
EXISTENCE OF STATIONARY SOLUTIONS FOR SOME
SYSTEMS OF INTEGRO-DIFFERENTIAL EQUATIONS

Vitali Vougalter1, Vitaly Volpert2

1 Department of Mathematics, University of Toronto
Toronto, Ontario, M5S 2E4, Canada

e-mail: vitali@math.toronto.edu
2 Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1

Villeurbanne, 69622, France
e-mail: volpert@math.univ-lyon1.fr

Abstract: The article deals with the existence of solutions of a system of nonlo-
cal reaction-diffusion equations which appears in population dynamics. The proof
relies on a fixed point technique. Solvability conditions for elliptic operators in
unbounded domains which fail to satisfy the Fredholm property are being used.

AMS Subject Classification: 35J05, 35P30, 47F05
Key words: nonlinear diffusion equations, non Fredholm operators, Sobolev spaces

1. Introduction

In the present article we establish the existence of stationary solutions of the system
of N ≥ 2 nonlocal reaction-diffusion equations

∂us

∂t
= Ds∆us +

∫
Rd

Ks(x− y)gs(u(y, t))dy + fs(x), 1 ≤ s ≤ N, (1.1)

which appears in cell population dynamics. The space variable x is correspondent to
the cell genotype, us(x, t) are densities for the various groups of cells as functions of
their genotype and time and u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))

T . The right
side of (1.1) describes the evolution of cell densities caused by cell proliferation,
mutations and cell influx. In this context, the diffusion terms are correspondent to
the change of genotype by means of small random mutations, while the integral
terms describe large mutations. Here gs(u) are the rates of cell birth dependent
upon u (density dependent proliferation), and the functions Ks(x − y) show the
proportions of newly born cells changing their genotype from y to x. Let us assume
that they depend on the distance between the genotypes. Finally, the last term in
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the right side of (1.1) describes the influxes of cells for different genotypes. Note
that the single equation analogous to (1.1) has been studied recently in [22] and the
case of the superdiffusion has been treated in [23].

Let us assume further down that all Ds = 1 and will investigate the existence of
solutions of the system of equations

∆us +

∫
Rd

Ks(x− y)gs(u(y))dy + fs(x) = 0, 1 ≤ s ≤ N. (1.2)

Let us consider the situation when the linear part of this operator fails to satisfy
the Fredholm property and conventional methods of nonlinear analysis may not be
applied. We will use solvability conditions for non Fredholm operators along with
the method of contraction mappings.

Let us consider the problem

−∆u+ V (x)u− au = f (1.3)

with u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential function V (x) either vanishes or tends to 0 at infinity. When a ≥ 0,
the essential spectrum of the operator A : E → F correspondent to the left side
of problem (1.3) contains the origin. Consequently, this operator fails to satisfy the
Fredholm property. Its image is not closed, for d > 1 the dimension of its kernel
and the codimension of its image are not finite. The present work is devoted to the
studies of some properties of the operators of this kind. Note that elliptic problems
which contain non Fredholm operators were treated actively in recent years. Ap-
proaches in weighted Sobolev and Hölder spaces were developed in [2], [3], [4],
[5], [6]. The Schrödinger type operators without Fredholm property were studied
using the methods of the spectral and the scattering theory in [11], [13], [14], [15],
[17]. The Laplacian operator with drift from the point of view of the non Fredholm
operators was studied in [16] and linearized Cahn-Hilliard equations in [18] and
[20]. Nonlinear non Fredholm elliptic problems were treated in [19] and [21]. Sig-
nificant applications to the theory of reaction-diffusion equations were developed in
[8], [9]. Operators without Fredholm property arise also when studying wave sys-
tems with an infinite number of localized traveling waves (see [1]). In particular,
when a = 0 the operator A is Fredholm in some properly chosen weighted spaces
(see [2], [3], [4], [5], [6]). But the situation when a ̸= 0 is significantly different
such that the approach developed in these works cannot be applied.

Let us set Ks(x) = εsKs(x) with εs ≥ 0, such that

ε := max1≤s≤Nεs

and suppose that the following assumption holds.

