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Abstract. We consider 1-D quasi-periodic Frenkel-Kontorova models
(describing, for example, deposition of materials in a quasi-periodic sub-
stratum).

We study the existence of equilibria whose frequency (i.e. the inverse
of the density of deposited material) is resonant with the frequencies of
the substratum.

We study perturbation theory for small potential. We show that there
are perturbative expansions to all orders for the quasi-periodic equilibria
with resonant frequencies. Under very general conditions, we show that
there are at least two such perturbative expansions for equilibria for small
values of the parameter.

We also develop a dynamical interpretation of the equilibria in these
quasi-periodic media. We show that the dynamical system has very un-
usual properties. Using these, we obtain results on the Lyapunov expo-
nents of the resonant quasi-periodic solutions.

In a companion paper, we develop a rather unusual KAM theory (re-
quiring new considerations) which establishes that the perturbative ex-
pansions converge when the perturbing potentials satisfy a one-dimensional
constraint.

Quasi-periodic Frenkel-Kontorova models, resonant frequencies, equi-
libria, quasicrystals, Lindstedt series, counterterms
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1. Introduction

The goal of this paper is to study resonant quasi-periodic solutions in
quasi-periodic Frenkel-Kontorova models.

These Frenkel-Kontorova models [FK39] are widely studied models of
phenomena in one-dimensional quasi-crystals. The main interpretation we
will use is the deposition of materials over a quasi-periodic substratum.
Other interpretations (planar dislocations in 3-D crystals, spin waves) are
also possible [Sel88, BK04, Sel92].

In Frenkel-Kontorova models, one considers configurations given by a
sequence of real numbers (think of the position of a sequence of particles
deposited on a 1-D quasi-crystal). The (formal) energy of the system is
the sum of a term of interaction between nearest neighbors of the deposited
material and a term modeling interaction with the media. In the quasi-
periodic Frenkel-Kontorova models studied here, the interacting potential
will be a quasi-periodic function of the position reflecting that the medium
is quasi-periodic. We will be interested in equilibria, i.e., in configurations
such that the derivatives of the (formal) energy with respect to the position
of each of the particles vanish. We note that even if the energy is a formal
sum, the equilibrium equations are well defined. More details of the models
will be discussed in Section 2.

In [SdlL12b, SdlL12a], one can find a rigorous mathematical theory of
quasi-periodic equilibria whose frequency is not resonant (indeed Diophan-
tine) with the frequencies of the substratum. The rigorous theory of [SdlL12b,
SdlL12a] also leads to efficient algorithms that can compute these quasi-
periodic solutions arbitrarily close to their breakdown. Implementations of
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these algorithms and investigation of the phenomena at breakdown appear
in [BdlL13a]. The paper [SdlL12b], studies models with nearest neighbor
interaction while [SdlL12a] studies the case of long range interactions. So
far, to the best of our knowledge, there are no numerical studies of equi-
libria in quasi-periodic media with long range interactions. In the peri-
odic case, numerical studies of long range interactions were conducted in
[CdlL09, CdlL10a].

The goal of this paper is to start developing the theory of quasi-periodic
equilibria whose frequency resonates with the frequencies of the medium.

In this paper, we use the name quasi-periodic equilibria to denote equilib-
ria that are given by a smooth hull function. See Section 2.2. Of course, it
could happen that the hull function becomes discontinuous as it has been
known in the periodic Frenkel-Kontorova models since [Per79, ALD83,
Mat82, Kat83]. When the hull function is discontinuous, the solutions are
called quasi-automorphic in the mathematical literature. In this paper, we
will not consider discontinuous hull functions.

We will study perturbative expansions for the solutions with a fixed fre-
quency (the physical meaning of the frequency is the mean spacing, i.e. the
inverse of the density). We establish the existence of Lindstedt series to
all orders for the solutions of the equilibrium equations. We note that the
Lindstedt series involves not only the hull function describing the equilib-
rium but it also involves counterterms. This is very common in perturbative
expansions in statistical mechanics [Gal85].

Roughly, the counterterms are constant fields we apply to stabilize the
equilibrium solution. Note however, that due to the resonance we obtain
one parameter family of solutions for the perturbative expansion. We obtain
a solution for each value of another number which has the physical meaning
of a transversal phase. The counterterm is thus a function of the transversal
phase.

In some applications, we may decide to apply the force to obtain a so-
lution with a prescribed force. More commonly, when the external force is
fixed, the system will have some equilibria (obtained by choosing the aver-
age phase) which are equilibria for the Frenkel-Kontorova model including
the applied external field. In Section 4.1 we discuss how to find the average
phase to match the applied external force. We will show that, under very
general circumstances, for each external force, sufficiently small, we can
find two average phases that match it to all orders in perturbation theory.
See Proposition 2.

