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Abstract. This paper is a progress report on the foundations for the canonical proper-time
approach to relativistic quantum theory. We first review the the standard square-root equation
of relativistic quantum theory, followed by a review of the Dirac equation, providing new insights
into the physical properties of both. We then introduce the canonical proper-time theory. For
completeness, we give a brief outline of the canonical proper-time approach to electrodynamics
and mechanics, and then introduce the canonical proper-time approach to relativistic quantum
theory. This theory leads to three new relativistic wave equations. In each case, the canonical
generator of proper-time translations is strictly positive definite, so that it represents a particle.
We show that the canonical proper-time extension of the Dirac equation for Hydrogen gives
results that are consistently closer to the experimental data, when compared to the Dirac
equation. However, these results are not sufficient to account for either the Lamb shift or the
anomalous magnetic moment.

Introduction

Following Dirac’s quantization of the electromagnetic field in 1927, and his relativistic electron
theory in 1928, the equations for quantum electrodynamics QED were developed by Heisenberg
and Pauli in the years 1929-30. From the beginning, when researchers attempted to use the
straightforward and physically intuitive time-dependent perturbation expansion to compute
physical observables, a number of divergent expressions appeared. Although it was known
that the same problems also existed in classical electrodynamics, Dirac had shown that, in this
case, one could account for the problem of radiation reaction without directly dealing with
the self-energy divergence by using both advanced and retarded fields and a particular limiting
procedure. Early attempts to develop subtraction procedures for the divergent expressions were
very discouraging because they depended on both the gauge and the Lorentz frame, making
them appear ambiguous. These problems were solved via the fundamental work of Feynman,
Schwinger, and Tomonaga. In recent times, it is generally agreed that quantum electrodynamics
(QED) is an almost perfect theory, which is in excellent agreement with experiment.

The fact that QED is very successful is without doubt. However, there are still some
foundational and technical issues, which require clarification and which leaves the thoughtful
student with a sense of unease in taking this as the final answer. In light of the tremendous



historical success of eigenvalue analysis in physics and engineering, it is not inappropriate
to reinvestigate the foundations with an eye towards clearly identifying the physical and
mathematical limitations to our understanding of the hydrogen spectrum as an eigenvalue
problem.

In the first section of this review we take a new look at the square-root operator and show
that it has an analytic representation as a nonlocal composite of three singularities. The particle
component has two negative parts and one (hard core) positive part, while the antiparticle
component has two positive parts and one (hard core) negative part. This effect is confined
within a Compton wavelength such that, at the point of singularity, they cancel each other
providing a finite result. Furthermore, the operator looks like the identity outside a Compton
wavelength.

In the second section, we provide an analytic diagonalization of the Dirac operator. Our
approach leads to a complete split of the particle and antiparticle parts into two non-hermitian
components, which are mapped into each other by the charge conjugation transformation. Thus,
the full matrix-valued operator is hermitian and shows (as is explained in the text) that the
spinor representation in the Dirac equation hides its time nonlocal property. We conclude that
the Dirac and square-root operator do not represent the same physics, despite that fact that
they are related by a unitary transformation.

In the third section, we introduce the canonical proper-time approach to electrodynamics and
mechanics. This approach fixes the proper-time of the observed system as the clock of choice for
all observers and explicitly shows that the question of simultaneity is actually a question of clock
conventions. The change in convention produces a new symmetry group which is distinct from,
but closely related to the Lorentz group, but has a Euclidean representation space. Thus, the new
convention also replaces the standard form of Lorentz covariance by a new one. This advantage
allows us to construct a parallel image of the conventional Maxwell theory for a charged particle,
which is mathematically, but not physically, equivalent to the conventional form. The new wave
equation contains a gauge independent term, which appears instantaneously along the direction
of motion, but opposing any applied force and is zero otherwise. This is the near field (i.e., the
field at the site of the charged particle). This shows that the origin of radiation reaction is not
the action of a charge on itself but arises from inertial resistance to changes in motion. We show
that the dissipative term is equivalent to an effective mass so that classical radiation has both
a massless and a massive part. We also discuss solutions to a number of other problems that
are solved with our new clock convention, which are either impossible or problematic within the
standard framework.

In the forth section, we describe the canonical quantized proper-time theory. We obtain three
possible relativistic wave equations, because of new possibilities, for the manner in which the
potential energy may be introduced into the theory. Each new equation is generated by a strictly
positive definite canonical Hamiltonian, so that it represents a consistent particle. We focus on
the proper-time extension of the Dirac equation. A basic test of our proper-time theory is the
extent that it compares to the Dirac theory in accounting for the hydrogen spectra. We show
that our canonical proper-time version of the Dirac equation gives results which are consistently
closer to the experimental data, when compared to the Dirac equation. The present theory
has not yet accounted for the Lamb shift or the anomalous magnetic moment. However, the
analysis in sections one, two and three support our contention that the electron is not a point
particle. This non-point nature is only expected to be important in s-states, where there is a
finite probability of the electron being at the center of the proton. This aspect of our research
is still in progress and will be reported on at a later time.



1. The square-root equation
In the transition to relativistic mechanics, the equation E2 = c2p2 +m2c4 leads to the quantum
Hamiltonian

H =
√
c2p2 +m2c4.

Thus, it is quite natural to expect that the first choice for a relativistic wave equation would be:

i~
∂ψ

∂t
=

[√
c2[p− (e/c)A]2 +m2c4 + V

]
ψ,

where p = −i~∇. However, no one knew how to directly relate this equation to physically
important problems. Furthermore, this equation is nonlocal, meaning, in the terminology of the
times (1920-30), that it is represented by a power series in the momentum operator. One was
led in this way to the Gordon-Klein and Dirac equations.

1.1. Background
Since the early work, many investigators have studied the square-root equation. It is not our
intention to provide a detailed history or to identify the many important contributors to the
study of this problem. In recent times, the works of Silenko (see [1], [2]) are well worth reading.
They also provide a very good list of the important historical studies. In addition, he has made
a number of interesting investigations into the transformational relationship between the square-
root and Dirac equation ([3] is a good starting point). The recent paper by Simulik and Krivsky
[4] offers another interesting approach to the square-root equation and its relationship to that
of Dirac. Closer to our investigation of the square-root equation is the study by Kowalski and
Rembieliński [5] (also known as the Salpeter equation). They have used it as an alternative of
the Klein-Gordon equation.

In this section, we take a new look at the square-root equation. First, we investigate the extent
that the non-commutativity of p and A affect our ability to give an unambiguous meaning to
the square-root operator. We show that a unique analytic representation is well defined for
suitable time-independent A provided we can solve a corresponding equation of the Schrödinger
type. We then investigate a few simple cases of solvable models in order to get a feeling for the
physical interpretation of this operator.

To begin, we start with the equation:

S[ψ] = Hsψ =

{
β

√
c2
(
p− e

cA
)2 − e~cΣ ·B +m2c4

}
ψ. (1.1)

Where β and Σ are the Dirac matrices

β =

[
I 0
0 −I

]
, Σ =

[
σ 0
0 σ

]
;

I and σ are the identity and Pauli matrices respectively. Under physically reasonable
mathematical conditions, the following operator is a well defined self-adjoint generator of a
strongly continuous unitary group:

H2
s = c2[p− (e/c)A]2 − e~cΣ ·B +m2c4.

