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Abstract

We study the asymptotics of large simple graphs constrained by the limiting density
of edges and the limiting subgraph density of an arbitrary fixed graph H. We prove
that, for all but finitely many values of the edge density, if the density of H is con-
strained to be slightly higher than that for the corresponding Erdős-Rényi graph, the
typical large graph is bipodal with parameters varying analytically with the densities.
Asymptotically, the parameters depend only on the degree sequence of H.
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1 Introduction

We study the asymptotics of large, simple, labeled graphs constrained to have subgraph
densities ε of edges, and τ of some fixed subgraph H with ` ≥ 2 edges. To study the
asymptotics we use the graphon formalism of Lovász et al [8, 9, 2, 1, 10] and the large
deviations theorem of Chatterjee and Varadhan [5], from which one can reduce the analysis
to the study of the graphons which maximize the entropy subject to the density constraints
[13, 14, 12, 6]. See definitions in Section 2.

The phase space is the subset of [0, 1]2 consisting of accumulation points of all pairs of
densities τ̄ = (ε, τ) achievable by finite graphs. (See Figure 1 for the case where H is a
triangle.) Within the phase space is the ‘Erdős-Rényi curve’ (ER curve) {(ε, τ) | τ = ε`},
attained when edges are chosen independently. In this paper we study the typical behavior
of large graphs for τ just above the ER curve. We will show that the qualitative behavior
of such graphs is the same for all choices of H and for all but finitely many choices of ε
depending on H.

To be precise, we show that for fixed H, for ε outside a finite set, and for τ close enough to
ε`, there is a unique entropy-maximizing graphon (up to measure-preserving transformations
of the unit interval); furthermore it is bipodal and depends analytically on (ε, τ), implying
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Figure 1: Boundary of the phase space for the edge/triangle model in solid lines. On the
right, the Erdős-Rényi curve is shown with dashes.

that the entropy is an analytic function of (ε, τ). In particular we prove the existence of
one or more well-defined thermodynamic phases just above the ER curve. This is the first
proof, as far as we know, of the existence of a phase in any constrained-density graphon
model, where by phase we mean a (maximal) open set in the phase space where the entropy
varies analytically with the constraint parameters. Conjecturally, phases form an open dense
subset of the phase space.

A bipodal graphon is a function g : [0, 1]2 → [0, 1] of the form:

g(x, y) =


p11 x, y < c,

p12 x < c < y,

p12 y < c < x,

p22 x, y > c.

(1)

Here c, p11, p12 and p22 are constants taking values between 0 and 1. We prove that as
τ ↘ ε`, the parameters c→ 0, p22 → ε, and p11 and p12 approach the solutions of a problem
in single-variable calculus. The inputs to that calculus problem depend only on the degrees
of the vertices of H.

We say that a finite graph H is k-starlike if all the vertices of H have degree k or 1,
where k > 1 is a fixed integer. k-starlike graphs include k-stars (where one vertex has degree
k and k vertices have degree 1), and the complete graph on k + 1 vertices. For fixed k, all
k-starlike graphs behave essentially the same for our asymptotics. We prove our results
first for k-stars, and then apply perturbation theory to show that the differences between
different k-starlike graphs are irrelevant, and then prove the general case.

To state our results more precisely, we need some notation. Let

S0(w) = −1

2
[w logw + (1− w) log(1− w)], (2)

and define the graphon entropy (or entropy for short) of a graphon g to be

s(g) =

∫ 1

0

∫ 1

0

S0(g(x, y))dx dy. (3)
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Let

ψk(ε, ε̃) =
2[S0(ε̃)− S0(ε)− S ′0(ε)(ε̃− ε)]

ε̃k − εk − kεk−1(ε̃− ε) . (4)

This function has a removable singularity at ε̃ = ε, which we fill by defining

ψk(ε, ε) =
2S ′′0 (ε)

k(k − 1)εk−2
. (5)

For fixed ε, let ζk(ε) be the value of ε̃ that maximizes ψk(ε, ε̃). (We will prove that this
maximizer is unique and depends continuously on ε.)

Theorem 1.1. Let H be a k-starlike graph with ` ≥ 2 edges. Let ε ∈ (0, 1) be any point
other than (k − 1)/k. Then there is a number τ0 > ε` (depending on ε) such that for all
τ ∈ (ε`, τ0), the entropy-maximizing graphon at (ε, τ) is unique (up to measure-preserving
transformations of [0, 1]) and bipodal. The parameters (c, p11, p12, p22) are analytic functions
of ε and τ on the region ε 6= (k − 1)/k, τ ∈ (ε`, τ0(ε)). Furthermore, as τ ↘ ε` we have that
p22 → ε, p12 → ζk(ε), p11 satisfies S ′0(p11) = 2S ′0(p12)− S ′0(p22), and c = O(τ − ε`).

Theorem 1.1 proves that there is part of a phase just above the ER curve for ε < (k−1)/k
and also for ε > (k − 1)/k; numerical evidence suggests these are in fact parts of a single
phase; the only ‘singular’ behavior is the manner in which the graphon approaches the
constant graphon associated with the ER curve. We will see in Theorem 1.2 that this
behavior is only slightly more complicated for general H than it is for k-starlike H.

When H has vertices with different degrees > 1, the problem resembles that of a formal
positive linear combination of k-stars. As in the k-starlike case, we first solve the problem
for the linear combination of k-stars and then use perturbation theory to extend the results
to arbitrary H.

Theorem 1.2. Let H be an arbitrary graph with ` edges with at least one vertex of degree
2 or greater. Then there exists a finite set BH ⊂ (0, 1) such that if ε 6= BH , then there is
a number τ0 > ε` (depending on ε) such that for all τ ∈ (ε`, τ0), the entropy-maximizing
graphon at (ε, τ) is unique (up to measure-preserving transformations of [0, 1]) and bipodal.
The parameters (c, p11, p12, p22) are analytic functions of ε and τ on the region ε 6∈ BH ,
τ ∈ (ε`, τ0(ε)). Furthermore, as τ ↘ ε` we have that p22 → ε, p12 approaches the maximizer
of an explicit function whose data depends on ε, p11 satisfies S ′0(p11) = 2S ′0(p12) − S ′0(p22),
and c = O(τ − ε`).

The key differences between the Theorems 1.1 and 1.2 are:

• For k-starlike graphs, the set BH of bad values of ε consists of a single point, and this
point is explicitly known: ε = (k − 1)/k.

• For k-starlike graphs, the behavior of ζk is explicit. It is a continuous and strictly
decreasing function of ε, and gives an involution of (0, 1). (That is, ζk(ζk(ε)) = ε.) For
k = 2 it is given by ζ2(ε) = 1 − ε. In the general case, the limiting value of p12, and
its dependence on ε, appear to be much more complicated. We do not know whether
this limiting value is always continuous across the bad set BH .
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The organization of this paper is as follows. In Section 2 we review the formalism of
graphons and establish basic notation. In Section 3 we establish a number of technical
results for k-star models. Using these results, in Section 4 we prove Theorem 1.1 for the
case that H is a k-star. In Section 5 we show that just above the ER curve a model
with an arbitrary k-starlike H can be approximated by a k-star model. By bounding the
error terms, we prove Theorem 1.1 in full generality. In Section 6 we consider formal positive
linear combinations of k-stars, and prove a theorem much like Theorem 1.2 for those models.
Finally, in Section 7 we show that the model for an arbitrary H can be approximated by a
formal linear combination of k-stars, thus completing the proof of Theorem 1.2.

2 Notation and background

We consider a simple graph G (undirected, with no multiple edges or loops) with a vertex
set V (G) of labeled vertices. For a subgraph H of G, let TH(G) be the number of maps from
V (H) into V (G) which preserve edges. The density τH(G) of H in G is then defined to be

τH(G) :=
|TH(G)|
n|V (H)| , (6)

where n = |V (G)|. An important special case is where H is a ‘k-star’, a graph with k edges,
all with a common vertex, for which we use the notation τk(G). In particular τ1(G), which
we also denote ε(G), is the edge density of G.

For α > 0 and τ̄ = (ε, τH) define Zn,α
τ̄ to be the number of graphs G on n vertices with

densities satisfying

ε(G) ∈ (ε− α, ε+ α), τH(G) ∈ (τH − α, τH + α). (7)

Define the (constrained) entropy sτ̄ to be the exponential rate of growth of Zn,α
τ̄ as a

function of n:

sτ̄ = lim
α↘0

lim
n→∞

ln(Zn,α
τ̄ )

n2
. (8)

The double limit defining the entropy sτ̄ is known to exist [13]. To analyze it we make use of
a variational characterization of sτ̄ , and for this we need further notation to analyze limits
of graphs as n → ∞. (This work was recently developed in [8, 9, 2, 1, 10]; see also the
recent book [11].) The (symmetric) adjacency matrices of graphs on n vertices are replaced,
in this formalism, by symmetric, measurable functions g : [0, 1]2 → [0, 1]; the former are
recovered by using a partition of [0, 1] into n consecutive subintervals. The functions g are
called graphons.

For a graphon g define the degree function d(x) to be d(x) =
∫ 1

0
g(x, y)dy. The k-star

density of g, τk(g), then takes the simple form

τk(g) =

∫ 1

0

d(x)k dx. (9)

For any fixed graph H, the H-density τH of g can be similarly expressed as an integral of a
product of factors g(xi, xj).