In [SdlL12a], it was shown that non-resonant quasi-periodic solutions ex-
ist only when the average force applied to the material vanishes. In contrast,
we will show that, to all orders in perturbation theory, the quasi-periodic so-
lutions with a resonant frequency can exist for a range of external average
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forces. These resonant quasi-periodic solutions are, therefore, crucial to
understand “depinning” effects. We recall that the minimal force for which
there are no equilibria is called the “depinning force” (sometimes the de-
pinning force is called the minimal force for which there are no minimiz-
ing equilibria). The application of an external force (no matter how small)
makes it impossible to have any solution with non-resonant frequencies and
with a continuous hull function. Nevertheless, as we show in this paper, it is
possible to have quasi-periodic solutions with resonant frequencies. Hence,
there are still equilibria for positive external force. In the case of Frenkel-
Kontorova models, it was empirically studied that among the equilibrium
configurations that persist for external forces, solutions with resonant fre-
quencies are more “abundant”. The paper [FdlL15] contains quantitative
conjugacies. We think it would be interesting to study the depinning in
quasi-periodic model.

We also develop a dynamical interpretation of the equilibria in quasi-
periodic media. This is a rather elementary remark, which applies to all
equilibrium solutions in quasi-periodic media. We use it to discuss the pos-
sibility of phonon gaps, which dynamically correspond to Lyapunov expo-
nents [AMB92]. We find that these solutions do not have a phonon gap
– there are sliding modes – nevertheless, they can exist in the presence of
external fields.

In this paper, we will not consider the question of whether the pertur-
bative expansions developed here converge or not. In a companion paper
[ZSdlL14], we will develop a KAM theory for these methods. This KAM
theory is rather unusual, since it does not rely on the usual transformation
theory, but requires a technique based on factorization of some auxiliary
equations. It requires the use of an extra parameter. Of course, the tech-
niques used in [ZSdlL14] are rather different from those of this paper and
require hard analysis. We anticipate that the results of [ZSdlL14] show that
the Lindstedt series for quasi-periodic equilibria developed in this paper
converge when the potentials are chosen satisfying a constraint (in mathe-
matical terms, we choose the potentials in a codimension one manifold in
the space of potentials). We believe that this is not an artifact of the proof
and that one can get exponentially small phenomena. Similar phenomena
have been observed already in the study of lower dimensional tori in Hamil-
tonian mechanics, namely that the convergence of the perturbative expan-
sions is affected by “normal” denominators that do not appear in the term
by term solutions but which lead to exponentially small effects [JdlLZ99].
The existence of these exponentially small effects is not understood for our
models.

Equilibria in quasi-periodic media with a resonant frequency have been
investigated numerically in [vEFRJ99, vEFJ01, vEF02]. These papers also
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studied the phonon gap and found it to vanish when there are smooth solu-
tions (in agreement with the results here). From the mathematical point of
view, the existence of solutions of all frequencies in quasi-periodic media
was also considered using topological methods in [GGP06, AP10].

Variational methods, which have proved very useful and deep facts in the
periodic case (d = 1 in our notation), so far have not been developed for
quasi-periodic potentials. The extension of variational methods to quasi-
periodic media is not straightforward. Indeed in [LS03] there are coun-
terexamples to straightforward generalizations of the results from the peri-
odic case to the quasi-periodic case in models similar to ours (the discrete
derivative is an analogue of the second derivative). Examples which can be
interpreted as geodesic flows in quasi-periodic metrics in S2 can be found
in [Fed75]. Of course, the fact that some features of the d = 1 case do not
survive in the quasi-periodic case, does not exclude that other features do
survive. It is a very interesting problem to characterize which part of the
theory of minimizers goes through in the quasi-periodic case.

This paper is organized as follows:
In Section 2 we present the models we study and in Section 3 we present

the definition of spaces we consider and some preliminary standard results.
In Section 4 we present systematic perturbative expansions (Lindstedt

series) which we show can be defined to all orders for analytic systems.
We obtain series expansions in powers of the coupling parameter for the
hull function of the equilibria and for external forces that stabilize these
equilibria (counterterms). Since the problem is degenerate, these series will
include a free parameter that has the physical meaning of a transversal phase
and the solution and the counterterm are functions of this transversal phase.
For each value of the transversal phase, we obtain a series expansion of the
solution and the counterterm.

As is standard in perturbative expansions, to study the physical situation
when there is an external force being applied, we just need to choose the
transversal phase so that the counterterm matches the force applied. This
determines the transversal phase and, hence the solution.

We will show that, under very general nondegeneracy conditions, this
program can be carried out and that, when the external force is small, there
are two solutions in the sense of formal power series expansions. When
the external force reaches a critical value, there may be no solutions. This
critical value of the forces that lead to sliding can be computed perturba-
tively. Analogous problems in the periodic case have been considered in
[ALD83, QW15].

In Section 5, we present a dynamical interpretation of the equilibrium
equations. This allows to compare better the KAM theory developed here
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with the KAM theory for volume preserving systems and has some conse-
quences for the study of the phonon gap. We find that, in the dynamical
interpretation, the quasi-periodic solutions have always several zero Lya-
punov exponents.

We point out that for the dynamical interpretation, adding longer range
interactions is a singular perturbation (even the dimension of the phase
space changes!). Nevertheless, for the methods of the present paper, adding
a small non-local interaction is a regular perturbation. We hope to come
back to this problem.

In Section 5.2 we study the phonon gap and show it vanishes while the
solution remains smooth. Dynamically, this means that for the smooth solu-
tions there are always zero Lyapunov exponents. We point out however that
the dynamical systems we obtain has very unusual properties which have
the origin in that the system preserves an irrational foliation.

2. Models considered and formulation of the problem

We consider models of deposition in a quasi-periodic one-dimensional
medium. Other physical interpretations are possible.