From the basic theory of fractional powers of closed linear operators, it can be shown that√
H2
s =

(√
H2
s

)−1
H2
s = H2

s

(√
H2
s

)−1
. (1.2)



In order to construct an analytic representation for equation (1.1), we assume that B is constant.

The general case can be found in [6]. Let G = −c2
(
p− e

cA
)2

and ω2 = m2c4 − e~cΣ · B, so
that ω is also constant. Using this notation, we can write (1.1) as

S[ψ] =
{
β
√
−G + ω2

}
ψ.

Using the analytic theory of fractional powers of closed linear operators and equation (1.2), we
can represent S[ψ] as

S[ψ] =
β

π

∫ ∞
0

[
(λ+ ω2)−G

]−1
(−G + ω2)

dλ√
λ

[ψ], (1.3)

where
[
(λ+ ω2)−G

]−1
is the resolvent associated with the operator −G + ω2. The resolvent

can be computed directly if we can find the fundamental solution to the equation:

∂Q(x,y; t)/∂t+ (G− ω2)Q(x,y; t) = δ(x− y).

Schulman [7] has shown that the solution to the above equation is

Q =

∫ x(t)

x(0)
D[x(s)] exp

{∫ t

0
V [x(s)]ds+ ie

~c

∫ x

y
A[x(s)] · dx(s)

}
where V = c2ω2/i~ and∫ x(t)=x

x(0)=y
D[x(s)] =

∫ x(t)=x

x(0)=y
D[x(s)] exp

{
−1

4

∫ t

0

∣∣∣∣dx(s)

ds

∣∣∣∣2ds
}

= lim
N→∞

[
1

4πεN

]nN/2
∫Rn

N∏
k=1

dxj exp

−
N∑
j=1

[
1

4εN
(xj −xj−1)2

] ,

and eN = t/N . A rigorous justification for the path integral can be found in Gill and Zachary
[8]. We assume that

∫ x
y A[x(s)] · dx(s) = Ā · (x − y), where Ā is the mean value of A. Using

this, we have:

[
(λ+ ω2)−G

]−1
f(x) =

∫ ∞
0

e−λt
[∫

R3

Q(x, t; y, 0)f(y)dy

]
dt

and [
(λ+ ω2)−G

]−1
f(x)

=

∫
R3

e

{
ie
~c Ā·(x−y)

}{∫ ∞
0

exp
[
− (x−y)2

4t − ω2t
~2 − λt

]
dt

(4πt)3/2

}
f(y)dy

Using a table of Laplace transforms, the inner integral can be computed to get∫ ∞
0

exp

[
−(x− y)2

4t
− ω2t

~2
− λt

]
dt

(4πt)3/2

=
1

4π

exp
[
−
√

(λ+ µ2) ‖x− y‖
]

‖x− y‖



where µ2 = ω2/~2. Equation (1.3) now becomes

S[ψ](x)

= cβ
4π2

∫ ∞
0

{∫
R3

e

{
ie
~c Ā·(x−y)

}
e
−
[√

(λ+µ2)‖x−y‖
]

(−G+ω2)
‖x−y‖ ψ(y)dy

}
dλ√
λ
.

Once again, we interchange the order of integration and perform the computations to get

∫ ∞
0

exp
[
−
√

(λ+ µ2) ‖x− y‖
]

‖x− y‖

 dλ√
λ

=
4µΓ(3

2)

π1/2

K1 [µ ‖x− y‖]
‖x− y‖

.

where K1[z] is the modified Bessel function of the third kind and first order. Thus, if we set,
a = e

~cA and ā = e
~cĀ we get

S[ψ](x) = cβ
2π2

∫
R3

e[iā·(x−y)]µK1 [µ ‖x− y‖]
‖x− y‖

(−G + ω2)ψ(y)dy

= cβ
2π2 (−G + ω2)

∫
R3

e[iā·(x−y)]µK1 [µ ‖x− y‖]
‖x− y‖

ψ(y)dy.

(1.4)

Since ∇ · a = 0, we have

−G + ω2 = ~2
(
−∆ + 2ia · ∇+ a2 + µ2

)
,

so that so that (1.4) becomes

S[ψ](x) = ~2cβ
2π2

(
−∆ + 2ia · ∇+ a2 + µ2

) ∫
R3

eiā·(x−y) µK1[µ‖x−y‖]
‖x−y‖ ψ(y)dy.

The operator
(
−∆ + 2ia · ∇+ a2 + µ2

)
acts on x, making the integral singular. However, this

singular representation constructed below, equation (1.5) has many of the properties observed
in experiments. As will be seen, it represents the confinement of three singularities within a
Compton wavelength. (A full discussion is delayed to the end of this section.)

We omit many of the computational details, which can be found in [9], but the idea is to
consider a ball Bρ(x) of radius ρ about x, so that R3 = R3

ρ ∪ Bρ(x), where R3
ρ =

(
R3\Bρ(x)

)
and ∂R3

ρ =
(
∂R3\∂Bρ(x)

)
. We then restrict all operations to R3

ρ and only let ρ→ 0 at the end.

1.2. Free Case
The free particle case is the simplest (but still interesting), with A = 0, so that

S[ψ](x)

= −µ2~2cβ
π2

∫
R3

[
1

‖x−y‖ − 4πδ (x− y)
]{

K0[µ‖x−y‖ ]
‖x−y‖ + 2K1[µ‖x−y‖ ]

µ ‖x−y‖2

}
ψ(y)dy. (1.5)

If x 6= y, the effective kernel of equation (1.5) is

K0 [µ ‖x− y‖]
‖x− y‖2

+
2K1 [µ ‖x− y‖]
µ‖x− y‖3

.

Recall that the integral of ‖x− y‖−2 over R3 is finite. In order to understand the physical
interpretation of equation (1.5), it will be helpful to review some properties of the modified



Bessel functions K0[u], u−
1
2K1/2[u] and u−1K1[u]. We follow Gradshteyn and Ryzhik [10], for

0 < u� 1, we have that:
K1 [u]

u
= [1 + θ1(u)]u−2

K1/2 [u]

u1/2
=
√

π
2u
−1

K0 [u] = [1 + θ0(u)] lnu−1,

where θ0, θ1 → 0 as u → 0. We note that, up to a multiplicative constant, u−
1
2K1/2[u] is the

well-known Yukawa potential [11], conjectured in 1935 to account for the short range of the
nuclear interaction. From here, we see that, near u = 0, the singular term u−1K1[u] is twice as
strong as the Yukawa potential. The singular term K0[u] is actually integrable and so does not
contribute at u = 0. Looking at equation (1.5), we see that the singular term −8πK1(u)δ(u)
acts to cancel the the singular term u−1K1[u] at u = 0, so that the total integral is well defined.

The behavior of these functions is quite different, when u� 1. In this case, we have:

K1 [u]

u
=
[
1 + θ′1(u)

] exp {−u}
u3/2

K1/2 [u]

u1/2
=
√

π
2

exp {−u}
u

K0 [u] =
[
1 + θ′0(u)

] exp {−u}
u1/2

.

We see that each term has a exponential cutoff. However, now K0[u] has the longest range, while
u−1K1[u] has the shortest range. Furthermore, inspection shows that u−1K1[u] is multiplied by
the reduced Compton wavelength, which further shortens its range.

