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 Abstract. In this paper, particular cases of  an equation of motion in tension are being considered to which 

given conditions, characteristic of  the Newtonian, nonviscous and ideal fluid, can be applied. As a result, 

existence of the differential equations not featured in the reference was revealed. The hierarchical schema of 

the differential equations was formed, new trajectories of a deduction of known special cases and their 

solutions were found. It is shown that the Navier-Stokes equation is a special case of other more general 

equation of motion of the Newtonian fluid. 
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1. Introduction  

  

   The mathematical description of  fluid  flow is based on  the equation of motion in tension (Navier) which can 

be presented as [1, 2]: 
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where , ,xx yy zzp p p  - normal tensions, , ,yx zx yzτ τ τ   - the tangential tensions, , ,X Y Z - specific mass force, 

, ,x y zu u u  - velocity projections,  t - time. 

 The purpose of  the present paper is to receive equations of motion by means of  superimposition on (1.1) 

minimum numbers of certain conditions inherent for the Newtonian, nonviscous and ideal fluid.  

 

2. Equations and short analysis 

 

 Let us converse system (1.1) having separated normal tensions from tangents. As xx xp p= − , yy yp p= − , 

zz zp p= −  (where , ,x y zp p p −  are pressure projections).  
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  We will converse the first line of the equation (2.1) having substituted expressions (  grad uτ µ= ⋅ ) for the 

tangential tensions in the Newtonian fluid. 
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 Let us add a zero to derivatives in brackets having presented it in the form of two identical summands with 

different signs. 
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As a result, we will gain:  
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After similar transformations 
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or / (  ) 2i icurl u ω= ,  ω - angular velocity./  
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Characteristic property of system (2.3) is the consideration of impact of the vortex / (  )icurl u / and 

forward flow of  fluid, and also direct dependence of pressure on fluid element. 

From (2.3) by the data (  ) 0icurl u =  equations of motion for viscous irrotational flow follow. 

 
2 2

2

1 2x x xzp u duuX
x y x z dt

ν
ρ

 ∂ ∂ ∂
− + + = ∂ ∂ ∂ ∂ 

 

  
2 2

2

1 2y y yxp u duuY
y z x y dt

ν
ρ

 ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂ 

                                                (2.4) 

 
22

2

1 2 yz z zup u duZ
z x y z dt

ν
ρ

 ∂∂ ∂
− + + =  ∂ ∂ ∂ ∂ 

. 

 

By using cylindrical axis (r, z), it is possible to gain a special case of the equations (2.4) for a round pipe in a 

format like , 
2

2

1  
2

zd u grad p
dr µ

= ⋅  from which  Poiseuille equation   follows [1, 2]. 

 The system (2.3) has one more special case for a rotating vortex without translatory motion. By excepting the 

linear velocities in the left part, we will gain: 
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 The  approach studied allows to gain the equation of motion within the limits of model of nonviscous medium. 

Assumed that 0ν = ,  we will gain from (2.3) - (2.5). 
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From (2.6) it follows that pressure projections can differ in the absence of viscosity influence. This 

deduction contradicts the  common stand that x y zp p p≠ ≠  is possible  under impact of viscosities only [2]. 

 If we accept hydrostatic  pressure distribution law ( x y zp p p p= = = ) from (2.6), we will gain Euler's equation [2]. 

 From (2.1) it is possible to gain the Nave-Stokes’ equation, having used the several assumptions, one of which 

is possibility of the linear averaging of non-linear dependence ( , , , )p f x y z t=  [1, 2]. 

 Links between the  equations studied  can be presented in the form of the following plan (fig.1). 

 
Fig. 1. Conditions, equations and dependence  between them. 

 

3. Discussion 

 

3.1. In system (2.3), there are the summands characterising all kinds of flows of an incompressible fluid: 

translational and the vortex. It suggests that the given equations can be used for the turbulent flow description.  

3.2. Use of definition for irrotational flow has allowed to find a special case (2.3) and the  Poiseuille equation. It 

suggests that the system (2.4) might be used for laminar flow calculation.  
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3.3. The equation in the form of (2.1) is used at a deduction of the Nave-Stokes’ equation at two basic 

assumptions: 

3.3.1. Validly linear equation ( )1
3 x y zp p p p= + +  to determine medial pressure of non-linear 

function ( , , , )p f x y z t= [1, 2]. This standard assumption is carried out  at a small interval of averaging only and 

should be considered as approximate.0 

3.3.2. Pressure in a point changes  under the influence of viscosity only[1, 2]. This assumption will not be 

compatible with an equation of motion for a nonviscous fluid (2.5). 

Taking into account both assumptions, the Nave-Strokes equation should be considered as approximate for a 

laminar flow. 
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