If xn denotes the position of the n-th particle of the deposited material,
the state of the system is specified by the configuration ( i.e. the sequence
{xn}n∈Z). We can associate the following formal energy to a configuration of
the system

(1) S (x) =
1
2

∑
n∈Z

(xn+1 − xn − a)2 − V(xnα) − λxn

where V : Td → R is an analytic function, α ∈ Rd is an irrational vector and
a, λ are some real numbers.

The term (xn+1 − xn − a)2 represents the interaction among neighboring
deposited atoms. The term V(xnα) represents the interaction with the sub-
stratum. The term λxn has the interpretation of a constant field applied to the
model. In the case of deposited materials, we can imagine that the sample
is tilted and λ is the component of the gravity.

The existence of external forces λ is a very important novelty with re-
spect to the previous papers [SdlL12b, SdlL12a]. In these papers, the only
possible λ was zero. In [SdlL12b, SdlL12a] there is a simple argument that
shows that if there is non-resonant quasi-periodic solution, then λ = 0. In
our case, we will show how to construct quasi-periodic equilibria with non-
trivial λ and will show how to compute perturbatively the range of such λ
for which solutions with a prescribed frequency exist. This corresponds to
the physical phenomenon of pinning which is the microscopic explanation
of static friction.
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The fact that the interaction at position y ∈ R is the quasi-periodic func-
tion V(yα) models that the substratum is quasi-periodic.

Without any loss of generality, we can assume that

(2) k · α < N ∀ k ∈ Zd − {0}.

If there existed a resonance k · α = 0, we could just use less frequencies to
express the quasi-periodic function.

2.1. Equilibrium equations. A configuration is in equilibrium if the forces
acting on all the particles vanish. Equivalently, the derivatives of the energy
with respect to the position of the particles vanish. That is,

∂S

∂xn
(x) = 0 ∀ n ∈ Z.

In the model (1), the equilibrium equations are

(3) xn+1 + xn−1 − 2xn + ∂αV(xnα) + λ = 0 ∀ n ∈ Z

where ∂α = α · ∇ and ∇ is the usual gradient.
Note that even if the energy (1) is just a formal sum, the equilibrium

equations (3) are well defined equations.
It is very tempting to consider (3) as a dynamical system, so that we

obtain xn+1 as a function of xn and xn−1. This system has very unusual prop-
erties. This will be pursued in Section 5. Note however that the intention of
a dynamical system is very different from the minimization of energy. Ini-
tial conditions picked at random tend not to be minimizing and minimizers
tend to occupy small measure in phase space.

2.2. Quasi-periodic configurations, hull functions. In this paper, we will
be interested in quasi-periodic solutions of frequency ω ∈ R.

These are configurations of the form

(4) xn = nω + h(nωα),

where h : Td → R.
A configuration given by a hull function (4) satisfies the equilibrium

equation (3) if and only if the hull function h satisfies

(5) h(nωα+ωα)+h(nωα−ωα)−2h(nωα)+∂αV(nωα+αh(nωα))+λ = 0.

The equation (5) was considered in [SdlL12b, SdlL12a] when ωα is Dio-
phantine (in particular, nωα is dense in the torus Td). In that case, one can
transform the equation (5) into an equation where nωα is replaced by a con-
tinuous variable θ ∈ Td. The treatment of [SdlL12b, SdlL12a] was based on
the study of the continuous equation.
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In our case, nωα will not be dense on the d-dimensional torus (see Sec-
tion 2.3) and the equilibrium equations we will derive are somewhat dif-
ferent. See Section 2.4, in particular (9), for a precise formulation of these
equilibrium equations.

2.3. Resonances. The goal of this paper is to study situations when ω is
such that there are k ∈ Zd − {0} and m ∈ Z such that

(6) k · ωα − m = 0.

When (6) holds we say that (k,m) is a discrete resonance for ωα and we
refer to the pair (k,m) as a resonance.

Remark 1. Note that these discrete resonances (6) are different from the
resonances of the media we excluded before (k · α , 0, ∀ k ∈ Zd − {0}).

Remark 2. If
k · α , 0 ∀ k ∈ Zd \ {0},

given any k0 ∈ Z
d \ {0}, m ∈ Z we have that ω = −m/(k0 · α) is a resonant

frequency. Since k0·α can be arbitrarily large, we see that the set of resonant
frequencies is dense on the real line. Of course, once we fix α, the set of
resonant ω is a countable set.

2.3.1. Multiplicity of a resonance. Clearly, if (k,m), (k̃, m̃) are discrete res-
onances so is (k + k̃,m + m̃).

In mathematical language,

Mωα =
{
(k,m) ∈ Zd × Z : k · ωα − m = 0

}
is a Z-module called the resonance module for ω.

We denote by l(ω) = dim(Mωα) the dimension of the resonance module
and we call it the multiplicity of the resonance. The meaning of l(ω) is
the number of independent resonances. We can find (k1,m1), . . . , (kl,ml) in
such a way that all resonances can be expressed as combinations of the basic
resonances (and also no other set of basic resonances with smaller number
of elements will allow to express all the resonances).