It is clear that our square-root operator represents an extended object with an effective extent
of about a Compton wavelength.

1.3. Constant A Case
When A 6= 0 is constant, ∇ ·A = 0 and B = ∇×A = 0, so that we get (ā = a):

S[ψ](x) =

−µ2~2cβ
π2

∫
R3

eia·(x−y)
[

1
‖x−y‖ − 4πδ (x− y)

]{
K0[µ‖x−y‖ ]
‖x−y‖ + 2K1[µ‖x−y‖ ]

µ ‖x−y‖2

}
ψ(y)dy.

1.4. The Constant Field Case
If B 6= 0 is constant, then A(z) = 1

2z×B. Let a(z) = e
2~cz×B and F = −a · (x− y). In this

case A(z) · dz = 0, so we can write the final result as:

S[ψ] = −~2µ2cβ
π2

{∫
R3

[
1

‖x−y‖ −
4πδ(x−y)

1+iF

]
[1 + iF ] K2[µ‖x−y‖]

‖x−y‖ ψ(y)dy
}

+ ~2µ2cβ
π2

∫
R3

a2 K1[µ‖x−y‖]
‖x−y‖ ψ(y)dy,

(1.6)

where

K2 [µ ‖x− y‖]
‖x− y‖

=
K0 [µ ‖x− y‖]
‖x− y‖

+
2K1 [µ ‖x− y‖]
µ‖x− y‖2

. (1.7)



From equations (1.6) and (1.7), we see that a constant magnetic field makes a real difference
compared to either the A = 0 or A 6= 0 cases, producing two extra terms, in addition to the free
particle term. The first new term is purely imaginary and singular at x = y (like the Yukawa
term). Physically, we interpret this term as representing particle absorption and emission (see
Mott and Massey [12]) . The second term is real, repulsive and nonsingular. In addition, the
effective mass µ is constant but matrix-valued with complex components, µ2 = m2c2

/
~2− e

~cΣ·B.
Since

Σ =

(
σ 0
0 σ

)
; σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

µ2 =

[
(m

2c2

~2 −
e
~cB3)I2

ie
~c(B2 − iB1)I2

−ie
~c (B2 − iB1)I2 (m

2c2

~2 + e
~cB3)I2

]
.

From known properties of Bessel functions for nonintegral ν, we can represent Kν [u] as

(2/π)Kν [u] =
I−ν(u)− Iν(u)

sinπν
=
ei/2(πν)J−ν(iu)− e−i/2(πν)Jν(iu)

sinπν
.

In the limit as ν approaches an integer, the above takes the indeterminate form 0/0 and is defined
via L’Hôpital’s rule. However, for our purposes, we assume that ν is close to an integer and
u = u1+iu2, u2 6= 0. In this case, Kν [u] acquires some of the oscillatory behavior of Jν [u]. Thus,
we can interpret equation (1.6) as representing a pulsating mass (extended object of variable

mass) with mean value ~/c ‖µ‖, where ‖µ‖ = [µ∗µ]1/2 and µ∗ is the Hermitian conjugate of µ,
with the square root being computed using elementary spectral theory. If B is very large, we
see that the effective mass can also be large. However, the operator still looks (almost) like the
identity outside a Compton wavelength.

In closing, we should say a few additional words about the interesting work of Kowalski and
Rembieliński [5]. They solve the Salpeter equation (β = I) and construct a number of examples.
This work represents an original contribution to our understanding of the square-root equation.
They approach the problem using the method of Fourier transforms and get the correct solution
for x 6= y. However, this approach misses the the x = y term, giving the impression that their
equation is not defined at that point. This minor defect can be easily fixed, by adding our
delta term, which makes their solutions well-defined for all x. More important, is to note that
replacing the indentity operator by the (general) β matrix provides a generalization of their
solutions for all spin-values.

1.5. Conclusions
From our analysis, we have the following conclusions concerning the square-root operator:

(i) In the simplest case, A = 0, the square-root operator has a representation as a nonlocal
composite of three singularities. The particle component has two negative parts and one
(hard core) positive part, while the antiparticle component has two positive parts and one
(hard core) negative part. This effect is confined within a Compton wavelength such that,
at the point of singularity, they cancel each other providing a finite result. Furthermore,
the operator looks like the identity outside a Compton wavelength. (Recall that the
experimental observation of three singularities in proton and neutron scattering experiments
led to the quark model.)

(ii) A constant magnetic field induces changes in both the mass and the shape of this extended
object. It also increases the number of singularities. This suggests that the square-root
operator represents a charge/mass density, for otherwise it could not be affected by a
constant magnetic field.



(iii) The square-root operator is not physically the same as the Dirac operator despite the fact
that they are related by a unitary transformation. (We will discuss this point further in the
next section.)

2. The Dirac Equation
The first successful attempt to resolve the question of how best to handle the square-root
equation was made by Dirac in 1926 [13]. Dirac noticed that the Pauli matrices could be

used to write c2p2 + m2c4 as
[
cα · p +mc2β

]2
. The matrix α is defined by α = (α1, α2, α3),

where

αi =

(
0 σi
σi 0

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Thus, Dirac [13] showed that an alternative representation of the square-root equation could be
taken as:

i~
∂Ψ

∂t
=
[
cα · p +mc2β

]
Ψ. (2.1)

In this case, Ψ must be viewed as a vector-valued function or spinor. To be more precise,
Ψ ∈ L2

(
R3,C4

)
= L2

(
R3
)
⊗ C4 is a four-component column vector Ψ = (ψ1, ψ2, ϕ1, ϕ2)t.

In this representation, ψ = (ψ1, ψ2)t represents the particle (positive energy) component, and
ϕ = (ϕ1, ϕ2) represents the antiparticle (negative energy) component of the theory (for details,
see Thaller [14]).

A fair understanding of the Dirac equation can only be claimed in recent times, and, as
pointed out by D. Finkelstein, “Dirac introduced a Lorentz-invariant Clifford algebra into the
complex algebra of observables of the electron”. (See, in particular, Biedenharn [15] or deVries
[16] and Hestenes [17].) Despite successes, both practical and theoretical, there still remain a
number of conceptual, interpretational, and technical misunderstandings about this equation. It
is generally believed that it is not possible to separate the particle and antiparticle components
directly without approximations (when interactions are present). The various approximations
found in the literature may have led to this belief. In addition, the historically important
algebraic approaches of Foldy-Wouthuysen [18], Pauli [19], and Feynman and Gell-Mann [20]
have no doubt further supported such ideas.

In this section we show that it is possible to directly separate the particle and antiparticle
components of the Dirac equation without approximations, even when scalar and vector
potentials of quite general character are present (see [9]). We show that the square root operator
cannot be considered physically equivalent to the Dirac operator from another point of view. In
addition, we offer another interpretation of the zitterbewegung and the fact that the expected
value of a velocity measurement of a Dirac particle at any instant of time is ±c.

2.1. Complete Separation
It turns out that a direct analytic separation is actually quite simple and provides additional
insight into the particle and antiparticle components. In order to see this, let A(x, t) and V (x)
be given vector and scalar potentials and, after adding V (x) and making the transformation
p→ π = p− e/cA, write (2.1) in two-component form as:

i~
∂ψ

∂t
= (V +mc2)ψ + c(σ · π)ϕ

i~
∂ϕ

∂t
= (V −mc2)ϕ+ c(σ · π)ψ.

