2, p. 52)
for a space (locally compact, there) equipped with a measure. (Transl.)
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C) Construction of a Gaussian measure on C :
Let w′ be the bounded measure on C that is the image of m under

the m-measurable mapping u : Ω → C . We are going to show that w ′ is a
Gaussian measure on C , with variance W , whence w = w′ . Denote by D

the linear subspace of M 1 generated by the measures εt for t running
over D .

Lemma 5. — For every measure µ ∈ D ,

(48)

∫

C

ei〈f,µ〉 dw′(f) = e−W(µ)/2 .

Set µ = c1εt1 + c2εt2 + · · ·+ cnεtn
with t1, . . . , tn in D and c1, . . . , cn

in R . For every g ∈ Ω0 , the function u(g) coincides with g on D ; therefore

(49) 〈u(g), µ〉 =

n∑

j=1

cjg(tj) (g ∈ Ω0) .

Also,

(50) W(µ) =
n∑

j,k=1

cjck inf(tj , tk) ,

and, since m is the Gaussian measure on Ω with covariance M , and
Ω --- Ω0 is m-negligible, we have

(51)

∫

Ω0

e
i

n∑
j=1

cjg(tj )

dm(g) = exp
(
−

1

2

n∑

j,k=1

cjck inf(tj , tk)
)
.

Now, Ω --- Ω0 is m-negligible and w′ = u(m) ; it follows that

(52)

∫

C

ei〈f,µ〉 dw′(f) =

∫

Ω0

ei〈u(g),µ〉 dm(g) .

The formula (48) follows immediately from the formulas (49) to (52).

Lemma 6. — Let µ ∈ M 1 . There exists a sequence of measures µn ∈ D

such that µ(f) = lim
n→∞

µn(f) for all f ∈ C and W(µ) = lim
n→∞

W(µn) .

Let I = [0, 1] . The space M 1 of bounded measures on T = ]0, 1] will
be identified with the subspace of M (I) formed by the measures that place
no weight at 0 . (3) We equip M (I) with the vague topology. The mapping

(3) That is, the measures on I that are concentrated on T = I --- {0} . (Transl.)
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t 7→ εt of I into M (I) is continuous (Ch. III, §1, No. 9, Prop. 13); since D
is dense in I , the closure D of D contains all of the point measures. Let A
be the set of measures ν ∈ D such that ‖ν‖ 6 ‖µ‖ ; the measure µ is
in the closure of A (Ch. III, §2, No. 4, Cor. 1 of Th. 1). The set A is
relatively compact in M (I) (Ch. III, §1, No. 9, Prop. 15) and the compact
subsets of M (I) are metrizable (TVS, III, §3, No. 4, Cor. 2 of Prop. 6,(4)

and GT, X, §3, No. 3, Th. 1). Therefore there exists a sequence of measures
µn ∈ A converging to µ in M (I) . Since C is identified with the subspace of
continuous functions on I zero at the origin, we have µ(f) = lim

n→∞
µn(f) for

all f ∈ C . Moreover, since C (I)⊗C (I) is dense in the normed space C (I×I)
(Ch. III, §4, No. 1, Lemma 1), the relations lim

n→∞
µn = µ and ‖µn‖ 6 ‖µ‖

imply that lim
n→∞

(µn ⊗µn) = µ⊗µ (Ch. III, §1, No. 10, Prop. 17); since the

measures µn and µ place no weight at 0 , we have

W(µn) =

∫

I

∫

I

inf(t, t′) dµn(t) dµn(t′) ,

W(µ) =

∫

I

∫

I

inf(t, t′) dµ(t) dµ(t′) ,

whence lim
n→∞

W(µn) = W(µ) .

It remains to prove that the Fourier transform of w′ is equal to e−W/2 .
Let µ ∈ M 1 ; choose measures µn ∈ D as in Lemma 6. The measure w′ is
bounded, and |ei〈f,µn〉| = 1 for all n ; Lemma 5 and Lebesgue’s convergence
theorem (Ch. IV, §4, No. 3, Th. 2) then imply

∫

C

ei〈f,µ〉 dw′(f) = lim
n→∞

∫

C

ei〈f,µn〉 dw′(f)

= lim
n→∞

e−W(µn)/2 = e−W(µ)/2 .

Q.E.D.

The measure w on C whose Fourier transform is equal to e−W/2 is
called the Wiener measure on C .

Remark. — For every semi-open interval J = ]a, b] contained in T , let us set
l(J) = b− a (the length of J ) and denote by AJ the linear form f 7→ f(b)− f(a)
on C . It can be shown that the Wiener measure is characterized by the following
property:

Let J1, . . . , Jn be semi-open intervals contained in T and pairwise disjoint.
The image of the measure w under the linear mapping f 7→ (AJ1

(f), . . . , AJn
(f))

of C into Rn is equal to γa1
⊗ · · · ⊗ γan with ai = l(Ji)

1/2 for 1 6 i 6 n .