2.3.2. Only resonances of multiplicity 1 appear in the models (1). In Hamil-
tonian mechanics for systems with d degrees of freedom, one can find res-
onances of all multiplicities up to d. As we will see later, in Section 5, one
can give a dynamical interpretation of the equilibrium equations as a dy-
namical system in d + 1 dimension. Nevertheless, in our models only l = 1
appears independently of the number of degrees of freedom. This is, of
course, sort of obvious since the resonance condition is a one-dimensional
condition, but it highlights that the problem here is different from the Hamil-
tonian problem.
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Note that
k1 · ωα − m1 = k2 · ωα − m2 = 0

implies (because m1 , 0, m2 , 0 because of (2))

ω =
m1

k1 · α
=

m2

k2 · α

and therefore
α · (k1m2 − k2m1) = 0

and, because α is non-resonant (2) we have

k1m2 = k2m1.

Therefore, the two resonant vectors are related. �

2.3.3. The intrinsic frequencies. Hence, in the future we will only consider
l = 1 resonances. In this case we can find a matrix B ∈ S L(d,Z), Ω ∈ Rd−1,
L ∈ Zd in such a way that

(7) Bωα = (Ω, 0) + L with Ω · k̂ < Z for k̂ ∈ Zd−1 − {0}.

We will refer to Ω’s as the intrinsic frequencies. They are essentially
unique, i.e., unique up to changes of basis in Rd−1 given by a matrix in
S L(d − 1,Z).

In some future arguments we will assume that Ω is Diophantine in Rd−1

(see (15) in Section 2.7).
We remark that even if the Ω’s are not unique as indicated above, if one

of them satisfies (15), all of them satisfy a Diophantine condition (15) with
the same exponent τ (but may be different constants ν).

In some parts of the argument (notably the existence of Lindstedt series to
all orders or the existence of perturbative expansions) we can use some other
conditions weaker than the above Diophantine conditions. In particular, for
the existence of formal power series to all orders it suffices that (16) holds.

The following proposition shows that the sets of frequencies we are con-
sidering are abundant.

Fix a vector k ∈ Zd \ {0}, m ∈ Z. For any α ∈ Rd we can find a unique
ω such that α · kω − m = 0. Then, we can find the intrinsic frequencies Ω.
Hence, for any k,m we can define Ω = Fk,m(α).

Proposition 1. The set of α for which Fk,m(α) is Diophantine for all k,m is
of full measure in Rd.

Proof. Since countable intersections of sets of full measure are of full mea-
sure, to prove Proposition 1 it suffices to show that for a fixed k,m as above,
the set of α ∈ Rd for which Fk,m(α) is Diophantine is of full measure.

This is easy because the set of Ω which are Diophantine is full measure on
Rd−1. The map from αω to Fk,m is differentiable and surjective. Therefore
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the preimage of the set of Diophantine Ω is also of full measure in the
hyperplane Γ = {γ | γ · k −m = 0}. The corresponding α’s are just a scaling
of αω, which also form a full measure set in Rd. �

2.4. Quasi-periodic equilibria with resonant frequencies. The natural
notion of the hull functions in the resonant case would be to assume that the
equilibrium solutions have the form

(8) xn = nω + v(nΩ)

with v : Td−1 → R.
We use the notation Bθ = (ψ, η) where B ∈ S L(d,Z) is the matrix intro-

duced in (7) and ψ ∈ Td−1, η ∈ T1.
Note that the physical meaning of ω is still the mean spacing of the solu-

tions (i.e., an inverse density). The term v(nΩ) represents fluctuations that
can be parameterized in terms of the intrinsic frequency Ω. Of course, we
could represent them in terms of the original frequencies, but it is more
natural to change variables so that they become a part of the equation.

Note that each of the sets {nωα}n∈Z has a closure which is a d − 1 dimen-
sional torus. This torus is invariant under the translation Tωα. The torus
Td is foliated by these Td−1 indexed by another parameter η ∈ T1. We will
write a point in Td as (ψ, η) where ψ is the coordinate corresponding to the
position in Td−1. The coordinate η selects the d−1 torus we are considering.

We will refer to the η variable as the transversal phase. Note that the res-
onant solutions considered here, cover densely a torus of codimension one.
The one-dimensional variable ηmeasures the position of these codimension-
one tori on the configuration space Td corresponding to the internal phases
of V .

Since the equilibrium equations in the integrable case conserve the transver-
sal phase (this is not the case on the full equations!), we see that it will be
a slow variable. In the perturbative expansions, it will be a free parameter.
For each value of η we will find a perturbative expansion for the hull func-
tion and for the counterterm. In physical applications, we will choose the
transversal phase so that the counterterm λ matches the physical values of
the applied external force.

If we substitute the parameterization (8) into the equilibrium equation,
we obtain that the equilibrium equation (3) is equivalent to:

(9) v(nΩ + Ω) + v(nΩ −Ω) − 2v(nΩ) + ∂αV(nωα + αv(nΩ)) + λ = 0.

If we furthermore introduce the notation ∂αV(θ) = W(Bθ) and Bα = β,
and observe that the nΩ is dense on Td−1, we see that (9) for continuous
functions v is equivalent to:

(10) v(ψ + Ω) + v(ψ −Ω) − 2v(ψ) + W((ψ, η) + βv(ψ)) + λ = 0.
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We note that, in the subsequent treatment, we will not use the fact that W
has the form W = ∂αV .