(2.2)



We write the second equation as:[
∂

∂t
+ iB1

]
ϕ = −iDψ, B1 = 1

~(V −mc2) and D = 1
~c(σ · π).

In this form, we see that from an analytical point of view equation (2.2) is a first order
inhomogeneous partial differential equation. This equation can be solved via the Green’s function
method if we first solve [

∂

∂t
+ iB1

]
u(t) = δ(t).

It is easy to see that the solution to this equation is

u(t) = θ(t) exp{−iB1t}, θ(t) =

{
1, t > 0
0, t < 0

,

so that

ϕ(t) =

∫ t

−∞
c exp{−iB1(t− τ)} [(σ · π)/i~]ψ(τ)dτ.

It now follows via convolution that:

i~
∂ψ

∂t
= (V +mc2)ψ

+
[
c2(σ · π)

/
i~
] ∫ t

−∞
exp{−iB1(t− τ)}(σ · π)ψ(τ)dτ.

(2.3)

In a similar manner, we obtain the complete equation for ϕ:

~
∂ϕ

∂t
= (V −mc2)ϕ

+
[
c2(σ · π)

/
i~
] ∫ t

−∞
exp{−iB2(t− τ)}(σ · π)ϕ(τ)dτ,

(2.4)

where

v(t) = θ(t) exp{−iB2t}, θ(t) =

{
1, t > 0
0, t < 0

,

B2 = 1
~(V +mc2).

Thus, we have decomposed L2
(
R3,C4

)
as L2

(
R3,C4

)
= L2

(
R3,C2

)
⊕L2

(
R3,C2

)
. One copy

of L2
(
R3,C2

)
contains the particle (positive energy) wave component, while the other copy

contains the antiparticle (negative energy) wave component. Which of these copies corresponds
to the components ψ = (ψ1, ψ2)t and which to the components ϕ = (ϕ1, ϕ2)t depends, to some
extent, on the properties of the scalar potential V . It may have been noticed that equations
(2.3) and (2.4) are non-hermitian. It is shown in [9] that they are mapped into each other by the
charge conjugation operator, so that the full matrix representation is hermitian. An unsettled
issue is the definition of the appropriate inner product for the two subspaces, which will account
for the quantum constraint that the total probability integral is normalized. We can satisfy this
requirement if we set (ψ, χ) = ψ1χ̄1 + ψ2χ̄2, (ψ, χ)1 = (A1ψ, A1χ) and (ϕ, η)2 = (A2ϕ, A2η),
where A1ψ = cu(t) ∗ [(σ · π)/i~]ψ(t) and A2ϕ = cv(t) ∗ [(σ · π)/i~]ϕ(t). We can now define the
particle and antiparticle inner products by:

〈ψ , χ〉p =

∫
R3

[(ψ, χ) + (ψ, χ)1] dx

〈ϕ , η〉ap =

∫
R3

[(ϕ, η) + (ϕ, η)2] dx,

(2.5)



so that the normalized probability densities satisfy:

ρψ = |ψ|2 +

∣∣∣∣∫ t

−∞
c exp{−iB(t− τ)} [(σ · π)/i~]ψ(τ)dτ

∣∣∣∣2
ρϕ = |ϕ|2 +

∣∣∣∣∫ t

−∞
c exp{−iB′(t− τ)} [(σ · π)/i~]ϕ(τ)dτ

∣∣∣∣2.
(2.6)

2.1.1. Interpretations Writing the Dirac equation and the direct separation in two-component
matrix form, we have:

i~
∂

∂t

[
ψ
ϕ

]
=

[
(V +mc2) c(σ · π)
c(σ · π) (V −mc2)

] [
ψ
ϕ

]
and

i~
∂

∂t

[
ψ
ϕ

]
=


(V +mc2)

+
[
c2(σ · π)

/
i~
]

[u ∗ (σ · π)]
0

0
(V −mc2)

+
[
c2(σ · π)

/
i~
]

[v ∗ (σ · π)]


[
ψ
ϕ

]

We call the latter equation the analytic diagonalization of the Dirac equation because the wave
function has not changed.

The standard approach to the diagonalization of the Dirac equation (without an external
potential V ) is via the Foldy-Wouthuysen representation [18]. Assuming that A does not depend
on t, the following generalization can be found in deVries [16]:

i~
∂

∂t

[
Φ1

Φ2

]
=

[ √
c2π2 − ec~(Σ · B) +m2c4 0

0 −
√
c2π2 − ec~(Σ · B) +m2c4

] [
Φ1

Φ2

]
where

Σ =

(
σ 0
0 σ

)
.

In this case,
[

Φ1 Φ2

]t
= UFW

[
ψ ϕ

]t
and our square-root operator S = UFWHDU

−1
FW .

From equation (2.2), we conclude that the coupling of the particle and antiparticle wave
functions in the first-order form of the Dirac equation hides the second order nonlocal time
nature of the equation. We know that the square-root operator is nonlocal in space. Thus, the
implicit time nonlocality of the Dirac equation is mapped into the explicit spatial nonlocality
of the square-root equation by the Foldy-Wouthuysen transformation. This is a mathematical
relationship, which is not physically equivalent.

The time nonlocal behavior raises questions about the zitterbewegung. The physically
reasonable interpretation of the zitterbewegung and the fact that the expected value of a velocity
measurement (of a Dirac particle) at any instant in time ±c are reflections of the fact that the
Dirac equation makes a spatially extended particle appear as a point in the present by forcing
it to oscillate between the past and future at speed ±c.

3. Classical Proper-time Theory
In this section, we briefly review the classical theory. The theory was first introduced in 2001 [21]
and further discussed in [22]. However, the theory has its roots in the foundations of quantum
electrodynamics as developed by Feynman and Dyson.



3.1. Background
Following the suggestions of Feynman and Dyson, our program began with the development of
a mathematical theory for Feynman’s time-ordered operator calculus, where time is accorded
its natural role as the director of physical processes. Briefly, our theory is constructive in
that operators acting at different times actually commute (in the mathematical sense). This
approach allows us to develop a general perturbation theory for all theories generated by unitary
evolutions. We are also able to reformulate our theory as a physically motivated sum over paths
as suggested by Feynman. Our purpose was to prove the last two remaining conjectures of Dyson
concerning the mathematical foundations for QED (see [23]). (A. Salam confirmed Dyson’s first
conjecture [24], while S. Weinberg [25] confirmed his second one.) In particular, we showed that:

(i) The renormalized perturbation series of quantum electrodynamics is at most asymptotic.
(We also provided the remainder so that, in the mathematical sense, the expansion is exact.)

(ii) The ultraviolet divergence of quantum electrodynamics is caused by a violation of the time-
energy uncertainty relations (at each point in time).

As a special case, our approach also provided the first rigorous mathematical foundation for the
Feynman path integral formulation of quantum mechanics (see [8]).

In the Feynman world-view the universe is a three-dimensional motion picture in which more
and more of the future appears as time evolves. Time is a physically defined variable with
properties distinct from those of the three spacial variables. This view is inconsistent with the
Minkowski world-view, in which time is an additional coordinate for space-time geometry.