Assumption 1. Let 1 ≤ s ≤ N , such that fs(x) : R5 → R, fs(x) ∈ L1(R5)
and ∇fs(x) ∈ L2(R5). Moreover, fs(x) is nontrivial for some s. Assume also that
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Ks(x) : R5 → R, such that Ks(x) ∈ L1(R5) and ∇Ks(x) ∈ L2(R5). Furthermore,

K2 :=
N∑
s=1

∥Ks(x)∥2L1(R5) > 0

and

Q2 :=
N∑
s=1

∥∇Ks(x)∥2L2(R5) > 0.

Note that as distinct from the preceding work [22] dealing with a single integro-
differential equation, we assume here for the technical reason the square integra-
bility of the gradients of kernels involved in the nonlocal terms of our system of
equations.

The way we choose the space dimension is related to the solvability conditions
for linear elliptic problems in unbounded domains (see [21]). There are certain
solvability conditions for d < 5 but solvability conditions are not required for d ≥
5 (see the Appendix). Let us study here only the case of d = 5. We will not
consider the problem in dimensions d > 5 to avoid extra technicalities since the
proof will rely on similar ideas and no orthogonality conditions for the solvability
of equations (1.8) are required analogously to d = 5 (see Lemma 7 of [21]). From
the perspective of applications, the space dimension is not limited to d = 3 because
the space variable is correspondent to cell genotype and not the usual physical space.

By virtue of the Sobolev inequality (see e.g. p.183 of [10]) under the assump-
tion above we have

fs(x) ∈ L2(R5), 1 ≤ s ≤ N.

We consider the Sobolev space H3(R5,RN) of vector functions

{u(x) : R5 → RN | us(x) ∈ L2(R5), (−∆)
3
2us ∈ L2(R5), 1 ≤ s ≤ N}

equipped with the norm

∥u∥2H3(R5,RN ) :=
N∑
s=1

∥us∥2H3(R5) =
N∑
s=1

{∥us∥2L2(R5) + ∥(−∆)
3
2us∥2L2(R5)}. (1.4)

Also,

∥u∥2L2(R5,RN ) :=
N∑
s=1

∥us∥2L2(R5).

The operator (−∆)
3
2 is defined by virtue of the spectral calculus. By means of the

Sobolev embedding we have

∥ϕ∥L∞(R5) ≤ ce∥ϕ∥H3(R5). (1.5)
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Here ce > 0 is the constant of the embedding. The hat symbol will stand for the
standard Fourier transform, namely

ϕ̂(p) =
1

(2π)
5
2

∫
R5

ϕ(x)e−ipxdx. (1.6)

This enables us to express the Sobolev norm of a function as

∥ϕ∥2H3(R5) =

∫
R5

(1 + |p|6)|ϕ̂(p)|2dp. (1.7)

When the nonnegative parameters εs vanish, we arrive at the standard Poisson equa-
tions

−∆us = fs(x), 1 ≤ s ≤ N. (1.8)

Assumption 1 via Lemma 7 of [21] implies that problem (1.8) admits a unique
solution u0,s(x) ∈ H2(R5) and no orthogonality relations are required. Clearly,

∇(−∆us) = ∇fs(x) ∈ L2(R5).

Thus, for the unique solution of the linear problem (1.8) we arrive at u0,s(x) ∈
H3(R5), such that

u0(x) = (u0,1(x), u0,2(x), ..., u0,N(x))
T ∈ H3(R5,RN).

We look for the resulting solution of the nonlinear problem (1.2) as

u(x) = u0(x) + up(x), (1.9)

where
up(x) = (up,1(x), up,2(x), ..., up,N(x))

T .

Evidently, we obtain the perturbative system of equations

−∆up,s = εs

∫
R5

Ks(x− y)gs(u0(y) + up(y))dy, 1 ≤ s ≤ N. (1.10)

Let us define a closed ball in the Sobolev space

Bρ := {u(x) ∈ H3(R5,RN) | ∥u∥H3(R5,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.11)

We seek the solution of (1.10) as the fixed point of the auxiliary nonlinear system
of equations