The functional equation (10) is the centerpiece of our analysis.

Remark 3. It will be important to mention that, because β has components
both in the ψ and the η directions, the equation (10) cannot be considered
as a parameterized version of the equations considered in [SdlL12b]. As
we will see, the symmetries of the equation involve transformations that mix
the dependence in ψ and in η.

2.5. The symmetries of the invariance equation (10). The equation (10)
possesses remarkable symmetries that make the solutions not unique. These
symmetries lead to Ward identities. In contrast with the case of non-resonant
solutions, the group of symmetries is infinite dimensional. In [dlL08, SdlL12b,
SdlL12a] these symmetries are used to develop a KAM method. In the
companion paper [ZSdlL14], we will see that in the present case, the Ward
identities do not lead to a KAM method.

The main observation is that if (v, λ) is a solution of (10), then, for every
ι(η) : T1 → R, the pair (ṽ, λ̃) is also a solution of (10) where we denote
β = (βψ, βη) and ṽ, λ̃ are defined by:

ṽ(ψ, η) = v
(
(ψ, η) + ι(η)β

)
+ ι(η),

λ̃(η) = λ
(
η + ι(η)βη

)
.

(11)

Notice that the symmetry (11) involves changing not only the argument
ψ but also the argument η. The subsequent arguments will use very much
(11). Note also that in this case, the space of symmetries of the equation is
not just a finite dimensional space but rather an infinite dimensional space
of functions.

2.6. A normalization of the solutions of the invariance equation (10).
Since for later applications, it will be useful to have local uniqueness of
the solutions (e.g. to discuss smooth dependence on parameters, perturba-
tive expansions on parameters), we indicate that it is natural to impose the
normalization

(12)
∫
Td−1

v(ψ, η) dψ = 0.

Since the symmetry (11) involves changes of arguments, giving a vη, find-
ing the ι(η) that accomplishes the normalization is not trivial and involves
solving the implicit equation

(13) I(η + βηι(η)) + ι(η) = 0

where I(η) ≡
∫
Td−1 v(ψ, η) dψ.
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Applying the finite dimensional implicit function theorem, we can solve
(13) if I is small and its derivative is also small. In contrast, in the non-
resonant case, the normalization of the function considered in [SdlL12b]
could always be solved explicitly.

Actually, we will prove in a companion paper [ZSdlL14] that the solu-
tions of (10) that satisfy the normalization (12) will be locally unique.

2.7. Diophantine condition. We will assume that α ∈ Rd is non-resonant,
in the sense that

(14) α · k , 0 ∀ k ∈ Zd − {0}.

We are interested in the frequency ω ∈ R such that (6) holds.
Then, we can find a matrix B ∈ S L(d,Z) as in (7) in such a way that Ω

satisfies Diophantine condition in Rd−1:

(15) |k̂ ·Ω − m| ≥ ν|k̂|−τ ∀ k̂ ∈ Zd−1 − {0}, m ∈ Z.

Here ν, τ are positive numbers and we denote such set of Ω by D(ν, τ). We
also denote D(τ) = ∪ν>0D(ν, τ).

In contrast with KAM theory, we will not need very delicate estimates on
the solutions and hence, we can deal with very general Diophantine condi-
tions. We will assume that Ω satisfies

(16) lim
N→∞

1
N

sup
|k̂|≤N,m∈Z

∣∣∣∣∣ ln |k̂ ·Ω − m|
∣∣∣∣∣ = 0.

Note that the condition (16) is much weaker than the usual Diophantine con-
ditions and even than the Bjruno-Rüssmann conditions. The condition(16)
is the natural condition in the study of existence of series to all orders.

3. Function spaces and linear estimates

The main tool that we will use to construct perturbation theories is the
solution of cohomology equations.

We denote
Dρ = {θ ∈ Cd/Zd | |Im(θi)| < ρ}

and denote the Fourier expansion of a periodic mapping v(ψ, η) on Dρ by

v(ψ, η) =
∑
k∈Zd

vke2πik·(ψ,η),

where · is the Euclidean scalar product in Cd and vk are the Fourier coeffi-
cients.
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We denote by Aρ the Banach space of analytic functions on Dρ which
are real for real argument and extend continuously to Dρ. We make Aρ a
Banach space by endowing it with the supremum norm:

‖v‖ρ = sup
(ψ,η)∈Dρ

|v(ψ, η)|.

These Banach spaces of analytic functions are the same spaces as in
[Mos67].

3.0.1. Cohomology equations. We will consider equations of the form

(17) v(ψ + Ω, η) − v(ψ, η) = φ(ψ, η),

where ψ ∈ Td−1.
To simplify our notations, we will denote v(ψ + Ω) and v(ψ − Ω) as v+

and v−, respectively. Similar notations will be used for other functions. We
also use T to represent the translation operators, i.e., TΩv(ψ) = v(ψ + Ω).

Lemma 1. Let φ ∈ Aρ(Td) be such that

(18)
∫
Td−1

φ(ψ, η)dψ = 0,

for all η.
Assume that Ω satisfies the assumption (16).
Then, for a fixed η, there exists a unique solution vη of (17) which satisfies

(19)
∫
Td−1

v(ψ, η)dψ = 0.