With this inconsistency in mind, we began to investigate the possibility that an alternative
formulation of both classical and quantum theory could exist, which encodes the Feynman world-
view. We discovered the canonical proper-time approach to classical electrodynamics, in which
the proper-time of the observed system is used as opposed to the proper-time of the observer.

3.2. Maxwell’s equations
For the local-time version of Maxwell’s equations, it is convenient to start with the standard
definition of proper-time:

dτ2 = dt2 − 1

c2
dx2 = dt2

[
1− w2

c2

]
, w =

dx

dt
. (3.1)

Motivated by geometry and the philosophy of the times, Minkowski suggested that we use
the proper-time to define a metric for the space-time implementation of the special theory of
relativity. Physically, it is well-known that dτ is not an exact one-form because a particle can
traverse many different paths (in space) during any given τ interval. This reflects the fact that
the distance traveled in a given τ interval depends on the forces acting on the particle. This
also implies that the clock of the source carries additional physical information about the acting
forces. In order to see this, rewrite equation (3.1) as:

dt2 = dτ2 +
1

c2
dx2 = dτ2

[
1 +

u2

c2

]
, u =

dx

dτ
. (3.2)

For any other observer, we have:

dt′2 = dτ2 +
1

c2
dx′2 = dτ2

[
1 +

u′2

c2

]
, u′ =

dx′

dτ
. (3.3)

It follows that observers can use one unique clock to discuss all events associated with the
source (simultaneity). We also note that, the phase space variables remain unchanged because
the momentum p = mw = m0u, where m = γm0.



From equations (3.2) and (3.3) we see explicitly that, the new metric for each observer is
exact, while the representation space is now Euclidean. To see that this is a change in the clock
convention, assume that we are observing a particle moving with constant velocity relative to
the unprimed (inertial) frame. In this case, we can integrate equation (3.2) obtaining:

t =

(√
1 + u2

c2

)
τ.

The inverse relationship is

τ =

(√
1 + u2

c2

)−1

t =

(√
1− w2

c2

)
t,

where w = dx
dt . Now, t and τ differ by a scale factor, so that either may be used (a convention).

The advantage of the τ representation is that the same τ is also available to our prime observer:

τ =

(√
1 + u′2

c2

)−1

t′ =

(√
1− w′2

c2

)
t′.

The important point of our theory is that, this convention is also available in the general case.
(In order to show that our approach does not complicate matters, in Section 3.3 we construct
the general transformation group.)

In the new formalism, the natural definition of velocity is no longer w = dx/dt but u = dx/dτ .
This suggests that there may be a certain duality in the relationship between t, τ and w, u. To

see that this is indeed the case, recall that u = w
/√

1−
(
w2
/
c2
)
. Solving for w, we get that

w = u
/√

1 +
(
u2
/
c2
)
. If we set b =

√
c2 + u2, this relationship can be written as

w

c
=

u

b
. (3.4)

For reasons to be clear momentarily, we call b the collaborative speed of light. Indeed, we see
that

1

c

∂

∂t
=

1

c

∂τ

∂t

∂

∂τ
=

1

c

1√
1 +

(
u2
/
c2
) ∂∂τ =

1

b

∂

∂τ
. (3.5)

For our prime observer, it is easy to see that the corresponding result is:

w′

c
=

u′

b′
,

1

c

∂

∂t′
=

1

b′
∂

∂τ
. (3.6)

From equations (3.5) (and (3.6)) we see that the non-invariance of t, (t′) and the invariance of
c on the left is replaced by the non-invariance of b, (b′) and the invariance of τ on the right.
These equations represent mathematically equivalent relations. Thus, wherever they are used
consistently as replacements for each other, they can’t change the mathematical relationships.
In order to see their impact on Maxwell’s equations, in c.g.s. units, we have:

∇ ·B = 0, ∇ ·E = 4πρ,

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

[
∂E

∂t
+ 4πρw

]
.

(3.7)



Using equations (3.1) and (3.2) in (3.3), we have the mathematically identical representation for
Maxwell’s equations:

∇ ·B = 0, ∇ ·E = 4πρ,

∇×E = −1

b

∂B

∂τ
, ∇×B =

1

b

[
∂E

∂τ
+ 4πρu

]
.

Thus, Maxwell’s equations are equally valid when the local time of the particle is used to describe
the fields. This leads to the following conclusions:

(i) There are two distinct clocks to use in the representation of Maxwell’s equations. (The
choice of clocks is a convention.)

(ii) Since the two representations are mathematically equivalent, mathematical equivalence is
not the same as physical equivalence.

(iii) When the proper-time is used, the constant speed of light c is replaced by the effective
speed of light b, which depends on the motion of the system (i.e., b =

√
c2 + u2). Thus, we

have a natural varying speed of light theory (VSL), as opposed to a postulated one ( see
Magueijo [26] or Moffat [27]).

Let us now derive the corresponding wave equations in the local-time variable. Taking the curl
of the last two equations Maxwell equations (above), and using standard vector identities, we
get:

1

b2
∂2B

∂τ2
− u · a

b4

[
∂B

∂τ

]
−∇2 ·B =

1

b
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− u · a

b4

[
∂E

∂τ

]
−∇2 ·E = −∇(4πρ)− 1

b

∂

∂τ

[
4π(ρu)

b

]
.

(3.8)

where a = du/dτ is the effective acceleration. The new (gauge independent) term appears
instantaneously along the direction of motion, but opposing any applied force and is zero
otherwise. This is the near field (i.e., the field at the site of the charged particle). This is
exactly what one expects of the back reaction caused by the inertial resistance of a particle to
accelerated motion and, according to Wheeler and Feynman [28], is precisely what is meant
by radiation reaction. Thus, the collaborative use of the observer’s coordinate system and the
local clock of the observed system provides intrinsic information about the local field dynamics
not available in the conventional formulation of Maxwell’s theory. It is shown in [22], that
the theory does not require point particles, self-energy divergence, mass renormalization or the
Lorentz Dirac equation.

It is also shown in [21] that, for a closed system of interacting charged particles, the proper-
time of the center of mass corresponds to the historical clock of Horwitz, Piron, and Fanchi (see
[29] and [30]). In this case, b = c and the corresponding Maxwell equations represent the far
field (only retarded potentials). It was further shown that, from this vantage point, the particle
interactions appear as the delayed action-at-a-distance type. This verifies the Wheeler-Feynman
conjecture that field theory and delayed action-at-a-distance are complimentary manifestations
of the same physics (see [28]). The requirement of total conservation of momentum, angular
momentum and energy allowed us to prove the complete absorption of radiation by all particles
in the system. (Recall that, this was an assumption in the Wheeler and Feynman approach and
the center-fold of their theory.)

If we make a scale transformation (at fixed position) with E→ (b/c)1/2E and B→ (b/c)1/2B,



the equations in (3.4) transform to

1

b2
∂2B

∂τ2
− ∇2 ·B +

[
b̈

2b3
− 3ḃ2

4b4

]
B =

c1/2

b3/2
[4π∇× (ρu)] ,

1

b2
∂2E

∂τ2
− ∇2 ·E +

[
b̈

2b3
− 3ḃ2

4b4

]
E = −c

1/2

b1/2
∇(4πρ)− c1/2

b3/2
∂

∂τ

[
4π(ρu)

b

]
.