−∆us = εs

∫
R5

Ks(x− y)gs(u0(y) + v(y))dy, 1 ≤ s ≤ N (1.12)

in ball (1.11). For a given vector function v(y) it is an equation with respect to
u(x). The left side of (1.12) contains the operator without Fredholm property
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−∆ : H2(R5) → L2(R5), due to the fact that its essential spectrum fills the non-
negative semi-axis [0,+∞) and therefore, such operator has no bounded inverse.
The analogous situation appeared in [19] and [21] but as distinct from the present
work, the equations treated there required orthogonality conditions. The fixed point
technique was used in [12] to evaluate the perturbation to the standing solitary wave
of the Nonlinear Schrödinger (NLS) equation when either the external potential or
the nonlinear term in the NLS were perturbed but the Schrödinger type operator in-
volved in the nonlinear equation possessed the Fredholm property (see Assumption
1 of [12], also [7]). Let us define a closed ball in the space of N dimensions

I := {z ∈ RN | |z| ≤ ce∥u0∥H3(R5,RN ) + ce}. (1.13)

For technical purposes we will use following quantities with 1 ≤ s, j ≤ N

a2,s,j := supz∈I

∣∣∣∇∂gs
∂zj

∣∣∣, a2,s :=

√√√√ N∑
j=1

a22,s,j, a2 := max1≤s≤Na2,s.

Also,
a1,s := supz∈I |∇gs(z)|, a1 := max1≤s≤Na1,s.

We make the following assumption about the nonlinear parts of the system of equa-
tions (1.2).

Assumption 2. Let 1 ≤ s ≤ N , such that gs(z) : RN → R with gs(z) ∈ C2(RN).
We also assume that gs(0) = 0, ∇gs(0) = 0 and a2 > 0.

Evidently, a1 defined above is positive as well, otherwise all the functions gs(z)
will be constants in the ball I and a2 will vanish. For instance, gs(z) = z2, z ∈ RN

clearly satisfies our assumption above.
Let us introduce the operator Tg such that u = Tgv, where u is a solution of the

system of equations (1.12). Our main proposition is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then system (1.12) defines the map
Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε < ε∗ for some ε∗ > 0.
The unique fixed point up(x) of this map Tg is the only solution of the system of
equations (1.10) in Bρ.

Clearly, the resulting solution of system (1.2) given by (1.9) will be nontrivial
due to the fact that the source terms fs(x) are nontrivial for some s = 1, ..., N
and all gs(z) vanish at the origin due to our assumptions. We will make use of the
elementary technical lemma below.

Lemma 4. Let φ(R) := αR +
β

R4
with R ∈ (0,+∞) and the constants α, β > 0. It

achieves the minimal value at R∗ =

(
4β

α

) 1
5

, which is given by φ(R∗) =
5

4
4
5

α
4
5β

1
5 .
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Let us proceed to the proof of our main result.

2. The existence of the perturbed solution

Proof of Theorem 3. Let us choose arbitrarily v(x) ∈ Bρ and denote the terms
involved in the integral expressions in right side of system (1.12) as Gs(x) :=
gs(u0(x)+v(x)). We apply the standard Fourier transform (1.6) to both sides of the
system of equations (1.12). This yields

ûs(p) = εs(2π)
5
2
K̂s(p)Ĝs(p)

p2
, 1 ≤ s ≤ N.

Hence for the norm we obtain

∥us∥2L2(R5) = (2π)5ε2s

∫
R5

|K̂s(p)|2|Ĝs(p)|2

|p|4
dp. (2.1)

Clearly, for any ϕ(x) ∈ L1(R5)

∥ϕ̂(p)∥L∞(R5) ≤
1

(2π)
5
2

∥ϕ(x)∥L1(R5). (2.2)

Note that as distinct from articles [19] and [21] containing results in lower dimen-
sions, in the present work we do not try to control the norms∥∥∥∥∥K̂s(p)

p2

∥∥∥∥∥
L∞(R5)

.

Let us estimate the right side of (2.1) by virtue of (2.2) with R ∈ (0,+∞) as

(2π)5ε2s

∫
|p|≤R

|K̂s(p)|2|Ĝs(p)|2

|p|4
dp+ (2π)5ε2s

∫
|p|>R

|K̂s(p)|2|Ĝs(p)|2

|p|4
dp ≤

≤ ε2s∥Ks∥2L1(R5)

{
1

(2π)5
∥Gs(x)∥2L1(R5)|S5|R +

1

R4
∥Gs(x)∥2L2(R5)

}
. (2.3)

Here and further down S5 stands for the unit sphere in the space of five dimensions
centered at the origin and |S5| for its Lebesgue measure (see e.g. p.6 of [10]). Since
v(x) ∈ Bρ, we arrive at

∥u0 + v∥L2(R5,RN ) ≤ ∥u0∥H3(R5,RN ) + 1

and by virtue of the Sobolev embedding (1.5)

|u0 + v| ≤ ce∥u0∥H3(R5,RN ) + ce.