The following is Theorem 4.1 in [14]:
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Theorem 2.1 (The Variational Principle). For any feasible set τ̄ of values of the densities
τ̄(g) := (ε, τH) we have sτ̄ = max[s(g)], where the entropy is maximized over all graphons g
with τ̄(g) = τ̄ .

(Instead of using s(g), some authors use the rate function I(g) := −s(g), and then minimize
I.) The existence of a maximizing graphon g = gτ̄ for any constraint τ̄(g) = τ̄ was proven
in [13], again adapting a proof in [5]. If the densities are that of edges and k-star subgraphs
we refer to this maximization problem as a star model, though we emphasize that the result
applies much more generally [13, 14].

We consider two graphs equivalent if they are obtained from one another by relabeling
the vertices. For graphons, the analogous operation is applying a measure-preserving map
ψ of [0, 1] into itself, replacing g(x, y) with g(ψ(x), ψ(y)), see [11]. The equivalence classes
of graphons under relabeling are called reduced graphons, and graphons are equivalent if
and only if they have the same subgraph densities for all possible finite subgraphs [11].
In the remaining sections of the paper, whenever we claim that a graphon has a property
(e.g. monotonicity in x and y, or uniqueness as an entropy maximizer), the caveat “up to
relabeling” is implied.

The graphons which maximize the constrained entropy can tell us what ‘most’ or ‘typical’
large constrained graphs are like: if gτ̄ is the only reduced graphon maximizing S(g) with
τ̄(g) = τ̄ , then as the number n of vertices diverges and αn → 0, exponentially most graphs
with densities τ̄i(G) ∈ (τi − αn, τi + αn) will have reduced graphon close to gτ̄ [13]. This
is based on large deviations from [5]. We emphasize that this interpretation requires that
the maximizer be unique; this has been difficult to prove in most cases of interest and is an
important focus of this work.

A graphon g is called M -podal if there is decomposition of [0, 1] into M intervals (‘vertex
clusters’) Cj, j = 1, 2, . . . ,M , and M(M + 1)/2 constants pij such that g(x, y) = pij if
(x, y) ∈ Ci × Cj (and pji = pij). We denote the length of Cj by cj.

3 Technical properties of star models

For each star model, all entropy-maximizing graphons are multipodal with a fixed upper
bound on the number of clusters, also called the podality [6]. For any fixed podality M ,
an M -podal graphon is described by N = M(M + 3)/2 parameters, namely the values pij
(1 ≤ i ≤ j ≤ M) and the widths ci (1 ≤ i ≤ M) of the clusters. When it does not cause
confusion, we will use g to denote the vector

(c1, · · · , cM , p11, · · · , p1M , p22, · · · , p2M , · · · , · · · , pM−1M−1, pM−1M , pMM), (10)

which contains all these parameters. The problem of optimizing the graphon then reduces
to a finite-dimensional calculus problem. To be precise, let us recall that for an M -podal
graphon, we have

ε(g) =
∑

1≤i,j≤M

cicjpij, τk(g) =
∑

1≤i≤M

cid
k
i , s(g) =

∑
1≤i,j≤M

cicjS0(pij), (11)
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where di =
∑

1≤j≤M cjpij is the value of the degree function on the ith cluster. The problem
of searching for entropy-maximizing graphons with fixed edge density ε and k-star density
τk can now be formulated as

max
g∈[0,1]N

s(g), subject to: ε(g)− ε = 0, τk(g)− τ = 0, C(g) = 1. (12)

where C(g) =
∑

1≤j≤M cj.
The following result says that the maximization problem (12) can be solved using the

method of Lagrange multipliers. The existence of finite Lagrange multipliers was previously
established in [6], treating the space of graphons as a linear space of functions [0, 1]2 → [0, 1],
intuitively considering perturbations of graphons localized about points in [0, 1]2. For star
models we may restrict to M -podal graphons, as noted above, and thus consider perturba-
tions in the relevant parameters pij and cj.

Lemma 3.1. Let g be a local maximizer in (12). Then for constraints ε, τ off the ER curve,
there exist unique α, β, γ ∈ R such that

∇s(g)− α∇ε(g)− β∇τk(g)− γ∇C(g) = 0. (13)

We do not include the proof, which follows easily from that of Lemma 3.5 in [6]. We
also note that one can remove the variable cM and the constraint C(g) = 1, eliminating the
multiplier γ.

For convenience later, we now write down the exact form of the Euler-Lagrange equa-
tion (13). We first verify that

∂ε

∂pij
= Aij,

∂ε

∂ci
= 2

M∑
j=1

cjpij = 2di, (14)

∂τk
∂pij

=
k

2
(dk−1
i + dk−1

j )Aij,
∂τk
∂ci

= dki + k
M∑
j=1

cjd
k−1
j pij, (15)

∂C

∂pij
= 0,

∂C

∂ci
= 1, (16)

∂s

∂pij
= S ′0(pij)Aij,

∂s

∂ci
= 2

M∑
j=1

cjS0(pij), (17)

where Aij = 2cicj if i 6= j and Aij = c2
i if i = j. We can then write down (13) explicitly as

S ′0(pij) = α + β
k

2
(dk−1
i + dk−1

j ), 1 ≤ i ≤ j ≤M (18)

2
∑
j=1

cjS0(pij) = 2αdi + β
(
dki + k

M∑
j=1

cjd
k−1
j pij

)
+ γ, 1 ≤ i ≤M (19)

These Euler-Lagrange equations, together with the constraints,

ε(g)− ε = 0, τk(g)− τ = 0, C(g)− 1 = 0, (20)
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are the optimality conditions for the maximization problem (12). In principle, we can solve
this system to find the maximizer g.

Next we consider the significance of the Lagrange multipliers α and β. Suppose that g0

is the unique entropy maximizer for ε = ε0 and τ = τ0. Then any sequence of graphons that
maximize entropy for (ε, τ) approaching (ε0, τ0) must approach g0: this follows from upper
semicontinuity of the entropy and the fact that we can perturb g0 to any nearby (ε, τ) by
changing some pij. But if g = g0 + δg, then

s(g) = s(g0) + dsg0(δg) +O(δg2)
= s(g0) + αdεg0(δg) + βdτg0(δg) +O(δg2)
= s(g0) + α(ε− ε0) + β(τ − τ0) +O(δg2). (21)

That is, ∂s(ε, τ)/∂ε = α and ∂s(ε, τ)/∂τ = β.
If g0 is not a unique entropy maximizer, then we only have 1-sided (directional) deriva-

tives:

Lemma 3.2. The function s(ε, τ) admits directional derivatives in all directions at all points
(e, t) in the interior of the profile.

Proof. The change in entropy in a given direction is obtained by maximizing ds = αdε+βdτ
over all entropy maximizers at (ε0, τ0). That is, when fixied ε and increasing τ , we get the
largest β of all the graphons that maximize entropy at (ε0, τ0), and when decreasing τ we
get the smallest β. Likewise, when increasing or decreasing ε we get the largest or smallest
values of α, and when doing a directional derivative in the direction (v1, v2), we get the
largest value of v1α + v2β.

Existence of directional derivatives implies the fundamental theorem of calculus, so for
fixed ε we can write

s(ε, τ) = s(ε, εk) +

∫ τ

εk
β(gmax(ε, τ))dτ, (22)

where gmax(ε, τ) is the entropy-maximizing graphon at (ε, τ) that maximizes its right deriva-
tive (with respect to τ).

Before proving Theorem 1.1 for k-stars, we record some properties of the function ψk(ε, ε̃)
of (4) and its critical points.

Theorem 3.3. For fixed k and ε, there is a unique solution to ∂ψ′k(ε, ε̃)/∂ε̃ = 0, which we
denote ε̃ = ζk(ε). The function ζk is a strictly decreasing, with nowhere-vanishing derivative
and with fixed point at ε = (k − 1)/k. Furthermore, ζk is an involution: ε̃ = ζk(ε) if and
only if ε = ζk(ε̃).

Even though the proof is elementary we will need some parts of it later, so we give it
here.

Proof. Fix k ≥ 2 and let

N(ε, ε̃) = 2[S0(ε̃)− S0(ε)− S ′0(ε)(ε̃− ε)]
D(ε, ε̃) = ε̃k − εk − kεk−1(ε̃− ε) (23)
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be the numerator and denominator of the function ψk(ε, ε̃) = N/D. Note that these defi-
nitions make sense for all real values of k, not just for integers. When taking derivatives
of N , D and ψ, we will denote a derivative with respect to the first variable by a dot,
and a derivative with respect to the second variable by ′. That is, D′(ε, ε̃) = ∂D/∂ε̃ and
Ḋ(ε, ε̃) = ∂D/∂ε. As noted earlier, this definition of ψk has a removable singularity at ε̃ = ε,
which we fill in by defining

ψk(ε, ε) = N ′′(ε, ε)/D′′(ε, ε) = 2S ′′0 (ε)/[k(k − 1)εk−2]. (24)

The denominator D vanishes only at ε̃ = ε.
Some useful explicit derivatives are:

N ′ = 2[S ′0(ε̃)− S ′0(ε)], N ′′ = 2S ′′0 (ε̃) =
−1

ε̃(1− ε̃) ,
Ṅ = −2S ′′0 (ε)(ε̃− ε), Ṅ ′ = −2S ′′0 (ε),
D′ = k[ε̃k−1 − εk−1], D′′ = k(k − 1)ε̃k−2,

Ḋ = −k(k − 1)εk−2(ε̃− ε), Ḋ′ = −k(k − 1)εk−2. (25)

Note that D and N both vanish when ε̃ = ε, so we can write

N(ε, ε̃) =

∫ ε̃

ε

N ′(ε, x)dx =

∫ ε

ε̃

Ṅ(x, ε̃)dx, (26)

and similarly for D(ε, ε̃).
We proceed in steps:

Step 1. Analyzing ψ near ε̃ = ε to see that ψ′k(ε, ε) = 0 only when ε = (k − 1)/k.