(3.9)

This is the Klein-Gordon equation with an effective mass µ given by

µ =

{
~2

c2

[
b̈

2b3
− 3ḃ2

4b4

]}1/2

=

{
~2

c2

[
u · ü + u̇2

2b4
− 5 (u · u̇)2

4b6

]}1/2

. (3.10)

Remark 3.1 We note that, when b is constant, a = 0, µ = 0 and t = b
cτ (also t′ = b′

c τ), so
that the local time theory is both mathematically and physically equivalent to the standard theory.
However, when b is not constant µ 6= 0 and the two approaches are not physically equivalent.

For additional insight, let (x(τ), τ) represent the field position and (x̄(τ ′), τ ′) the retarded

position of a source charge e, with r = x − x̄. If we set r = |x− x̄|, s = r − ( (r·u)
b ), and

ru = r− r
bu, then we were able to compute the E and B fields directly in [21] to obtain:

E(x, τ) =
e
[
ru(1− u2

/
b2)
]

s3
+
e [r× (ru × a)]

b2s3
+
e(u · a) [r× (u× r)]

b4s3

and

B(x, τ) =
e
[
(r× ru)(1− u2

/
b2)
]

rs3
+
er× [r× (ru × a)]

rb2s3
+
er(u · a)(r× u)

b4s3
.

(It is easy to see that B is orthogonal to E.) The first two terms in the above equations are
standard, in the (x(t),w(t)) variables. The third part of both equations is new and arises
because of the dissipative term in our wave equation. (Once again, this term is zero when b is
constant.) It is easy to see that r × (u × r) = r2u − (u · r)r, so we get a component along the
direction of motion. (Thus, the E field has a longitudinal part.) This confirms our claim that
the new dissipative term is equivalent to an effective mass that arises due to the collaborative
acceleration of the particle. This means that the cause for radiation reaction comes directly from
the use of the local clock to formulate Maxwell’s equations. It follows that, in this approach
there is no need to assume advanced potentials, self-interaction, mass renormalization and the
Lorentz-Dirac equation in order to account for it (radiation reaction), as is required when the
observer clock is used. Furthermore, no assumptions about the structure of the source are
needed.

3.3. Proper-time Lorentz Group
We now identify the new transformation group that preserves the first postulate of the special
theory. The standard (Lorentz) time transformations between two inertial observers can be
written as

t′ = γ(v)
[
t− x · v

/
c2
]
, t = γ(v)

[
t′ + x′ · v

/
c2
]
. (3.11)

We want to replace t, t′ by τ . To do this, use the relationship between dt and dτ to get:

t = 1
c

∫ τ

0
b(s)ds = 1

c b̄τ, t′ = 1
c

∫ τ

0
b′(s)ds = 1

c b̄
′τ, (3.12)



where we have used the mean value theorem of calculus to obtain the end result, so that both b̄
and b̄′ represent an earlier τ -value of b and b′ respectively. Note that, as b and b′ depend on τ ,
the transformations (3.12) represent explicit nonlinear relationships between t, t′ and τ (during
interaction). This is to be expected in the general case when the system is acted on by external
forces. However, if b is constant (so is b′), then t, t′ and τ differ by a scale transformation, which
means they are physically equivalent, in addition to their natural mathematical equivalence.

If we set
d∗ = d/γ(v)− (1− γ(v))

[
(v · d)

/
(γ(v)v2)

]
v,

we can write the transformations that fix τ as:

x′ = γ(v)
[
x∗ − (v/c)b̄τ

]
, x = γ(v)

[
x′
∗

+ (v/c)b̄′τ
]
,

u′ = γ(v) [u∗ − (v/c)b] , u = γ(v)
[
u′
∗

+ (v/c)b′
]
,

a′ = γ(v) {a∗ − v [(u · a)/(bc)]} , a = γ(v)
{
a′
∗

+ v
[
(u′ · a′)

/
(b′c)

]}
.

(3.13)

If we put equation (3.12) in (3.11), differentiate with respect to τ and cancel the extra factor of
c, we get the transformations between b and b′:

b′(τ) = γ(v) [b(τ)− u · v/c] , b(τ) = γ(v)
[
b′(τ) + u′ · v

/
c
]
. (3.14)

From these results, it follows that, at the local level, during interaction, equations (3.13) and
(3.14) provide a nonlinear and nonlocal representation of the Lorentz group. We call it the
proper-time Lorentz group.

3.4. Proper-Time Particle Theory
We now investigate the corresponding particle theory. The key concept to our approach may
be seen by examining the time evolution of a dynamical parameter W (x,p), via the standard
formulation of classical mechanics, described in terms of the Poisson brackets:

dW

dt
= {H,W} . (3.15)

We can also represent the dynamics via the proper time by using the representation dτ =
(1/γ)dt = (mc2

/
H)dt, so that:

dW

dτ
=
dt

dτ

dW

dt
=

H

mc2
{H,W} .

Assuming a well-defined (invariant) rest energy (mc2) for the particle, we determine the canonical
proper-time Hamiltonian K such that:

{K,W} =
H

mc2
{H,W} , K|p=0 = H|p=0 = mc2.

Using

{K,W} =

[
H

mc2

∂H

∂p

]
∂W

∂x
−
[
H

mc2

∂H

∂x

]
∂W

∂p

=
∂

∂p

[
H2

2mc2
+ a

]
∂W

∂x
− ∂

∂x

[
H2

2mc2
+ a′

]
∂W

∂p
,

we get that a = a′ = 1
2mc

2, so that (assuming no explicit time dependence)

K =
H2

2mc2
+
mc2

2
, and

dW

dτ
= {K,W} .



Since τ is invariant during interaction (minimal coupling), we make the natural assumption that

(the form of) K also remains invariant. Thus, if
√
c2p2 +m2c4 →

√
c2π2 +m2c4 + V , where A

a vector potential, V is a potential energy term and π = p− e
cA. In this case, K becomes:

K =
π2

2m
+mc2 +

V 2

2mc2
+
V
√
c2π2 +m2c4

mc2
.

If we set H0 =
√
c2π2 +m2c4, use standard vector identities with H0 = mcb−V , ∇×π = −e

cB,
and compute Hamilton’s equations, we get:

u =
dx

dτ
=

[
1 +

V

H0

]
π

m
=

[
mbc

mbc− V

]
π

m
⇒ π = mu− V

bc
u

and

dp

dτ
= −

[
(π · ∇)π + e

cπ ×B
]

m

[
1 +

V

H0

]
−∇V H0

mc2

[
1 +

V

H0

]
= e

c (u · ∇) A + e
cu×B−∇V b

c

[
1 +

V

mcb

]
.

(3.16)

Further reduction, using the definition of E, with V = eΦ, we have:

c

b

[
dp

dτ
− e

c

dA

dτ

]
= −e

b

∂A

∂τ
+ e

bu×B− e∇Φ

[
1 +

V

mcb

]
= eE + e

bu×B− e∇Φ
V

mcb
.