(4) In the cited Cor. 2, read ‘second’ (axiom of countability) instead of ‘first’.
(Transl.)
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Proposition 9. — If F is barreled, then the Fourier transform of every

bounded measure on F′ is a uniformly continuous function on F .
Let µ be a bounded measure on F′ and Φ its Fourier transform. Let

ε > 0 . There exists a compact subset K of F′ such that µ(F′ --- K) 6 ε .
Now, K is compact for the weak topology σ(F′,F) , hence is equicontinuous
because F is barreled (TVS, III, §4, No. 1, Scholium). Therefore there exists
a symmetric neighborhood U of 0 in F whose polar U◦ contains K . Let x
be in εU ; then

Φ(0) − RΦ(x) =

∫

F′

(1 − cos〈x, x′〉) dµ(x′) .

Now, 0 6 1 − cos〈x, x′〉 6 2 for every x′ ∈ F′ --- K , and

1 − cos〈x, x′〉 6
1
2 〈x, x′〉2 6

ε2

2

for x′ ∈ K ⊂ U◦ ; it follows that

0 6 Φ(0) − RΦ(x) 6 2µ(F′ --- K) +
ε2

2
µ(K) 6 2ε +

ε2

2
µ(F′) .

The second member of this inequality tends to 0 with ε ; thus RΦ is
continuous at 0 and the proposition follows from the Cor. of Prop. 8.

9. Minlos’s lemma

Let T be a finite-dimensional vector space and µ a bounded measure
on T′ ; we shall identify T with the dual of T′ , so that the Fourier transform
Φ of µ is a function on T . We assume given two positive quadratic forms
h and q on T and a number ε > 0 . For every real number r > 0 , we
denote by Cr the set of x′ ∈ T′ such that 〈x, x′〉2 6 r2h(x) for all x ∈ T.

Proposition 10. — Under the hypothesis Φ(0)−RΦ 6 ε+q , we have

(55) µ(T′ --- Cr) 6 3
(
ε + r−2 Tr (q/h)

)

for every r > 0 .
One writes Tr (q/h) for the trace of q with respect to h (cf. Annex,

No. 1). The formula (55) is trivial when Tr (q/h) is infinite. We assume
henceforth that Tr (q/h) is finite, hence that h(x) = 0 implies q(x) = 0
for x ∈ T .
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Set r =
(
12Φ(0)Tr(Q/H) ε−1

)1/2
and denote by K the set of x′ ∈ F′

T

such that 〈x, x′〉2 6 r2H(x) for all x ∈ F . Since H1/2 is a continuous semi-
norm on F , the set K is equicontinuous and closed in F′

T
; it is therefore

compact in F′
T

by Ascoli’s theorem (GT, X, §2, No. 5, Cor. 1 of Th. 2).
Let V be a closed linear subspace of F′

T
with finite codimension; then,

V is the orthogonal of a finite-dimensional linear subspace T of F . Let µV

be the measure on T′ that is the image of the promeasure µ on F′
T

under
the mapping pV that is the transpose of the canonical injection of T into F ;
its Fourier transform is the restriction of Φ to T . Finally, by the Hahn–
Banach theorem (TVS, II, §3, No. 2, Cor. 1 of Th. 1), pV(K) is equal to
the set Cr of x′ ∈ T′ such that 〈x, x′〉2 6 r2H(x) for all x ∈ T . By the
inequality (63), one can apply Prop. 10 of No. 9 to the measure µV on T′ ,
on taking for q the restriction of 2Φ(0)Q to T and for h that of H . Then
Tr(q/h) 6 2Φ(0)TrQ/H) , whence

µV(T′ --- Cr) 6 3
( ε

6
+ 2Φ(0)Tr(Q/H) r−2

)
= ε .

Since pV defines, by passage to the quotient, an isomorphism of F′
T

/V
onto T′ , Prop. 1 of No. 1 then shows that µ is a measure on F′

T
.

Q.E.D.

Corollary. — Let F be a barreled nuclear space, T a locally convex

topology on F′ intermediate to Ts and Tc , µ a promeasure on F′
T

, and Φ
the Fourier transform of µ . For µ to be a measure, it is necessary and

sufficient that Φ be continuous on F .
Necessity follows from Prop. 9 of No. 8 and sufficiency from Th. 2.

Remark. — Let F be a barreled space and T a locally convex topology on F′

intermediate to Ts and Tc . Every subset of F′ compact for T is compact for
the coarser topology Ts . Conversely, let K be a subset of F′ compact for Ts .
Since F is barreled, K is equicontinuous (TVS, III, §4, No. 1, Scholium); but by
Ascoli’s theorem, every equicontinuous subset of F′ is relatively compact for Tc

and a fortiori for T , therefore K is contained in a subset of F′ compact for T .
It is not difficult to infer from this that the identity mapping of F′

T
onto F′

Ts

defines a bijection between the sets of measures on these two spaces.

11. Measures on a Hilbert space

Let E be a real Hilbert space, in which the scalar product is de-
noted (x|y) . There exists an isomorphism j of E onto its dual E′ , charac-
terized by the formula 〈x, j(y)〉 = (x|y) for x, y in E (TVS, V, §1, No. 7,
Th. 3). We will identify E and E′ by means of j . The Fourier transform
of a promeasure µ on E is therefore a function Fµ on E ; when µ is a