6



Let us use the formula

Gs(x) =

∫ 1

0

∇gs(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ s ≤ N.

Here and below the dot symbol denotes the scalar product of two vectors in RN .
With the ball I defined in (1.13), we easily obtain

|Gs(x)| ≤ supz∈I |∇gs(z)||u0(x) + v(x)| ≤ a1|u0(x) + v(x)|.

Thus

∥Gs(x)∥L2(R5) ≤ a1∥u0 + v∥L2(R5,RN ) ≤ a1(∥u0∥H3(R5,RN ) + 1).

Clearly, for t ∈ [0, 1] and 1 ≤ j ≤ N

∂gs
∂zj

(t(u0(x) + v(x))) =

∫ t

0

∇∂gs
∂zj

(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This yields∣∣∣∂gs
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gs
∂zj

∣∣∣|u0(x) + v(x)| = a2,s,j|u0(x) + v(x)|,

such that by means of the Schwarz inequality

|Gs(x)| ≤ |u0(x) + v(x)|
N∑
j=1

a2,s,j|u0,j(x) + vj(x)| ≤ a2|u0(x) + v(x)|2

and

∥Gs(x)∥L1(R5) ≤ a2∥u0 + v∥2L2(R5,RN ) ≤ a2(∥u0∥H3(R5,RN ) + 1)2. (2.4)

This enables us to derive the upper bound for the right side of (2.3) as

ε2∥Ks(x)∥2L1(R5)(∥u0∥H3(R5,RN ) + 1)2
{ a22
(2π)5

(∥u0∥H3(R5,RN ) + 1)2|S5|R +
a21
R4

}
with R ∈ (0,+∞). By virtue of Lemma 4 we derive the minimal value of the
expression above. Therefore,

∥u∥2L2(R5,RN ) ≤ ε2K2 |S5|
4
5

(2π)4
a

8
5
2 (∥u0∥H3(R5,RN ) + 1)3

3
5a

2
5
1

5

4
4
5

. (2.5)

Clearly, (1.12) implies

∇(−∆us) = εs∇
∫
R5

Ks(x− y)Gs(y)dy, 1 ≤ s ≤ N,
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such that by means of (2.2) along with (2.4)

∥∇(−∆us)∥2L2(R5) ≤ ε2s∥Gs(x)∥2L1(R5)∥∇Ks(x)∥2L2(R5) ≤

≤ ε2a22(∥u0∥H3(R5,RN ) + 1)4∥∇Ks(x)∥2L2(R5).

Hence
N∑
s=1

∥(−∆)
3
2us∥2L2(R5) ≤ ε2a22(∥u0∥H3(R5,RN ) + 1)4Q2. (2.6)

By virtue of the definition of the norm (1.4) along with upper bounds (2.5) and (2.6)
we arrive at

∥u∥H3(R5,RN ) ≤ ε(∥u0∥H3(R5,RN ) + 1)2a
4
5
2

√
|S5|

4
5

(2π)4
a

2
5
1

5K2

4
4
5

+ a
2
5
2Q

2 ≤ ρ

for all values of ε > 0 small enough, such that u(x) ∈ Bρ as well. If for a certain
v(x) ∈ Bρ there exist two solutions u1,2(x) ∈ Bρ of system (1.12), each com-
ponent us(x) of their difference u(x) := u1(x) − u2(x) ∈ L2(R5,RN) satisfies
Laplace’s equation. Since there are no nontrivial square integrable harmonic func-
tions, u(x) = 0 a.e. in R5. Thus, system (1.12) defines a map Tg : Bρ → Bρ for all
ε > 0 sufficiently small.