The solution v ∈ Aρ′ for any ρ′ < ρ and we have

||v||ρ′ ≤ C(d, τ)ν−1(ρ − ρ′)−τ||φη||ρ.

Furthermore, any distribution solution of (17) differs from the solution
claimed before by a constant.

If φ is such that it takes real values for real arguments, so does v.
If we consider now the dependence in η, we have that v ∈ Aρ′(Td) and

||v||ρ′ ≤ C(ρ, ρ′)||φ||ρ.

We note that, as it is well known that obtaining v solving (17) for given φ
is very explicit in terms of Fourier coefficients. If

φ(ψ, η) =
∑
k,0

φ̂k(η)e2πik·ψ =
∑

k,0,m

φ̂k,me2πi(k·ψ+mη)

then, v is given by

v(ψ, η) =
∑
k,0

φ̂k(η)(e2πik·Ω − 1)−1e2πik·ψ =
∑

k,0,m

φ̂k,m(e2πik·Ω − 1)−1e2πi(k·ψ+mη).
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Using Cauchy estimates for the Fourier coefficients |φ̂k,m| ≤ exp(−2πρ(|k| +
|m|))||φ||ρ and that |e2πk·Ω − 1|−1 ≤ Cdist(k · Ω,Z)−1 and the assumption (16),
we obtain that

||v||ρ′ ≤ C
∑

k,0,m

exp(−2πρ(|k| + |m|))||φ||ρdist(k ·Ω,Z)−1||e2πi(k·ψ+mη)||ρ′

= C
∑

k,0,m

exp(−2πρ(|k| + |m|))||φ||ρdist(k ·Ω,Z)−1 exp(2πρ′(|k| + |m|)).

In this paper, we will not pursue obtaining refined estimates for these solu-
tions. This will be done in [ZSdlL14]. �

4. Lindstedt series for quasi-periodic solutions with resonant
frequencies

The goal of this section is to study (10) perturbatively when the non-
linear term is small. Hence, we will write (10) with a small parameter ε

v(ψ + Ω, η) + v(ψ −Ω, η) − 2v(ψ, η) + εW((ψ, η) + βv(ψ, η)) + λ(η) = 0.
(20)

We will find v(ψ, η), λ(η) solving (20) and (12) in the sense of formal
power series in ε. In this paper, we will not consider the problem of whether
these series converge or represent a function. This will be studied in more
details in [ZSdlL14].

Since one possible goal is to solve λ(η, ε) = 0 by implicit function theo-
rem, as indicated in Section 4.1, it will be important for us to keep track of
∂λ
∂η

(η, ε) as well.
Following the standard perturbative procedure we will write

v =

∞∑
n=0

εnvn,

λ =

∞∑
n=0

εnλn.

(21)

Here vn and λn are coefficients of εn, not powers of v or λ. Substitute (21)
in (20) and equate powers of ε.

Of course, carrying out this procedure for n ≤ N will require that Ω

satisfies some Diophantine properties as well as some differentiability as-
sumptions.

Equating the coefficients of ε0 in (20) we obtain

v0(ψ + Ω, η) + v0(ψ −Ω, η) − 2v0(ψ, η) + λ0(η) = 0.(22)

Hence, if Ω satisfies the Diophantine condition (15) we see that v0 is
constant, λ0 = 0 and imposing (12) we obtain v0 = 0.
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Matching coefficients of ε1 in both sides of (20) we obtain

v1(ψ + Ω, η) + v1(ψ −Ω, η) − 2v1(ψ, η) + W(ψ, η) + λ1(η) = 0.(23)

We see that, using the theory in Section 3.0.1, to have analytic v1 solving
(23), it is necessary and sufficient to have

λ1(η) = −

∫
Td−1

W(ψ, η)dψ.(24)

Then, v1, λ1 can be determined uniquely up to a constant from (23). In
fact, in Fourier series, the equation for v1, λ1 is

v1
k2(cos(2πkΩ) − 1) = −Wk − δ0,kλ

1,(25)

where δ0,k is the Kronecker delta. In particular, the constant in v1 is deter-
mined by the normalization (12).

Proceeding to higher order follows the same pattern. We see that match-
ing the terms of order εn in (20) we obtain

vn(ψ + Ω, η) + vn(ψ −Ω, η) − 2vn(ψ, η) + Rn(ψ, η) + λn(η) = 0,(26)

where Rn is a polynomial expression in v1, . . . , vn−1 with coefficients which
are derivatives with respect to ψ of W((ψ, η) + βv(ψ, η)). This polynomial
can be computed explicitly because it is given by

(27) RN =
1

(N − 1)!
dN−1

dεN−1 W
(
(ψ, η) + β

N−1∑
n=0

vn(ψ, η)
)∣∣∣∣∣
ε=0

and these are well known formulae. We also note that, from the algorith-
mic point of view there are efficient ways to compute RN using methods of
“automatic differentiation” [Har11, BCH+06].

We have therefore established

Lemma 2. Assume that Ω ∈ D(ν, τ) as defined in (15) and that W : Td → C
is an analytic function.

Then, we can find formal power series solutions in ε of the form (21)
solving the equation (20).

Each of the terms v j(ψ, η) is analytic in complex neighborhoods of the
torus.

If W takes real values for real values, then so do the v, λ.

4.1. The auxiliary equation. Now, we turn to the problem of studying the
equation

(28) λ(η, ε) = 0.