Step 2. Showing that we can never have ψ′k = ψ′′k = 0.

Step 3. Showing that the equation ψ′k(ε, ε̃) is symmetric in ε and ε̃, implying that ζk is an
involution.

Step 4. Showing that ψk has a unique critical point.

Step 5. Showing that dζk/dε is never zero.

The following calculus fact will be used repeatedly. When D 6= 0, ψ′k = 0 is equivalent
to N/D = N ′/D′, and ψ′k = ψ′′k = 0 is equivalent to N/D = N ′/D′ = N ′′/D′′. This follows
from the quotient rule:

ψ′ =
DN ′ −ND′

D2
,

ψ′′ =
DN ′′ −ND′′

D2
− 2

D′(DN ′ −ND′)
D3

. (27)
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Step 1. Since N and D have double roots at ε̃ = ε, we can do a Taylor series for both of
them near ε̃ = ε:

ψk(ε, ε̃) =
N ′′(ε, ε)(ε̃− ε)2/2 +N ′′′(ε, ε)(ε̃− ε)3/6 + · · ·
D′′(ε, ε)(ε̃− ε)2/2 +D′′′(ε, ε)(ε̃− ε)3/6 + · · ·

=
N ′′(ε, ε) +N ′′′(ε, ε)(ε̃− ε)/3 + · · ·
D′′(ε, ε) +D′′′(ε, ε)(ε̃− ε)/3 + · · · . (28)

ψ′k(ε, ε) = 0 is then equivalent to

N ′′(ε, ε)D′′′(ε, ε) = N ′′′(ε, ε)D′′(ε, ε)

−k(k − 1)(k − 2)εk−3

ε(1− ε) =
−k(k − 1)εk−2(1− 2ε)

ε2(1− ε)2

(k − 2)(1− ε) = 1− 2ε
kε = k − 1. (29)

Step 2. If ψ′k = ψ′′k = 0, then we must have N ′D′′ = D′N ′′ and ND′′ = DN ′′. We will
explore these in turn. We write

0 = N ′D′′ −D′N ′′ =
∫ ε

ε̃

D′′(ε, ε̃)Ṅ ′(x, ε̃)−N ′′(ε, ε̃)Ḋ′(x, ε̃)dx. (30)

Explicitly, this becomes

0 =

∫ ε

ε̃

k(k − 1)

ε̃(1− ε̃)x(1− x)

[
ε̃k−1(1− ε̃)− xk−1(1− x)

]
dx. (31)

The function xk−1(1 − x) has a single maximum at x = (k − 1)/k. If both ε and ε̃ are
on the same side of this maximum, then the integrand will have the same sign for all x
between ε̃ and ε, and the integral will not be zero. Thus we must have ε < (k− 1)/k < ε̃, or
vice-versa, and we must have εk−1(1− ε) < ε̃k−1(1− ε̃). Note that in this case the integrand
changes sign exactly once.

Now we apply the same sort of analysis to the other equation:

0 = ND′′ −DN ′′ =
∫ ε

ε̃

D′′(x, ε̃)Ṅ(x, ε̃)−N ′′(x, ε̃)Ḋ(x, ε̃)dx. (32)

Explicitly, this becomes

0 =

∫ ε

ε̃

k(k − 1)

ε̃(1− ε̃)x(1− x)

[
ε̃k−1(1− ε̃)− xk−1(1− x)

]
(ε̃− x)dx. (33)

This is the same integral as before, only with an extra factor of (ε̃ − x). If we view the
first integral (31) as a mass distribution (with total mass zero), then the second integral is
(minus) the first moment of this mass distribution relative to the endpoint ε̃. But we have
already seen that the distribution changes sign exactly once, and so must have a non-zero
first moment. This is a contradiction.
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Step 3. If ND′ = DN ′, then N/D = N ′/D′. Call this common ration r. Then

N = rD and N ′ = rD′. (34)

Note that N ′ and D′ are odd under interchange of ε and ε̃, so the second equation is invariant
under this interchange. Furthermore, we have (ε̃− ε)N ′ −N = r[(ε̃− ε)D′ −D]. However,
(ε̃− ε)N ′−N is the same as N with the roles of ε and ε̃ reversed, while (ε̃− ε)D′−D is the
same as D with the roles of ε and ε̃ reversed. Thus the two equations are satisfied for (ε, ε̃)
if and only if they are satisfied for (ε̃, ε).

Step 4. For k = 2 we explicitly compute that ψ′2 = 0 only at ε̃ = 1 − ε. If kmin is the
infimum of all values of k for which ψk has multiple critical points, then at a critical point
of ψkmin

we must have ψ′k = ψ′′k = 0, which is a contradiction. Thus kmin does not exist, and
ψk has a unique critical point for all k ≥ 2. In particular, ζk is a well-defined function.

Step 5. The function ζk is defined by the condition that DN ′ − ND′ = 0 (and ε̃ 6= ε,
except when ε = (k − 1)/k). Let f(ẽ, e) = DN ′ − ND′ = D2ψ′. Moving along the curve
ε̃ = ζk(ε) (that is, f = 0), we differentiate implicitly:

0 = df = ḟdε+ f ′dε̃, (35)

so
dε̃

dε
=
−ḟ
f ′
. (36)

We compute f ′ = DN ′′ −ND′′. This is nonzero by Step 2. We also have

ḟ = DṄ ′ − ṄD′ + ḊN ′ −NḊ′
= −2S ′′0 (ε)(D − (ε̃− ε)D)′ + k(k − 1)εk−2(N − (ε̃− ε)N ′)
= 2S ′′0 (ε)[εk − ε̃k + k(ε̃− ε)ε̃k−1]− 2k(k − 1)εk−2[S0(ε)− S0(ε̃) + (ε̃− ε)S ′0(ε̃)]
= D(ε̃, ε)N ′′(ε̃, ε)−N(ε̃, ε)D′′(ε̃, ε). (37)

The arguments in the last line are written in the correct order! That is, ḟ is the same as f ′,
only with the roles of ε and ε̃ reversed. Since the equation f = 0 is symmetric in ε and ε̃,
the argument of Step 2 can be repeated to show that ḟ 6= 0.

Since dε̃/dε is never zero, and since dε̃/dε = −1 at the fixed point (by symmetry),
ζ ′k(ε) = dε̃/dε must always be negative.

4 Theorem 1.1 for k-stars

Theorem 4.1. Let H be a k-star and suppose that ε 6= (k − 1)/k. Then there exists a
number τ0 > εk such that for all τ ∈ (εk, τ0), the entropy-optimizing graphon at (ε, τ) is
unique and bipodal. The parameters (c, p11, p12, p22) are analytic functions of ε and τ . As τ
approaches εk from above, p22 → ε, p12 → ζk(ε), p11 satisfies S ′0(p11) = 2S ′0(p12) − S ′0(p22)
and c = O(τ − εk).
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Proof. The entropy-maximizing graphon for each (ε, τ) is multipodal [6], and the parameters
{cj} and {p12} must satisfy the optimality conditions (18), (19). The first step of the proof
is to estimate the terms in the optimality equations to within o(1). This will determine the
solutions to within o(1) and demonstrate that our optimizing graphon is close to bipodal
of the desired form. The second step, based on a separate argument, will show that the
optimizer is exactly bipodal. The third step shows that the optimizer is in fact unique.

In doing our asymptotic analysis, our small parameter is ∆τ := τ−εk. But we could just
as well use ∆s := s(g)−S0(ε) or the squared L2 norm of ∆g := g−g0, where g0(x, y) = ε (here
g denotes the graphon as a function [0, 1]2 → [0, 1], not a vector of multipodal parameters.)
We claim that these are all of the same order. Through arguments found in [14], one can
bound ∆τ above by a multiple of ‖∆g‖2, and bound |∆s| below by a multiple of ‖∆g‖2. By
considering a bipodal graphon with p11 = p12 = ζk(ε) and p22 close to ε, we can bound |∆s|
above by a constant times ∆τ . This shows that O(∆s) = O(∆τ), and O(‖∆g‖2) is trapped
in between.