Thus our goal is to prove that this map is a strict contraction. We choose arbi-
trarily v1,2(x) ∈ Bρ. Via the argument above u1,2 = Tgv1,2 ∈ Bρ as well. System
(1.12) gives us

−∆u1,s = εs

∫
R5

Ks(x− y)gs(u0(y) + v1(y))dy, 1 ≤ s ≤ N, (2.7)

−∆u2,s = εs

∫
R5

Ks(x− y)gs(u0(y) + v2(y))dy, 1 ≤ s ≤ N. (2.8)

Let us define

G1,s(x) := gs(u0(x) + v1(x)), G2,s(x) := gs(u0(x) + v2(x)).

We apply the standard Fourier transform (1.6) to both sides of systems (2.7) and
(2.8), which yields

û1,s(p) = εs(2π)
5
2
K̂s(p)Ĝ1,s(p)

p2
, û2,s(p) = εs(2π)

5
2
K̂s(p)Ĝ2,s(p)

p2

and express the norm

∥u1,s − u2,s∥2L2(R5) = ε2s(2π)
5

∫
R5

|K̂s(p)|2|Ĝ1,s(p)− Ĝ2,s(p)|2

|p|4
dp.
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Evidently, it can be estimated from above using (2.2) by

ε2∥Ks(x)∥2L1(R5)

{ |S5|
(2π)5

∥G1,s(x)−G2,s(x)∥2L1(R5)R+
∥G1,s(x)−G2,s(x)∥2L2(R5)

R4

}
with R ∈ (0,+∞). For 1 ≤ s ≤ N , let us make use of the formula

G1,s(x)−G2,s(x) =

∫ 1

0

∇gs(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Obviously, for v1,2(x) ∈ Bρ and t ∈ [0, 1] we have

∥v2(x) + t(v1(x)− v2(x))∥H3(R5,RN ) ≤ t∥v1(x)∥H3(R5,RN )+

+(1− t)∥v2(x)∥H3(R5,RN ) ≤ ρ,

such that v2(x) + t(v1(x)− v2(x)) ∈ Bρ as well. We obtain

|G1,s(x)−G2,s(x)| ≤ supz∈I |∇gs(z)||v1(x)− v2(x)| = a1,s|v1(x)− v2(x)|,

such that

∥G1,s(x)−G2,s(x)∥L2(R5) ≤ a1,s∥v1(x)− v2(x)∥H3(R5,RN ).

Apparently, for 1 ≤ j ≤ N

∂gs
∂zj

(u0(x)+ tv1(x)+(1− t)v2(x)) =

∫ 1

0

∇∂gs
∂zj

(τ [u0(x)+ tv1(x)+(1− t)v2(x)]).

.(u0(x) + tv1(x) + (1− t)v2(x))dτ,

such that ∣∣∣∂gs
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤ supz∈I

∣∣∣∇∂gs
∂zj

∣∣∣{|u0(x)|+ t|v1(x)|+ (1− t)|v2(x)|}

with t ∈ [0, 1]. Therefore, by means of the Schwarz inequality

|G1,s(x)−G2,s(x)| ≤
N∑
j=1

a2,s,j{|u0(x)|+
1

2
|v1(x)|+

1

2
|v2(x)|}|v1,j(x)−v2,j(x)| ≤

≤ a2,s{|u0(x)|+
1

2
|v1(x)|+

1

2
|v2(x)|}|v1(x)− v2(x)|.

The Schwarz inequality yields the upper bound for ∥G1,s(x)−G2,s(x)∥L1(R5) as

a2,s{∥u0(x)∥L2(R5,RN ) +
1

2
∥v1(x)∥L2(R5,RN ) +

1

2
∥v2(x)∥L2(R5,RN )}×
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×∥v1(x)− v2(x)∥L2(R5,RN ) ≤ a2{∥u0(x)∥H3(R5,RN ) + 1}∥v1(x)− v2(x)∥H3(R5,RN ).

This enables us to estimate from above ∥u1(x)− u2(x)∥2L2(R5,RN ) by

ε2K2∥v1(x)− v2(x)∥2H3(R5,RN )

{ a2
2

(2π)5
(∥u0∥H3(R5,RN ) + 1)2|S5|R +

a1
2

R4

}
.