(3.17)

It is clear that the additional term in equation (3.17) acts to oppose the force imposed by the
charged particle part of the E field (i.e., −∇V ). In order to see the physical meaning of the term,
assume an interaction between a proton and an electron, where A = 0 and V is the Coulomb
interaction, so that (3.17) becomes:

c

b

dp

dτ
= −∇V −∇V V

mcb
. (3.18)

Using H0 ≈ mc2, we see that limr→r0 u = 0 and limr→r0 a = 0, so that:

0 = −∇V −∇V V

mc2
(3.19)

and the classical electron radius, r0, is a critical point (i.e., −∇V − ∇V (V/mc2) = 0). Thus,
for 0 < r < r0, the force becomes repulsive. We interpret this as a fixed region of repulsion, so
that the singularity r = 0 is impossible to reach at the classical level. The neglected terms are
attractive but of lower order. This makes the critical point less than r0. Thus, in general, the
electron experiences a strongly repulsive force when it gets too close to the proton. This means
that the classical principle of impenetrability, namely that no two particles can occupy the same
space at the same time occurs naturally. It is this additional term that leads us to suspect that
the electron may not act like a point particle in the s-states of hydrogen, where it has a finite
probability of being at the center of the proton.

The above observation also implies that, two electrons will experience an attraction if they
can come close enough together as for example, at very low energies (temperatures).



The Lagrangian representation reveals the close relationship to the non-relativistic case. If
we solve for p, we get

p = mu− V u

cb
+
e

c
A.

Using this in K along with b2 = u2 + c2, we have

K =

(
mu− V u

bc

)2
2m

+mc2 +
V 2

2mc2
+
V (mcb− V )

mc2

= 1
2mu

2 − V u2

bc
+

V 2u2

2mb2c2
+mc2 − V 2

2mc2
+
V b

c
.

From Ldτ = p · dx−Kdτ , we can write L as

L =

[
mu− V u

bc

]
· u + e

cA · u

−
{

1
2mu

2 − V u2

bc
+

V 2u2

2mb2c2
+mc2 +

V b

c
− V 2

2mc2

}
= 1

2mu
2 + e

cA · u−mc
2 − V b

c
+

V 2

2mc2

[
1− u2

b2

]
.

From this representation, it is clear that the neglect of second order terms gives us the non-
relativistic theory.

4. Relativistic Quantum Theory
The Klein-Gordon and Dirac equations were first discovered in early attempts to make quantum
mechanics compatible with the Minkowski formulation of special theory of relativity. Both were
partially successful but could no longer be interpreted as particle equations and a complete
theory required quantum fields and the associated problems. For a recent discussion of other
problems, one can consult [9] (see also [6]).

In this section we introduce the canonical extension of the Dirac and square-root equations.
Let A(x, t) and V (x) be given vector and scalar potentials and, after adding V (x) and making
the transformation p→ π = p− e

cA.
To quantize our theory, we follow the standard procedure leading to the equation:

i~
∂Φ

∂τ
= KΦ =

[
H2

2mc2
+
mc2

2

]
Φ.

However, in addition to the Dirac Hamiltonian, there are two other possible Hamiltonians,
depending on the way the potential appears with the square-root operator:

β
√
c2π2 − ec~Σ ·B + m2c4 + V

and

β

√
c2π2 − ec~Σ ·B + (mc2 + βV)2.

We have identified three possible canonical proper-time particle equations for spin-1
2 particles.

(We also note that, these equations can be modified to apply to particles of any spin, by a minor
change in the β matrix.)



(i) The canonical proper-time version of the Dirac equation:

i~
∂Ψ

∂τ
=

{
π2

2m
+ βV +mc2 − e~Σ ·B

2mc

+
V α · π
mc

− i~α · ∇V
2mc

+
V 2

2mc2

}
Ψ.

(4.1)

(ii) The canonical proper-time version of the square-root equation, using the first possibility:

i~
∂Ψ

∂τ
=

{
π2

2m
− e~Σ ·B

2mc
+mc2 +

V 2

2mc2

}
Ψ

+
V β
√
c2π2 − ec~Σ ·B + m2c4

2mc2
Ψ +

β
√
c2π2 − ec~Σ ·B + m2c4

2mc2
VΨ.

(4.2)

(iii) The canonical proper-time version of the square-root equation, using the second possibility:

i~
∂Ψ

∂τ
=

π2

2m
+ βV +mc2 − e~Σ ·B

2mc
+

V 2

2mc2
. (4.3)

If V = 0, all equations reduce to:

i~
∂Ψ

∂τ
=

{
π2

2m
+mc2 − e~Σ ·B

2mc

}
Ψ.

The close relationship to the Schrödinger operator, makes it easy to see that, in all cases,
K is positive definite. In mathematical terms, the lower order terms are relatively bounded
with respect to π2/2m. It follows that, unlike the Dirac and Klein-Gordon approach, we
can interpret (4.1)-(4.3) as representations for particles. In the above equations, we have
assumed that V is time independent. (However, since A(x, t) can have general time-dependence,√
c2π2 − ec~Σ ·B + m2c4 need not be related to the Dirac operator by a Foldy-Wouthuysen

type transformation.)
We plan to investigate the last two equations at a later time. In the next section, we focus

on the canonical proper-time Dirac extension.

4.1. The Dirac Theory
Since the Dirac equation forms the basis for QED, an important test of our proper-time extension
is how well it compares to the Dirac equation in its description of the hydrogen spectrum. In
this section, we compare the Dirac equation with the canonical proper-time extension for the
Hydrogen atom problem.

If we let A = 0, V0 = − e2

r and consider the standard Dirac Hydrogen atom eigenvalue
problem,

λnΨn = HDΨn,

where λn is the n-th eigenvalue and Ψn is the corresponding eigenfunction. For this case, if j is
the total angular momentum and α is the fine structure constant, we have

λn = mc2

1 +
α2[

n−
∣∣j + 1

2

∣∣+

√(
j + 1

2

)2 − α2

]2


−1/2

.



For the proper-time extension, with the same eigenfunction, we have

EnΨn =

[
H2
D

2mc2
+
mc2

2

]
Ψn =

[
λ2
n

2mc2
+
mc2

2

]
Ψn.

In order to compare the two expressions to order O(α8), we begin with the following
approximations:

(1) (1 + x)−1 ' 1 + x+ x2 +O(x3)

(2) (1 + x)−1/2 ' 1− 1
2x+ 3

8x
2 +O(x3)

(3) (1− x)1/2 ' 1− 1
2x−

1
8x

2 +O(x3).

Let κ = j + 1
2 , then our proper time extension can be written as:

En =

[
λ2
n

2mc2
+
mc2

2

]
=
mc2

2

{
1 +

[
1 + α2

(n−|κ|+
√
κ2−α2)

2

]−1
}

' mc2

2

{
1 +

[
1− α2

(n−|κ|+
√
κ2−α2)

2 + α4

(n−|κ|+
√
κ2−α2)

4

]}
=
mc2

2

[
2− α2

(n−|κ|+
√
κ2−α2)

2 + α4

(n−|κ|+
√
κ2−α2)

4

]
.

(4.4)

Using (2), we have:

λn ' mc2

[
1 + α2

(n−|κ|+
√
κ2−α2)

2

]−1/2

' mc2

[
1− α2

2(n−|κ|+
√
κ2−α2)

2 + 3α4

8(n−|κ|+
√
κ2−α2)

4

]
.