Order the clusters so that the largest cluster is the last cluster (of length cM). By
subtracting the equation (19) for cM from the equations for cj, we eliminate γ from our
equations:

S ′0(pij) = α +
k

2
β(dk−1

i + dk−1
j )

2
M∑
j=1

cj (S0(pij)−S0(pMj)) = 2α(di−dM) + β

(
dki −dkM+k

M∑
j=1

cjd
k−1
j (pij−pMj)

)
.(38)

Step 1. Since ‖∆g‖ is small, the area of the region where g(x, y) differs substantially from
ε must be small. Thus all clusters must either have di close to ε or ci close to zero (or both).
We call a cluster Type I if ci is close to 0 and Type II if di is close to ε. (If a cluster meets
both conditions, we arbitrarily throw it into one camp of the other). The first equation in
(38) implies that, for fixed i, the values of pij are nearly constant for all j of Type II. Since
the cj’s are small for j of Type I, this common value must be close to di. To within o(1),
our equations then simplify to

S ′0(di) = α +
k

2
β(dk−1

i + εk−1),

S0(di)− S0(ε) = α(di − ε) + β[dki − εk + kεk−1(di − ε)]. (39)

Since dM = ε+ o(1), the first of those equations applied to dM implies that

α + kεk−1β = S ′0(ε) + o(1). (40)

We can thus replace α with S ′0(ε) − kεk−1β + o(1) throughout. This gives the equations
(again with o(1) errors):

2(S ′0(di)− S ′0(ε)) = kβ(dk−1
i − εk−1),

2[S0(di)− S0(ε)− S ′0(ε)(di − ε)] = β[dki − εk − kεk−1(di − ε)]. (41)

There are two solutions to these equations. One is simply to have di = ε, in which case
both equations say 0 = 0. Indeed, we already know that there must be clusters with di close
to ε. In looking for solutions with di 6= ε, the second equation says that β = ψk(ε, di).
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We can also divide the first equation by the second to eliminate β. This gives an equation
that is algebraically equivalent to ∂ψk(ε, di)/∂di = 0. In other words, di must be the unique
critical point ζk(ε) of ψk, and β must be the critical value. In fact, the critical point is a
maximum of ψk. Remember that s(ε, τ) = s(ε, εk) +

∫ τ
εk
β from (22). Since the computation

of β is independent of ∆τ (to lowest order), we have s(ε, τ) − s(ε, εk) = βδτ + o(∆τ), so
maximizing β is tantamount to maximizing s.

Step 2. We have shown so far that the optimizing graphon is multipodal, with all of the
clusters either having di close to ζk(ε) or close to ε. We refine our definitions of Type I and
Type II so that all the clusters with di close to ζk(ε) are Type I and all the clusters with
di close to ε are Type II. Since the value of g(x, y) is determined by d(x) and d(y) (and
α and β), this means that the optimizing graphon is nearly constant (i.e. with pointwise
small fluctuations) on each quadrant. We order the clusters so that the Type I clusters come
before Type II.

Let gb be the bipodal graphon obtained by averaging over each quadrant. Let ∆gf =
g− gb. (The f stands for “further”.) We will show that having ∆gf non-zero is an inefficient
way to increase τ , that is, (s(g)− s(gb))/(τ(g)− τ(gb)) is less than β. This will imply that
∆gf = 0 and so g = gb.

Since τ =
∫ 1

0
d(x)kdx, the changes in τ are a function only of the marginal distributions

of ∆gf . Once these are fixed, the values of ∆gf on each quadrant must take the form

∆gf (x, y) = (function of x) + (function of y). (42)

The reason is that we can write the entropy on each quadrant as
∫∫

S0(gb + ∆gf ) =∫∫
S0(gb) + S ′0(gb)∆gf + (1/2)S ′′0 (gb)∆g

2
f + · · · . The first term is independent of ∆gf and

the second is zero (since gb was assumed to equal the average value of g = gb + ∆gf on the
quadrant). Since the changes to the graphon are pointwise small, we can ignore terms past
the second, so we are basically left with S ′′0 (gb)/2 times the squared L2 norm of ∆gf on the
quadrant, which we then minimize subject to the constraint that the marginal distributions
are fixed. We can write ∆gf (x, y) = φ1(x) + φ2(y) + φ3(x, y), where φ1 and φ2 give the two
fixed marginals, and φ3 has zero marginals. But then

∫
∆g2

f =
∫
φ2

1 + φ2
2 + φ2

3, since all of
the cross terms integrate to zero. (Integrating φ2(y)φ3(x, y) over x or φ1(x)φ3(x, y) over y
gives zero since φ3 has zero marginals, and integrating φ1(x)φ2(y) over either x or y gives
zero since φ1 and φ2 have mean zero). The way to minimize

∫
∆g2

f is simply to take φ3 = 0.
This establishes (42).

Furthermore, to maximize τ(g) − τ(gb), the functions of x should be the same (up to
scale) in the I-I and I-II quadrants, and the same (up to scale) in the II-I and II-II

quadrants. This is because τ(g) − τ(gb) ≈
∫ 1

0
k(k − 1)εk−2δd(x)2dx involves a cross term

between the contributions to δd(x) from two quadrants, and this cross term is maximized
when the corresponding functions point in the same direction.

The upshot is that there are functions F1(x) on [0, c] and F2(x) on [c, 1], each with mean
zero and normalized to have root-mean-squared 1, and constants µ, ν, κ, λ, such that
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∆gf (x, y) = µF1(x) + µF1(y) on the I-I square.
∆gf (x, y) = νF1(x) + κF2(y) on the I-II rectangle.
∆gf (x, y) = λF2(x) + λF2(y) on the II-II square. (43)

Now we compute the changes in τ and in s, to second order in (µ, ν, κ, λ), noting that all
of the first-order changes are zero, and that the integral of ∆g2

f over the I-I square, the two
rectangles, and the II-II square are 2c2µ2, 2c(1− c)(ν2 + κ2), and 2(1− c)2λ2, respectively.

s(g)− s(gb) = µ2c2S ′′0 (p11) + ν2c(1− c)S ′′0 (p12)
+ κ2c(1− c)S ′′0 (p12) + λ2(1− c)2S ′′0 (p22),

τ(g)− τ(gb) = ck(k − 1)dk−2
1 (µc+ ν(1− c))2/2 +

+ (1− c)k(k − 1)dk−2
2 (κc+ λ(1− c))2/2. (44)

Both the change in s and the change in τ are the sum of two terms, one involving µ and ν,
and the other involving κ and λ. Let:

A1 = µ2c2S ′′0 (p11) + ν2c(1− c)S ′′0 (p12),
A2 = κ2c(1− c)S ′′0 (p12) + λ2(1− c)2S ′′0 (p22),
B1 = ck(k − 1)dk−2

1 (µc+ ν(1− c))2/2,
B2 = (1− c)k(k − 1)dk−2

2 (κc+ λ(1− c))2/2, (45)

so to lowest order,
S(g)− S(gb)

τk(g)− τk(gb)
=
A1 + A2

B1 +B2

. (46)

For the perturbations involving only κ and λ, the ratio A2/B2 depends only on r = κ/λ:

A2

B2

=
2[r2cS ′′0 (p12) + (1− c)S ′′0 (p22)]

k(k − 1)dk−2
2 (rc+ (1− c))2/2

. (47)

We optimize by taking a derivative w.r.t. r and setting it equal to zero, with the result
that r = S ′′0 (p22)/S ′′0 (p12), independent of c. Since r does not diverge as c → 0, the limit
of A2/B2 as c → 0 can be obtained by simply setting c = 0, giving a limiting ratio of
2S ′′0 (ε)/[k(k − 1)dk−2

2 ] = ψk(ε, ε) < β. Since the limit is less than β, the ratio must be
smaller than β for all sufficiently small values of c.

Almost identical arguments apply to the perturbations involving only µ and ν. The
optimal ratio µ/ν is then S ′′0 (p12)/S ′′0 (p11), which again cannot diverge as c → 0. Thus for
small values of c the dominant terms are those involving ν, and the ratio A1/B1 approaches
2S ′′0 (p12)/[k(k − 1)dk−2

1 ]. But d1 ≈ p12 ≈ ε̃, so our ratio goes to 2S ′′0 (ε̃)/[k(k − 1)ε̃k−2] =
ψk(ε̃, ε̃) < β.

Thus there is a constant β0 < β such that A1 ≤ β0B1 and A2 ≤ β0B2, so A1 + A2 <
β0(B1 +B2), so

s(g)− s(gb) ≤ β0(τ(g)− τ(gb)). (48)
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However ds/dτ ≈ β for changes in c that preserve the bipodal structure. This means
if we perturb a bipodal graphon to maximize s, it is better to perturb c than to make
(µ, ν, κ, λ) nonzero. Thus κ and λ must both be zero, implying that there is only one Type
II cluster, and µ and ν must be zero, implying that there is only one Type I cluster.

Step 3. We have established that the minimizing graphon is bipodal, with p22 ≈ ε and
p12 ≈ ζk(ε) . We now show that the form of this graphon is unique. Since the equation is
bipodal, we consider the exact optimality equations. After eliminating γ, we have

S ′0(p11) = α + kβdk−1
1 ,

S ′0(p12) = α +
k

2
β(dk−1

1 + dk−1
2 ),

S ′0(p22) = α + kβdk−1
2 ,

∂S

∂c
= α

∂ε

∂c
+ β

∂τ

∂c
,

ε = ε0,
τ = τ0. (49)

We use the second and third equations to solve for α and β:

α =
−S ′0(p22)(dk−1

2 + dk−1
1 ) + 2dk−1

2 S ′0(p12)

dk−1
2 − dk−1

1

,

β =
2

k

S ′0(p22)− S ′0(p12)

dk−1
2 − dk−1

1

. (50)

Plugging this into the first equation then gives

S ′0(p11)− 2S ′0(p12) + S ′0(p22) = 0. (51)

This leaves four equations in four unknowns, which we write as

~f =


0
0
e0

t0

 , (52)

where

f1 = S ′0(p11)− 2S ′0(p12) + S ′0(p22),

f2 =
∂s

∂c
− α∂ε

∂c
− β∂τ

∂c
,

f3 = c2p11 + 2c(1− c)p12 + (1− c)2p22,
f4 = cdk1 + (1− c)dk2, (53)

and where α and β are given by (50).
We know a solution when τ0 = εk0, namely p22 = ε0, p12 = ζk(ε0), c = 0 and p11 =

S ′0
−1(2S ′0[ζk(ε0)]−S ′0(ε0)). We will show that d~f has non-zero determinant at this point. By

the inverse function theorem, this implies that, when τ0 is close to εk0, there is only one value
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of (p11, p12, p22, c) close to this point for which f(p11, p12, p22, c) = (0, 0, ε0, τ0)T . Moreover,
the parameters (p11, p12, p22, c) depend analytically on ε0 and τ0. This will complete the
proof. (Note that we have reordered the variables by listing c last.)