We use Lemma 4 to minimize the expression above over R ∈ (0,+∞) to prove that
∥u1(x)− u2(x)∥2L2(R5,RN ) has an upper bound given by

ε2K2∥v1 − v2∥2H3(R5,RN )

5

4
4
5

a
8
5
2

(2π)4
(∥u0∥H3(R5,RN ) + 1)2|S5|

4
5a

2
5
1 . (2.9)

By means of (2.7) and (2.8)

∇(−∆)(u1,s(x)− u2,s(x)) = εs∇
∫
R5

Ks(x− y)[G1,s(y)−G2,s(y)]dy.

Hence via (2.2)

∥∇(−∆)(u1,s(x)−u2,s(x))∥2L2(R5) ≤ ε2∥G1,s(x)−G2,s(x)∥2L1(R5)∥∇Ks(x)∥2L2(R5).

As a results, the norm ∥(−∆)
3
2 (u1,s(x)− u2,s(x))∥2L2(R5) is bounded above by

ε2a22(∥u0∥H3(R5,RN ) + 1)2∥v1(x)− v2(x)∥2H3(R5,RN )∥∇Ks(x)∥2L2(R5),

such that
N∑
s=1

∥(−∆)
3
2 (u1,s(x)− u2,s(x))∥2L2(R5) ≤

≤ ε2a22(∥u0∥H3(R5,RN ) + 1)2Q2∥v1(x)− v2(x)∥2H3(R5,RN ). (2.10)

Inequalities (2.9) and (2.10) imply that the norm ∥u1 − u2∥H3(R5,RN ) has an upper
bound given by

ε(∥u0∥H3(R5,RN ) + 1)a
4
5
2

[5K2

4
4
5

a
2
5
1

(2π)4
|S5|

4
5 +Q2a

2
5
2

] 1
2∥v1 − v2∥H3(R5,RN ).

Therefore, the map Tg : Bρ → Bρ defined by system (1.12) is a strict contraction
for all values of ε > 0 sufficiently small. Its unique fixed point up(x) is the only
solution of system (1.10) in Bρ and the resulting u(x) ∈ H3(R5,RN) given by (1.9)
is a solution of the system of equations (1.2).
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3. Appendix

In the present article we used solvability conditions for linear elliptic problems in
Rd derived in [21]. Let us state them below for the convenience of the readers. We
study the existence of solutions of the linear problem

−∆ϕ− ωϕ = −h(x), ω ≥ 0 (3.1)

in the space H2(Rd), d ∈ N equipped with the standard norm

∥u∥2H2(Rd) := ∥u∥2L2(Rd) + ∥∆u∥2L2(Rd). (3.2)

The right side of (3.1) is assumed to be square integrable.
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Lemma 5. Let h(x) ∈ L2(R). The the following assertions hold:

a) When ω > 0 and xh(x) ∈ L1(R) problem (3.1) admits a unique solution in
H2(R) if and only if (

h(x),
e±i

√
ωx

√
2π

)
L2(R)

= 0. (3.3)

b) When ω = 0 and x2h(x) ∈ L1(R) problem (3.1) admits a unique solution in
H2(R) if and only if

(h(x), 1)L2(R) = 0, (h(x), x)L2(R) = 0. (3.4)

Lemma 6. Let h(x) ∈ L2(Rd), d ≥ 2. The the following assertions hold:

a) When ω > 0 and xh(x) ∈ L1(Rd) problem (3.1) admits a unique solution in
H2(Rd) if and only if(

h(x),
eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ Sd√
ω a.e., d ≥ 2. (3.5)

b) When ω = 0 and |x|2h(x) ∈ L1(R2) problem (3.1) admits a unique solution in
H2(R2) if and only if

(h(x), 1)L2(R2) = 0, (h(x), xk)L2(R2) = 0, 1 ≤ k ≤ 2. (3.6)

c) When ω = 0 and |x|h(x) ∈ L1(Rd), d = 3, 4 problem (3.1) admits a unique
solution in H2(Rd) if and only if

(h(x), 1)L2(Rd) = 0, d = 3, 4. (3.7)

d) When ω = 0 and |x|h(x) ∈ L1(Rd), d ≥ 5 problem (3.1) possesses a unique
solution in H2(Rd).

Lemma 7. Let ω = 0 and h(x) ∈ L1(Rd)∩L2(Rd) with d ≥ 5. Then problem (3.1)
admits a unique solution in H2(Rd).
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