We expect to obtain a solution η∗(ε) provided that (28) satisfies some non-
degeneracy conditions.
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Having solution of (28) to order 1 in ε, amounts to

λ1(η) = 0.

That is, we need to find η such that

(29)
∫
Td−1

W((ψ, η) + βv(ψ, η))dψ = 0.

Proposition 2. The equation (29) has always two solutions.

Proof. Since∫
Td−1

W((ψ, η) + βv(ψ, η))dψ =

∫
Td−1

(∂αV)
(
B−1(ψ, η) + αv(ψ, η)

)
dψ,

if we integrate again with respect to η we obtain
(30)∫
T

∫
Td−1

W((ψ, η)+βv(ψ, η)dψ dη =

∫
Td

(∂αV)
(
B−1(ψ, η)+αv(ψ, η)

)
dψ dη = 0.

Hence the function of η given by
∫
Td−1 W((ψ, η) + βv(ψ, η)dψ is a contin-

uous periodic function of η with zero average. Therefore, it has at least two
zeros. We also note that there are open sets of perturbations where there are
4,6,· · · zeros. �

Denote one of these solutions of (29) as η∗.
A sufficient condition that ensures that we can solve the equation (28) to

all orders is that

(31)
∂

∂η
λ(η, ε)

∣∣∣η=η∗,ε=0 , 0.

More explicitly,

(32)
∫
Td

∂

∂η
(∂αV)

(
B−1(ψ, η) + αv(ψ, η)

)
dψ dη , 0.

Then, the implicit function theorem for power series [Car95, Die71] gives
us that we can indeed find η∗(ε).

Similarly, we can solve the equation λ(η) = λ∗ provided that |λ∗| is suffi-
ciently small.

Therefore, we have established

Lemma 3. Assume that Ω ∈ D(ν, τ) as defined in (16) , that W is an analytic
function, and that (32) holds, we can find formal power series ηε in ε so that
vηε is the solution of (20).

Clearly, since the function λn(η) are bounded, if λ∗ – the physical force
– is large enough, there is no solution. This has a clear physical meaning.
If we increase the external force but keep it small, the system can react
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by changing the transversal phase. If the force increases beyond a thresh-
old, the system cannot react by adapting the phase. Hence, the equilibrium
breaks down. In this paper, we are not considering the dynamics of the
model, only the equilibria (our models for the energy include only the po-
tential energy of the configuration and not any kinetic energy). One can,
however, expect that, if there was some dynamics, the equilibria considered
here could slide.

Of course, the sufficient condition (32) is far from being necessary and
there are many other conditions that are enough.

Lemma 4. Assume that Ω ∈ D(ν, τ) as defined in (15) , that W((ψ, η) +

βv(ψ, η)) is an analytic function, and that (32) holds.
Assume that η∗ is such that for some m ∈ N we have

λi(η∗) = 0, i = 1, . . . 2m

λ2m+1(η∗) , 0.
(33)

Then, we can find formal power series ηε in ε so that v(ψ, ηε) is the solu-
tion of (20).

5. A dynamical interpretation of the equilibrium equations of
Frenkel-Kontorova models

In this section, we present a dynamical interpretation of the equilibrium
equations (3) in Frenkel-Kontorova models.

This interpretation suggests several conjectures and methods of explo-
ration. Nevertheless, we point out that the methods we have developed in
this paper work also when the interactions have infinite range [SdlL12a]
(see [dlL08, CdlL10b] for the periodic case). These infinite dimensional
cases do not admit any dynamical interpretation.

Even if the dynamical interpretation is possible for finite range inter-
actions, we see that adding another small interaction of longer range is
a singular perturbation (even the dimension of the phase space changes).
Whereas, for the methods in this paper, adding a small term in the longer
range is a regular perturbation of the same order.

A straightforward way of transforming (3) into a dynamical system is
setting

yn = (xn, xn−1)

yn+1 = (2y1
n − y2

n − ∂αV(αy1
n) − λ, y1

n).
(34)

However, (34) is not very useful because we have to consider it as a map
of R2 and the term ∂αV(αy1

n) does not make apparent that it is periodic in
αy1

n.



18 X. SU, L. ZHANG, AND R. DE LA LLAVE

A more natural formulation is obtained by observing that the equation (3)
is equivalent to the system on Td × R

pn+1 = pn − ∂αV(qn) − λ
qn+1 = qn + αpn+1,

(35)

where qn ∈ T
d, pn ∈ R. (Just multiply (3) by α and use the substitution

pn = xn − xn−1, qn = αxn. Note that (3) is equivalent to

(xn+1 − xn) − (xn − xn−1) + ∂αV(αxn) + λ = 0

hence, we obtain the first equation.)
We will write the mapping (35) as

(36) (pn+1, qn+1) = Fε,λ(pn, qn).

Note that (35) is typographically very similar to the standard map [Chi79]
or to analogues introduced for volume preserving maps. Nevertheless, there
are significant differences (besides the different dimensions).

A very crucial difference between (36) and the generic volume preserving
maps is that qn+1 − qn is always a multiple of α (see (35)). So that the two
dimensional leaves

(37) Mq0 = {(p, qo + αt) | p, t ∈ R}

are preserved. Note that each of the leavesMq0 is dense in the d + 1 dimen-
sional phase space.