Using (3), we can approximate
√
κ2 − α2 to get√

κ2 − α2 ' |κ|
(

1− α2

2κ2
− α4

8κ4

)
= |κ| − α2

2|κ| ⇒

n− |κ|+
√
κ2 − α2 ' n− α2

2|κ| ⇒

α2
[
n− |κ|+

√
κ2 − α2

]−2
' α2

n2

[(
1− α2

2n|κ|

)2
]−1

' α2

n2

[
1 + α2

n|κ| −
α4

4n2|κ|3

]
=
α2

n2
+

α4

n3 |κ|
− α6

4n4|κ|3

and

α4
[
n− |κ|+

√
κ2 − α2

]−4
' α4

n4

[(
1− α2

2n|κ|

)4
]−1

' α4

n4

[
1 + 2α2

n|κ|

]
.

With the last result, we now have:

λn ' mc2

{
1− α2

2n2

[
1 +

α2

n |κ|
− α4

4n|κ|3

]
+

3α4

8n4

[
1 +

α2

n |κ|

]}
= mc2

{[
1− α2

2n2
− α4

2n4

(
n

|κ|
− 3

4

)]
+

α6

8n5|κ|

(
n2

|κ|2
+ 3

)}
.

(4.5)



For En, we have

En '
mc2

2

{
2−

[
α2

n2
+

α4

n3 |κ|
− α6

4n4|κ|2

]
+
α4

n4

[
1 +

2α2

n |κ|

]}
= mc2

{[
1− α2

2n2
− α4

2n4

(
n

|κ|
− 1

)]
+

α6

4n5 |κ|

(
n

|κ|
+ 8

)}
.

(4.6)

It is now easy to see that, to order α4, λn−En = −α4

8n4 , so that the En values are systematically
lower than the λn values.

Table 1 below provides a relative comparison between the Dirac and proper-time extension
compared with the experimental data for s-states, compiled by National Institute for Standards
and Technology (NIST) of the US government.

Table 1: Comparison with NIST data for s-states

State Dirac Proper-time Nist ∆-DNIST ∆-PTNIST

2s 10.20439429 10.20422448 10.19881008 .00558421 .00541440
3s 12.09411035 12.09393146 12.08749443 .00661592 .00643603
4s 12.75550914 12.75532871 12.74853244 .00697670 .00679627
5s 13.06164150 13.06146066 13.05449789 .00714361 .00696277

As can be seen from the last two columns, the proper-time extension consistently provides
results that a closer to the experimental data for all cases. (We have omitted the 1s-state
comparison because of the NIST normalization condition.)

In Table 2, we see the same comparative results for the p, d and f-states.

Table 2: Comparison with NIST data for p, d and f-states

State Dirac Proper-time Nist ∆-DNIST ∆-PTNIST

2p (j=1/2) 10.20439429 10.20422448 10.19880553 0.005588760 0.005418952
2p (j=3/2) 10.20443957 10.20426976 10.19885089 0.005588681 0.005418870
3p (j=1/2) 12.09411035 12.09393146 12.08749292 0.006617431 0.006438537
3p (j=3/2) 12.09412377 12.09394488 12.08750636 0.006617407 0.006438512
3d (j=3/2) 12.09412377 12.09394488 12.08750634 0.006617430 0.006438535
3d (j=5/2) 12.09412824 12.09394935 12.08751082 0.006617422 0.006438528
4p (j=1/2) 12.75550914 12.75532871 12.74853167 0.006977467 0.006797044
4f (j=7/2) 12.75551763 12.75533720 12.74854038 0.006976250 0.006796820

Thus, in all cases, the canonical proper-time extension of the Dirac equation provides a closer
approximation to the known experimental data for the Hydrogen spectra compared to the Dirac
equation. In all cases, the changes are in the forth decimal place. This is insufficient to account
for either the Lamb shift or the anomalous magnetic moment.

4.2. Future Direction

In what follows, let V = V0 = −e2
r . Based on our analysis of the square-root operator in the

first section and the Dirac operator in the second section, we are in the process of investigating
the possibility that in s-states, the potential energy takes on the form:

V = −e
2
√
M2c4 − ec~Σ ·B + c2π2

Mc2r
= −e

2

r

(
1− e~Σ·B

M2c3
+ π2

M2c2

)
√

1− e~Σ·B
M2c3

+ π2

M2c2

' V0 +
r0

r

e~Σ ·B
2Mc

− r0

r

π2

2M
,

(4.7)



where r0 = e2/Mc2. There are three possible choices for M :

(i) The electron cannot be treated as a point particle in s-states of hydrogen, so that M = m,
the mass of the electron and r0 is the classical electron radius.

(ii) Neither the electron nor the proton can be treated as point particles in s-states of hydrogen,
so that M = µ, the reduced mass and r0 is the classical mixed reduced radius.

(iii) The electron can be treated as a point particle in s-states of hydrogen, but the proton cannot
so that M = mp, the mass of the proton and r0 is the classical reduced proton radius.

It is clear that, at the zero-th order, we recover the Coulomb potential and the second term in
(4.7) is a first order approximation. Assuming the first case, our eigenvalue problem becomes:

EΨ =

{
π2

2m
+ βV +mc2 − e~Σ ·B

2mc

+
V α · π
mc

− i~α · ∇V
2mc

+
V 2

2mc2

}
Ψ.

(4.8)

As a first try, we set V = V0 for the terms containing α, use our first order approximation in
the second term and V itself in the last term, so that

βV ' βV0 + β
r0

r

e~Σ ·B
2mc

− β r0

r

π2

2m
.

For the last term, we use the approximation:

V 2

2mc2
=

1

2

{
V0

mc2

√
1− e~Σ ·B

m2c3
+

π2

m2c2

V0

mc2

√
1− e~Σ ·B

m2c3
+

π2

m2c2

}

' 1

2

{[
V0

mc2

]2 [
1− e~Σ ·B

m2c3
+

π2

m2c2

]}
+

V0

mc2

p2 [V0]

2m2c2

√
1− e~Σ ·B

m2c3
+

π2

m2c2

' 1

2

{[
V0

mc2

]2 [
1− e~Σ ·B

m2c3
+

π2

m2c2

]}
+

V0

mc2

p2 [V0]

2m2c2

=
1

2

{[
V0

mc2

]2 [
1− e~Σ ·B

m2c3
+

π2

m2c2

]}
− V0

mc2

2π~2

m2c2
δ (r) .

Using these terms, we have:

EΨ =

{
1− β r0

r
+
r2

0

r2

}
π2

2m
Ψ +

[
1 + β

r0

r
− r2

0

r2

]
e~Σ ·B

2mc
Ψ +mc2Ψ

+βV0 +
V0α · π
mc

Ψ− i~α · ∇V0

2mc
Ψ +

V 2
0

2mc2
Ψ +

r0

r

2π~2

mc2
δ (r) Ψ

=

{
π2

2m
+ βV0 −

e~Σ ·B
2mc

+mc2 +
V0α · π
mc

− i~α · ∇V0

2mc
+

V 2
0

2mc2

}
Ψ

+

{[
r2

0

r2
− β r0

r

]
π2

2m
−
[
r2

0

r2
− β r0

r

]
e~Σ ·B

2mc
+
r0

r

2π~2

m2c2
δ (r)

}
Ψ

= E0Ψ +K ′Ψ,

where

K ′ =

[
r2

0

r2
− β r0

r

]
π2

2m
−
[
r2

0

r2
− β r0

r

]
e~Σ ·B

2mc
+
r0

r

2π~2

m2c2
δ (r).

In conclusion, if this approach is as successful as we believe, we will still need to justify our
approximation methods.
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