The derivatives of f1, f3, and f4 are:

df1 = (S ′′0 (p11),−2S ′′0 (p12), S ′′0 (p22), 0),
df3 = (c2, 2c(1− c), (1− c)2, 2cp11 + 2(1− 2c)p12 − 2(1− c)p22),
df4 = (kc2dk−1

1 , kc(1− c)(dk−1
1 + dk−1

2 ), k(1− c)2dk−1
2 ,

dk1 − dk2 + kcdk−1
1 (p11 − p12) + k(1− c)dk−1

2 (p12 − p22)). (54)

Evaluating at c = 0 gives

df1 = (S ′′0 (p11),−2S ′′0 (p12), S ′′0 (p22), 0),
df3 = (0, 0, 1, 2p12 − 2p22),
df4 = (0, 0, kpk−1

22 , pk12 − pk22 + kpk−1
22 (p12 − p22)). (55)

df is block triangular, with 2× 2 blocks. The lower right block has determinant pk12 − pk22 −
kpk−1

22 (p12 − p22) = D(p22, p12), which is non-zero when p12 6= p22, i.e. when ε0 6= (k − 1)/k.
Also ∂f2/∂p11 = 0 when c = 0, since α and β are independent of p11 (when c = 0) and

since ∂2S/∂c∂p11, ∂2ε/∂c∂p11 and ∂2t/∂c∂p11 are all O(c). As a result,

det(df) = S ′′0 (p11)∂f2/∂p12D(p22, p12). (56)

So as long as p12 6= p22 (i.e. as long as ε0 6= (k − 1)/k), everything boils down to
computing ∂f2/∂p12 at c = 0 and seeing that it is nonzero. We compute

∂β

∂p12

=
2

k

(pk−1
22 − pk−1

12 )(−S ′′0 (p12))− (S ′0(p22)− S ′0(p12))(−(k − 1)pk−2
12 )

(pk−1
22 − pk−1

12 )2

=
2

k

(k − 1)pk−2
12 (S ′0(p22)− S ′0(p12))− (pk−1

22 − pk−1
12 )S ′′0 (p12)

(pk−1
22 − pk−1

12 )2
(57)

at c = 0. We will show separately that this quantity is nonzero.
Since α = S ′0(p22)− kβdk−1

2 ,

∂α

∂p12

= −kdk−1
2

∂β

∂p12

− k(k − 1)βdk−2
2

∂d2

∂p12

= −kdk−1
2

∂β

∂p12

− k(k − 1)dk−2
2 cβ ⇒ −kpk−1

22

∂β

∂p12

, (58)

where ⇒ denotes a limit as c→ 0. We also compute

∂2S

∂c∂p12

= 2(1− 2c)S ′0(p12)⇒ 2S ′0(p12)

∂2e

∂c∂p12

= 2(1− 2c)⇒ 2

∂2t

∂c∂p12

= k(1− 2c)(dk−1
1 + dk−1

2 )⇒ k(pk−1
12 + pk−1

22 ) (59)
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Finally we combine everything:

∂f2

∂p12

∣∣∣
c=0

=
∂2S

∂c∂p12

− ∂α

∂p12

∂ε

∂c
− α ∂2ε

∂c∂p12

− ∂β

∂p12

∂τ

∂c
− β ∂2τ

∂c∂p12

= 2S ′0(p12)− 2α− βk(pk−1
12 + pk−1

22 )

+
(
kpk−1

22 (2p12 − 2p22)− (pk12 − pk22 + kpk−1
22 (p12 − p22))

) ∂β

∂p12

. (60)

The terms not involving ∂β/∂p12 all cancel, by the second variational equation, and we are
left with

∂f2

∂p12

= −D(p12, p22)
∂β

∂p12

. (61)

Finally, we need to show that ∂β/∂p12 6= 0. Since p12 maximizes ψk(p22, p12) (for fixed
p22), we must have (referring to the notation of the proof of Theorem 3.3) (N/D)′ = 0,
or equivalently N ′/D′ = N/D, where we write ψk = N/D, as above. But β = N ′/D′. If
∂β/∂p12 were equal to zero, then we would have N ′′/D′′ = N ′/D′. But we have previously
shown that it is impossible to simultaneously have N/D = N ′/D′ = N ′′/D′′, except at
p12 = p22 = (k − 1)/k, so ∂β/∂p12 must be nonzero whenever ε0 6= (k − 1)/k. This makes

det(d~f) nonzero at (p11, ζk(ε0), ε0, 0), so the solutions near this point are unique and analytic
in (ε, τ).

5 Theorem 1.1 for k-starlike graphs.

Now suppose that H is a k-starlike graph with ` edges, and with nk vertices of degree k, and
let τ be the density of H and τk be the density of k-stars. Our first result relates ∆τ := τ−ε`
to ∆τk := τk − εk.
Lemma 5.1. If g is an entropy-maximizing graphon for (ε, τ) with τ > ε`, then ∆τ =

nkε
`−k∆τk +O(∆τ

3/2
k ).

Proof. Writing g(x, y) = ε+ ∆g(x, y), we expand τ as a polynomial in ∆g:

τ =

∫
dx
∏

g(xi, xj) =

∫
dx
∏

(ε+ ∆g(xi, xj)), (62)

where there is a variable xi for each vertex of H and the product is over all edges in H.
The 0-th order term is ε`. The first-order term is identically zero, since

∫∫
∆g(x, y)dx dy =

∆ε = 0. When looking at higher-order expansions, there are some terms that come from
having all ∆g’s along edges that share a single vertex of degree k. These terms also appear
in the expansion of τk, so the sum of those terms is exactly ε`−k∆τk. Since all vertices have
degree k or 1, summing these terms gives nkε

`−k∆τk.
What remains are terms where the ∆g’s refer to edges that do not all share a vertex. We

bound these in turn. In each case, let {ei} be the set of edges that correspond to factors of
∆g.

• If one of the ei’s is disconnected from the rest, then the integral is exactly zero. So we
can assume that all connected components of {ei} contain at least two edges.
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• If there is more than one connected component, then we get a product of factors, one
for each connected component. Each factor is bounded by a constant times ‖∆g‖2, so
the product is O(‖∆g‖4).

• If there is only one connected component, whose edges do not all share a vertex,
then {ei} either contains a triangle or a chain of three consecutive edges. We bound
such terms by taking absolute values of all the ∆g’s and setting all terms other
than the three edges in the triangle or 3-chain to 1. The result is either a con-
stant times

∫∫∫∫
|∆g(w, x)||∆g(x, y)||∆g(y, z)|dw dx dy dz, or by a constant times∫∫∫

|∆g(x, y)||∆g(y, z)||∆g(z, x)|dx dy dz, either of which in turn is bounded by a
constant times ‖∆g‖3. (If we then think of |∆g| as the integral kernel of an operator
L on L2(0, 1), then the integral for a 3-chain is the expectation of L3 in a partic-
ular state, and the integral for a triangle is the trace of L3. Both are bounded by
Tr(L2)3/2 = ‖|∆g|‖3 = ‖∆g‖3. )

Since ∆τk scales as ‖∆g‖2, all the corrections to the approximation ∆τ ≈ nkε
`−k∆τk are

O(∆τ
3/2
k ) or smaller.

5.1 Proof of Theorem 1.1

Since ∆τ is proportional to ∆τk (plus small errors), the problem of optimizing ∆s/∆τ is a
small perturbation of the problem of optimizing ∆s/∆τk, or equivalently optimizing ∆s for
fixed ∆τk, which we solved in the last section. Since that problem has a unique optimizer,
any optimizer for ∆s/∆τ must come close to optimizing ∆s/∆τk, and so must be close to
the bipodal graphon derived in Theorem 4.1.

We can thus write g = gb + ∆gf , as in the last steps of the proof of Theorem 4.1, where
gb = ε+ ∆gb is a bipodal graphon with p22 ≈ ε and p12 ≈ ζk(ε) and where ∆gf is a function
that averages to zero on each quadrant of gb.

Lemma 5.2. The function ∆gf is pointwise small. That is, as τ → ε`, ∆gf goes to zero in
sup-norm.

Proof of lemma. Since we no longer in the setting where the entropy maximizer is proven
to be multipodal, we cannot use the equations (38) directly. However, we can still apply
the method of Lagrange multipliers to pointwise variations of the graphon. (See [6] for a
rigorous justification.) These variational equations are

1

2
ln

(
1

g(x, y)
− 1

)
=

δs

δg(x, y)
= α + β

δτ

δg(x, y)
. (63)

We need to compute δτ/δg and show that it is nearly constant on each quadrant. Since α
and β are constants, this would imply that g(x, y) is nearly constant on each quadrant, and
hence that ∆gf is pointwise small. Let g0(x, y) = ε.