The mapping (35) clearly preserves the volume form dp ∧ dq1 ∧ . . . ∧ qd

since it is the composition of

pn+1 = pn − ∂αV(qn) − λ
qn+1 = qn

(38)

and
pn+1 = pn

qn+1 = qn + αpn+1.
(39)

We recall that, in our context, a volume preserving map is exact when
F∗(pdq1 ∧ dq2 ∧ . . . ∧ dqd) = pdq1 ∧ dq2 ∧ . . . ∧ dqd + dP where P is d − 1
form.

Indeed, (36) is an exact volume preserving map if and only if λ = 0, since
it is easy to observe that, when λ = 0, both (38) and (39) are exact. To show
that if λ , 0 then the mapping (36) is not exact is not very difficult and is
done in detail, e.g., in [FdlL15].

When ε = 0, λ = 0, the map (35) is integrable. That is, the codimension-
one tori given by p = cte. are invariant and the motion in them survives. We
call any codimension-one torus homotopic to these tori, a rotational torus.
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It is easy to show that if a volume preserving map preserves a rotational
torus then it is exact (see [BdlL13b]). (The converse, of course, is not true).
This small remark, reproduces for the models in (35) the results of Lemma
5 in [SdlL12b]. This is remarkable because Lemma 5 in [SdlL12b] has a
very different proof, which applies also to models with long range inter-
actions whose equilibrium equations cannot be transformed into a map of
the form (35). The existence of rotational tori with Diophantine frequen-
cies for mappings close to integrable has been established by KAM theory
[CS90a, CS90b, Xia92, Yoc92] for general volume preserving maps.

Nevertheless, the KAM theory developed in [SdlL12b] is very different
from the KAM theory for general volume preserving maps. For volume
preserving maps of general form, one does not expect the persistence of
d-dimensional tori with a fixed frequency under general volume preserving
perturbations, and so one needs to adjust parameters. In contrast, the papers
[SdlL12b, SdlL12a] do not need to adjust parameters. This can be explained
by observing that the constraints (37), make the mappings (35) very non-
generic.

Similarly, the results of this paper (preservations of tori without any nor-
mal hyperbolicity) are not to be expected in the generic volume preserving
case without adjustment of more parameters.

5.1. On the global geometry of the constraints given by (37). Integrable
systems with constraints have been studied extensively in geometric me-
chanics. Nevertheless, the systems we consider here have some unusual
properties that we would like to highlight.

It is customary to classify the constraints in holonomic when the distri-
butions are integrable (in the sense that they foliate the phase space with
a smooth quotient) and non-holonomic when the distributions are not in-
tegrable and they violate the hypothesis of Frobenius Theorem [Sou97,
Aud08, Hol11].

The constraints (37) escape this dichotomy. They are locally integrable
(they do satisfy the hypothesis of Frobenius Theorem and are locally given
by invariant manifolds that give rise to a foliation) but nevertheless, the
manifolds are dense, so that they do not give a nice quotient manifold.

Hence, even if we have holonomic constraints locally (and the infinites-
imal results about holonomic systems are applicable), some global aspects
such as symplectic reduction [Mey73, MW74, MW01] cannot be applied to
(35).

5.2. Lyapunov exponents and phonon localization. In this section we
study the so called phonon gap around the equilibria of (9) given by a hull
function.
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Let us start by recalling some standard definitions. The main idea is that
sound waves are defined by the propagation of infinitesimal disturbances
around an equilibrium equation.

If we linearize around an equilibrium solution x = {xn}n∈Z, we obtain the
dynamics of the infinitesimal perturbations ξn is given by

(40) ξ̈n = ξn+1 + ξn−1 − 2ξn + (∂α)2V(αxn)ξn ≡ (Lxξ)n.

It is clear that the propagation properties of sound waves will be affected
by the spectral properties of the operator Lx.

Note that the operator L is a one-dimensional Schrödinger operator with
a position dependent potential. The dependence will be given by the dy-
namics of the xn. In particular, for the solutions given by a hull function,
we will be considering quasi-periodic potentials.

The mathematical theory of the spectrum of quasi-periodic Schrödinger
operators is well developed [PF92, dlLH10]. In particular, it is known that
the spectrum is independent of the `p space in which it is considered, and,
more important for us, that the spectrum can be characterized by the ex-
istence of approximate eigenfunctions. In the dynamical interpretation in
this section, the spectrum corresponds to the Lyapunov exponents of the
solution [AMB92].

In the case of (35), we can study the Lyapunov spectra for any orbit using
the geometric constraints (37).

Proposition 3. Let xn be an orbit of the mapping given by (35). Assume
that Osledets Theorem applies to it. Then, d − 1 Lyapunov exponents are
zero. Also, the sum of all the Lyapunov exponents is zero.

Proof. Consider F̃, the lift of the map F in (36).
Let s be a vector perpendicular to α. It is a simple computation to show

that:
F̃(M̃q0+s) = M̃q0 + s.

Then it is clear that the d − 1 vectors in the directions perpendicular to s
do not grow.

The fact that the sum of the Lyapunov exponents for orbits of a volume
preserving map is zero is well known since the sums of the Lyapunov ex-
ponents is the rate of growth of the determinant of iterates of the map. �
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