Since ‖∆g‖ is small (where ∆g = g − g0 = ∆gb + ∆gf ), we can find a small constant

a = o(1) such that, for all x outside a set U ⊂ [0, 1] of measure a,
∫ 1

0
|∆g(x, y)|dy < a. (This

set U is essentially what we previously called the Type I clusters, but at this stage of the
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argument we are not assuming a multipodal structure. Rather, we are just using the fact
that τ − e` = O(‖∆g‖2).)

The functional derivative δτ/δg has a diagrammatic expansion similar to the expansion
of τ . For each edge of H, we get a contribution by deleting the edge, assigning the values
x and y to the endpoints of the edge, and integrating over the values of all other vertices.
Since U is small, we can estimate δτ/δg to within o(1) by restricting the integral to (U c)v−2,
where v is the number of vertices in H and U c is the complement of U . This implies that
terms involving ∆g can only contribute non-negligibly on edges connected to x or to y.
Furthermore, they can only contribute when attached to x if x ∈ U , and can only contribute
when attached to y if y ∈ U .

We now begin a bootstrap. We will show that δτ/δg is nearly constant on each quadrant
U c × U c, U × U c, U × U in turn. This will show that g is nearly constant on that quadrant,
which will help us prove that δτ/δg is nearly constant on the next quadrant.

If x and y are both in U c, then the contributions of the terms involving ∆g are negligible,
so δτ/δg(x, y) can be computed, to within a small error, using the approximation g(x, y) ≈ ε.
But when g(x, y) = ε, δτ/δg(x, y) is independent of x and y. Since δτ/δg(x, y) is nearly
constant on U c×U c, equation (63) implies that g is nearly constant on U c×U c. In particular,
∆gf is pointwise small on U c × U c.

Next suppose that y ∈ U c and x ∈ U . Then δτ/δg(x, y) is nearly independent of y,
so g(x, y) is nearly independent of y, and is nearly equal to d(x). But then the integrals
involved in computing δτ/δg(x, y) are easy, where we use g0 + ∆g on the edges connected
to x, g0 on all other edges, and only integrate over (U c)v−2. If the degree of x is k, then the
edges connected to x contribute d(x)k−1e`−k. Summing over edges, and symmetrizing over
the assignment of x and y to the two endpoints, we obtain the approximation

δτ

δg(x, y)
≈ knkε

`−k

2

(
d(x)k−1 + d(y)k−1

)
. (64)

Up to an overall factor of nkε
`−k, this is the same functional derivative as for a k-star. This

also applies if x ∈ U c, except that in the latter case d(x) ≈ ε, and also applies if x ∈ U c and
y ∈ U .

In other words, we can use the approximation (64) in (63) whenever either x or y (or
both) is in U c. This implies that the integrated equations (39) apply for all x (with di
replaced by d(x), and with β scaled up by nkε

`−k). Following the exact same reasoning as
in the proof of Theorem 4.1, we obtain that d(x) only takes on 2 possible values (up to
o(1) errors). We then define Type I and Type II points, depending on whether the degree
function is close to ζk(ε) or ε, respectively, so that U is precisely the set of Type I points.
Our graphon is then nearly constant on the I-II, II − I and II-II quadrants.

We still need to show that the graphon is nearly constant in the I-I quadrant. Suppose
that x and y are in U . In computing δτ/δg(x, y), we approximate our integral by integrating
over (U c)v−2. But if z ∈ U c, then g(x, z) is (nearly) independent of x, since we have just
established that g is nearly constant on the I-II quadrant. Thus δτ/δg (which is obtained
by integrating products of terms g(x, z)) is nearly independent of x. Likewise, it is nearly
independent of y, implying that g(x, y) is nearly constant on the I-I quadrant.

Note, by the way, that the approximation (64) does not apply in the I-I quadrant; in that
case δτ/δg contains terms with powers of both d(x) and d(y). However, that approximation
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is not needed for our proof, since the I-I quadrant only contributes O(c) to the integrated
equations (39).

Returning to the proof of Theorem 1.1, we need to compare s(gb + ∆gf ) − s(gb) to
τ(gb + ∆gf )− τ(gb).

As before, we expand τ(g) as the integral of a polynomial in g, obtained by assigning
g0 + ∆gb + ∆gf to each edge of H and integrating. The difference between τ(gb + ∆gf ) and
τ(gb) consists of terms with at least one ∆gf . However, the terms with exactly one ∆gf
are identically zero, since gb is constant on quadrants, and ∆gf averages to zero on each
quadrant. Furthermore, terms for which all of the ∆gb’s and ∆gf ’s share a vertex are exactly
what we would get from the approximation ∆τ ≈ nkε

`−kτk. Any term that distinguishes
between ∆τ and nkε

`−k∆τk must have at least two ∆gf ’s and either a third ∆gf or a ∆gb,
forming either a 3-chain, a triangle, or two connected ∆gf ’s and a disconnected ∆gb.

Let ∆g′f (x, y) = |∆gf (x, y)|, and let

∆g′b(x, y) =

{
2c x, y ∈ II,
1 otherwise.

(65)

This is conveniently expressed in terms of outer products. Let |1〉 ∈ L2([0, 1]) be the constant
function 1, and let |ω〉 be the function

ω(x) =

{
0 x < c,

1 x > c.
(66)

Then

∆g′b = |1〉〈1| − |ω〉〈ω|+ 2c|ω〉〈ω|
= |1〉〈1− ω|+ |1− ω〉〈ω|+ 2c|ω〉〈ω|. (67)

Note that |∆gb(x, y)| ≤ ∆g′b(x, y) for all x, y ∈ (0, 1). To see this, the only issue is what
happens when (x, y) is in the II − II quadrant, since otherwise we trivially have |∆gb| ≤ 1.
Since e(g) is fixed, (1 − c)2 times ∆gb(x, y) for x, y > c equals minus the integral of ∆gb
over the other three quadrants. But the area of those three quadrants is 2c − c2 < 2c, and
the biggest possible value of |∆gb| is max(e, 1− e) < 1, so 1

(1−c)2
∫
|∆gb| (integrated over the

I − I, I − II and II − I quadrants) is strictly less than 2c + O(c2), and so is bounded by
2c for small c (note that O(c2) errors are negligible).

We obtain upper bounds on the contributions of the relevant terms in the expansion of
τ by replacing three ∆gf (x, y)’s and ∆gb(x, y)’s with ∆g′f (x, y) and ∆g′b(x, y), respectively,
and replacing all other terms with 1.

Since all graphons are symmetric, hence Hermitian, their operator norms are bounded
by their L2 norms, so for any 3-chain

〈1|∆g′1∆g′2∆g′3|1〉 ≤ ‖∆g′1‖‖∆g′2‖‖∆g′3‖. (68)

Since ‖∆g′b‖ and ‖∆g′f‖ are both o(1) (more precisely, O(
√
τ − ε`)), the contribution of any

3-chain is bounded by an o(1) constant times ‖∆gf‖2.
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As for triangles, Tr(∆g′3f ) ≤ ‖∆g′f‖3 = ‖∆gf‖3. Finally, we must estimate the trace of
∆g′f∆g

′
f∆g

′
b. But this trace is

〈1− ω|∆g′f∆g′f |1〉+ 〈ω|∆g′f∆g′f |1− ω〉+ 2c〈ω|∆g′f∆g′f |ω〉. (69)

Since ‖1− ω‖ =
√
c, the total is bounded by (2

√
c+ 2c2)‖∆gf‖2.

The upshot is that the ratio of s(gb + ∆gf )− s(gb) and τ(gb + ∆gf )− τ(gb) is the same as
that computed for k-stars (up to an overall factor of nkε

`−k), plus an o(1) correction. But
that ratio was bounded by a constant β0 < β. Restricting attention to values of τ for which
the correction is smaller than (β − β0)/2, we still obtain the result that having a non-zero
∆gf is a less efficient way of generating additional τ than simply changing c. Thus the
optimizing graphon is exactly bipodal.

Once bipodality is established, uniquenesss follows exactly as in the proof of Theorem
4.1. The difference between ∆τ and nkε

`−k∆τk is of order c3/2, and so does not affect the
linearization of the optimality equations at c = 0.

6 Linear combinations of k-stars

We proved Theorem 1.1 by first showing that k-star models have the desired behavior,
and then showing that, for an arbitrary k-starlike graph H, ∆τ is well-approximated by a
multiple of ∆τk, so the model with densities of edges and H behaves essentially the same as
a model with densities of edges and k-stars.

To prove Theorem 1.2, we consider in this section a family of models in which we can
prove bipodality and uniqueness of entropy maximizers directly, as we did for k-stars. In the
next section, we will show how to approximate a model with an arbitrary H with a model
in this family.

Let h(x) =
∑

k≥1 akx
k be a polynomial with non-negative coefficients and degree ≥ 2.

Let τ =
∑
akτk, and consider graphs with fixed edge density ε and fixed τ . In [6] it was

proved that the entropy-maximizing graphons in such models are always multipodal.
Most of the analysis of k-star models carries over to positive linear combinations, and so

will only be sketched briefly. We will provide complete details where the arguments differ.
In analogy to our earlier development, let ψ(ε, ε̃) = N/D, where

N(ε, ε̃) = 2[S0(ε̃)− S0(ε)− (ε̃− ε)S ′0(ε)],
D(ε, ε̃) = h(ε̃)− h(ε)− (ε̃− ε)h′(ε). (70)

Since h′′(x) is positive for x > 0, D is only zero when ε̃ = ε, and we fill in that removable
singularity in ψ by defining ψ(ε, ε) = 2S ′′0 (ε)/h′′(ε).

Theorem 6.1. For all but finitely many values of ε, there is a τ0 > h(ε) such that, for
τ ∈ (h(ε), τ0), the entropy-optimizing graphon is bipodal and unique, with data varying
analytically with ε and τ . As τ approaches h(ε) from above, p22 → ε, p12 approaches a
point ε̃ where ψ′(ε, ε̃) = 0, p11 satisfies S ′0(p11) = 2S ′0(p12)− S ′0(p22) and c→ 0 as O(∆τ).
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Proof. For a multipodal graphon, τ(g) =
∑
cih(di). After eliminating γ, the optimality

equations become

S ′0(pij) = α + β(h′(di) + h′(dj))/2, (71)

2
∑
j=1

cj(S0(pij)−S0(pMj)) = 2α(di−dM) + β
[
h(di)−h(dM) +

M∑
j=1

cjh
′(dj)(pij−pMj)

]
. (72)

As before, we distinguish between Type I clusters that are small and Type II clusters that
have di ≈ ε. Summing the optimality equations over j of Type II, and approximating dj by
ε, we obtain the equations

S ′0(di) = α + β (h′(di) + h′(ε)) /2, (73)

S0(di)− S0(ε) = α(di − ε) + β [h(di)− h(ε) + h′(ε)(di − ε)] , (74)

that are accurate to within o(1). We use the first equation, with i = M (a type II cluster),
to solve for α, and plug it into the equations for i < M to get

2(S ′0(di)− S ′0(ε)) = β(h′(di)− h′(ε)), (75)

2[S0(di)− S0(ε)− S ′0(ε)(di − ε)] = β[h(di)− h(ε)− h′(ε)(di − ε)], (76)

again to within o(1). As before in the proof of Theorem 4.1, this implies that either di ≈ ε
or that ψ(ε, di) is maximized with respect to di.

Unlike in the k-star case, it is not true that ψ′(ε, ε̃) has a unique solution for each ε.
However, it remains true that ψ(ε, ε̃) has a unique global maximizer (w.r.t. ε̃) for all but
finitely many values of ε. Since the equations defining multiple maxima are analytic, they
must be satisfied either for all ε or for only finitely many ε. But it is straightforward to
check that there is only one maximizer when ε is sufficiently small, since then h(ε) and h′(ε)
are dominated by the lowest order term in the polynomial.

Thus, for all but finitely many values of ε, the values of di must all either approximate ε or
the unique value of ε̃ that maximizes ψ(ε, ε̃). This allows for a re-segregation of the clusters
into Type I (with di close to ε̃) and Type II (with di close to ε) and yields a graphon that
is approximately bipodal. Step 2 of the proof of Theorem 4.1, proving that the optimizing
graphon is exactly bipodal with data of the desired form, then procedes exactly as before.

What remains is showing that the optimizing graphon is unique by linearizing the exact
optimality equations for bipodal graphons near c = 0. These equations are:

S ′0(p11) = α + βh′(d1),
S ′0(p12) = α + β(h′(d1) + h′(d2))/2,
S ′0(p22) = α + βh′(d2),

∂S

∂c
= α

∂ε

∂c
+ β

∂ε

∂c
,

ε = ε0,
τ = τ0. (77)

Using the second and third equations to eliminate α and β gives:
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α =
2h′(d2)S ′0(p12)− S ′0(p22)(h′(d2) + h′(d1))

h′(d2)− h′(d1)
,

β =
2(S ′0(p22)− S ′0(p12))

h′(d2)− h′(d1)
. (78)

We also have α = S ′0(p22)− βh′(d2) and S ′0(p11) = 2S ′0(p12)− S ′0(p22). Note that

∂α

∂p12

= −βch′′(d2)− h′(d2)
∂β

∂p12

⇒ −h′(p22)
∂β

∂p12

(79)

as c↘ 0.
We define ~f as before, with f3 = ε and f4 = τ , and compute

df3 = (c2, 2c(1− c), (1− c)2, 2cp11 + 2(1− 2c)p12 − 2(1− c)p22)
⇒ (0, 0, 1, 2(p12 − p22)),

df4 = (c2h′(d1), c(1− c)(h′(d1) + h′(d2)), (1− c)2h′(d2),
h(d1)− h(d2) + ch′(d1)(p11 − p12) + h′(d2)(p12 − p22))

⇒ (0, 0, h′(p22), h(p12)− h(p22) + h′(p22)(p12 − p22)). (80)

The lower right block of d~f then gives a contribution of h(p12)−h(p22) +h′(p22)(p12−p22)−
2h′(p22)(p12 − p22) = h(p12)− h(p22)− h′(p22)(p12 − p22) = D(p22, p12).

As before, ∂f2/∂p11 = 0 when c = 0, so det(d~f) = S ′′0 (p11)(h(p11)−h(p22)−h′(p22)(p12−
p22))∂f2/∂p11. Now

∂f2

∂p12

=
∂2S

∂c∂p12

− α ∂2ε

∂c∂p12

− β ∂2τ

∂c∂p12

− ∂α

∂p12

∂ε

∂c
− ∂β

∂p12

∂τ

∂c
. (81)

Since α and β are independent of c, the first three terms are

∂

∂c

(
∂S

∂p12

− α ∂ε

∂p12

− β ∂τ

∂p12

)
=

∂

∂c
(0) = 0, (82)

by the second variational equation. This leaves

∂f2/∂p12 = (h′(p22)(2p12 − 2p22)− (h(p12)− h(p22) + h′(p22)(p12 − p22)))∂β/∂p12. (83)

Combining with our earlier results, we have:

det(d~f) = −S ′′0 (p11)D(p22, p12)2 ∂β

∂p12

. (84)

The expression D(p22, p12) = h(p12)−h(p22)−h′(p22)(p12−p22) has a double root at p12 = p22

and is nonzero elsewhere, thanks to the monotonicity of h′.
As a last step, we consider when ∂β/∂p12 can be zero. Since β = N ′/D′, we are interested

in when (N ′/D′)′ = 0. But that is equivalent to having N ′′/D′′ = N ′/D′. Since we already
have N/D = N ′/D′, this means that ψ′′ = (N/D)′′ = 0. Since we are looking at the value
of ε̃ that maximizes ψ, having ψ′ = ψ′′ = 0 would imply ψ′′′ = 0 (or else ε̃ would only be
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a point of inflection, and not a local maximum). But if (N/D)′ = (N/D)′′ = (N/D)′′′ = 0,
then N/D = N ′/D′ = N ′′/D′′ = N ′′′/D′′′. Note that N ′′, N ′′′, D′′ and D′′′ are functions of
ẽ only, and are rational functions:

N ′′ = 2S ′′0 (ẽ) =
−1

ẽ
− 1

1− ẽ ,

N ′′′ = 2S ′′′0 (ẽ) =
1

ẽ2
− 1

(1− ẽ)2
,

D′′ = h′′(ẽ),
D′′′ = h′′′(ẽ). (85)

Setting D′′N ′′′ = D′′′N ′′ gives a polynomial equation for ε̃, which has only finitely many
roots. Since the equation ψ′ = 0 is symmetric is ε and ε̃, ε̃ determines ε, so there are only
finitely many values of ε for which ∂β/∂p12 is zero.

In summary, we exclude the finitely many values of ε for which ψ achieves its maximum
more than once, and the finitely many values of ε for which ∂β/∂p12 = 0. For all other
values of ε, the optimizing graphon is bipodal of the prescribed form and unique.

7 Proof of Theorem 1.2

The proof has three steps.

Step 1. Showing that, for fixed ε, ∆τ can be approximated by the change in a positive linear
combination of τk’s, as studied in the last section.

Step 2. Defining a set BH ⊂ (0, 1) of “bad values”, determined by analytic equations, such
that for all ε 6∈ BH and for τ close enough to ε`, the optimizing graphon is unique
and bipodal and of the desired form.

Step 3. Showing that BH is finite.

Step 1. This is a repetition of the proof of Lemma 5.1. In the expansion of ∆τ , we get a
contribution nkε

`−k∆τk from diagrams where all the edges associated with ∆g are connected
to a vertex of degree k, where nk is the number of vertices of H of degree k. Summing over
k, and bounding the remaining terms by O(‖∆g‖3), as before, we have

∆τ =
∑
k

nkε
`−k∆τk +O(∆τ 3/2). (86)

Step 2. For fixed ε, we consider a model whose density is
∑

k nkε
`−kτk. As long as ψ(ε, ε̃)

for this model achieves its maximum at a unique value of ε̃, and as long as ∂β/∂p12 6= 0 when
p12 equals this value of ε̃, the proofs of Theorems 1.1 and 6.1 carry over almost verbatim.

That is, the model problem has a unique bipodal maximizer by the reasoning of Theorem
6.1. The entropy maximizer for the actual problem involving H must approximate the
entropy maximizer for the model problem, and in particular must be approximately bipodal,
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and so can be written as gb + ∆gf , where ∆gf averages to zero on each quadrant. The same
arguments as in the proof of Theorem 1.1 show that ∆gf is pointwise small. By a power
series expansion, (s(gb + ∆gf )− s(gb))/(τ(gb + ∆gf )− τ(gb)) < β, so for small c we can
increase the entropy by setting ∆gf to zero and varying the bipodal data to achieve the
correct value of τ .

Step 3. For any fixed ε, the model problem has only a finite number of bad values of ε,
but this is not enough to prove that BH is finite. Rather

BH = {ε|ε is one of the bad points for the model with ak = nkε
`−k}, (87)

where a value of ε is bad for a model if either ψ has multiple maxima or if ∂β/∂p12 = 0. Since
the bad points for any linear combination of k-stars depends analytically on the coefficients
of that linear combination, and since these coefficients are powers of ε, the set BH is cut out
by analytic equations in ε.

As such, BH is either the entire interval (0, 1), or a finite set, or a countable set with
limit points only at 0 and/or 1. We will show that neither 0 nor 1 is a limit point of BH ,
implying that BH is finite.

Let kmax be the largest degree of any vertex in H, and consider the model problem with
h(x) =

∑kmax

k=2 akx
k, where ak = nkε

`−k. We begin with some constraints on the values of ε̃
for which ψ′ = 0.

Lemma 7.1. Suppose that ψ′(ε, ε̃) = 0. If ε̃ = ε, or if ∂β/∂p12 = 0 when p22 = ε and
p12 = ε̃, then (1/2) ≤ ε̃ ≤ (kmax − 1)/kmax.

Proof of lemma. In both cases we are looking for solutions to N ′′D′′′ = N ′′′D′′. Since N ′′ =
2S ′′0 (ε̃), N ′′′ = 2S ′′′0 (ε̃), D′′ = h′′(ε̃) and D′′′ = h′′′(ε), this equation does not involve ε (except
insofar as the coefficients of h depend on ε). We have

2S ′′′0 (ε̃)

2S ′′0 (ε̃)
=

h′′′(ε̃)

h′′(ε̃)
,

1

1− ε̃ −
1

ε̃
=

h′′′(ε̃)

h′′(ε̃)
,

2ε̃− 1

1− ε̃ =
ε̃h′′′(ε̃)

h′′(ε̃)
,

1

1− ε̃ − 2 =

∑
k(k − 1)(k − 2)ak ε̃

k−2∑
k(k − 1)ak ε̃k−2

. (88)

The right hand side of the last line is a weighted average of k−2 with weights k(k−1)ak ε̃
k−2,

and so is at least zero and at most kmax − 2. Thus (1− ε̃)−1 is between 2 and kmax and ε̃ is
between 1/2 and (kmax − 1)/kmax.

Lemma 7.2. If ψ′(ε, ε̃) = 0, and if ε is sufficiently close to 1, then ε̃ is uniquely defined and
approaches 0 as ε→ 1. Likewise, if ε is sufficiently close to 0, then ε̃ is uniquely defined and
approaches 1 as ε→ 0.
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Proof. When ε < 1/2, or when ε > (kmax − 1)/kmax, we cannot have ε̃ = ε, so the equation
ψ′ = 0 is equivalent to ND′ = DN ′ and ε̃ 6= ε. Writing DN ′ − ND′ = 0 explicitly, and
doing some simple algebra, yields the equation

S ′0(ε)[h(ε̃)−h(ε)−(ε̃−ε)h′(ε)]−S ′(ε̃)[[h(ε̃)−h(ε)−(ε̃−ε)h′(ε̃)]+(S0(ε̃)−S0(ε))(h′(ε̃)−h′(ε)) = 0.
(89)

If ε approaches 0 or 1 and ε̃ does not, then the first term diverges, while the other terms do
not, insofar as S ′0 has singularities at 0 and 1 but S0, h and h′ do not. Thus ε̃ must go to 0
or 1 as ε goes to 0 or 1.

We next rule out the possibility that both ε and ε̃ approach 1. Suppose that ε is close
to 1. We expand both N and D in powers of (ε̃− ε):

N =
∞∑
m=2

2S
(m)
0 (ε)

m!
(ε̃− ε)m

= −
∞∑
m=2

(
1

(1− ε)m−1
+

(−1)m

εm−1

)
(ε̃− ε)

m(m− 1)
,

D =
kmax∑
m=2

h(m)(ε)

m!
(ε̃− ε)m, (90)

where S
(m)
0 and h(m) denote mth derivatives. Note that the coefficients of the numerator

grow rapidly with m, while the growth of the coefficients of the denominator depend only on
the degree of h. For ε̃ > ε > (kmax − 1)/kmax, ψ = N/D is a decreasing function of ε̃ (that
is, negative and increasing in magnitude), so we cannot have ψ′ = 0. Since the equation
ψ′ = 0 is symmetric in ε and ε̃ (apart from the dependence of the coefficients of h on ε), we
also cannot have ε > ε̃ > (kmax − 1)/kmax.

When ε is close to 1, we must thus have ε̃ close to 0. But then N ≈ 2S ′0(ε), D ≈
h′(ε)− h(ε), D′ ≈ −h′(E), and the equation

2S ′0(ε̃) = N ′ + 2S ′0(ε) = 2S ′0(ε) +ND′/D (91)

determines S ′0(ε̃), and therefore ε̃, uniquely as a function of ε.
Next we consider ε → 0. If H is 2-starlike, then ψ is a multiple of ψ2, and the result is

already known. Otherwise, it is convenient to define a new polynomial h̄(z) =
∑
nkz

k, so
that h(x) = ε`h̄(x/ε). Then

D = h(ε̃)− h(ε)− h′(ε)(ε̃− ε)
= ε`[h̄(r)− h̄(1)− h̄′(1)(r − 1)] (92)

where r := ε̃/ε. Likewise,

N = − [ε̃ ln(ε̃)− ε ln(ε) + (1− ε̃) ln(1− ε̃)− (1− ε)(1− ε̃)− (ε̃− ε)(ln(ε)− ln(1− ε))]
(93)

Since ε and ε̃ are small, we can approximate ln(1−ε) and ln(1− ε̃) as −ε and −ε̃, respectively,
giving

N ≈ −ε[r ln r − r + 1] + ε2(r − r2) (94)
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Note that the ratio ψ = N/D is negative. Since h̄ is a polynomial of degree at least 3, D
grows faster than N as r → ∞, so we can always increase ψ by taking larger and larger
values of r = ε̃/ε. This argument only breaks down when the approximation ln(1− Ẽ) ≈ −ε̃
breaks down, i.e. at values of ε̃ that are no longer close to 0. Thus we cannot have ε̃ and ε
both close to zero.

Finally, if ε is close to 0 and ε̃ is close to 1, then h(ε) and h′(ε) are close to zero, while
h(ε̃) is close to a multiple of xkmax , since the coefficient of xkmax is O(1/ε) larger than any
other coefficient. Thus ψ behaves like ψkmax , and has a unique maximizer.

We have shown that when ε is close to 0 or 1, ψ has a unique maximizer. Furthermore,
ε̃ is not between 1/2 and (kmax − 1)/kmax, so ∂β/∂p12 6= 0. So ε 6∈ BH , completing Step 3
and the proof of Theorem 1.2.

8 Conclusions

We have shown that just above the ER curve, entropy maximizing graphons, constrained by
the densities of edges and any one other subgraph H, exhibit the same qualitative behavior
for all H and for (almost) all values of ε. The optimizing graphon is unique and bipodal.

These results were proven by perturbation theory, using the fact that the optimizing
graphon has to be L2-close to a constant (Erdős-Rényi) graphon. Surprisingly, the optimizing
graphon is not pointwise close to constant. Rather, it is bipodal, with a small cluster of
size O(∆τ). As ∆τ approaches 0, the size of the small cluster shrinks, but the values of
the graphon on each quadrant do not approach one another. Rather, p22 approaches ε,
p12 approaches the value of ε̃ that maximizes a specific function ψ(ε, ε̃), and p11 satisfies
S ′0(p11)− 2S ′0(p12) + S ′0(p22) = 0.

Finally, the asymptotic behavior of these graphons as τ → ε` depends only on the degree
sequence of H. In particular, the cases where H is a triangle and when H is a 2-star are
asymptotically the same. This is illustrated in Figure 2. Since ∆τtriangle ≈ 3ε∆τ2, the
optimizing graphon for the 2-star model with ε = 0.4 and ∆τ2 = 0.002 should resemble
the optimizing graphon for the triangle model with ε = 0.4 and ∆τtriangle = 0.0024. These
optimizing graphons are obtained using the algorithms we developed in [12] without assuming
bipodality. Numerical estimates indicate that the optimizing graphons are not exactly the
same, thanks to O(∆τ

3/2
2 ) corrections to ∆τtriangle, but are still qualitatively similar.
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Figure 2: Numerical estimates of the optimizing graphon for the 2-star model with ε = 0.4
and τ2 = 0.1620 (left) and the optimizing graphon for the triangle model with ε = 0.4 and
τtriangle = 0.0664 (right). (Although theoretically we have not tried to prove that ∆τ2 = 0.002
is small enough to fit into the interval provided by Theorem 1.1, numerically it appears to
be the case.)
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