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Abstract

For a 2D-extension of the classical one-dimensional family of tent maps, we prove the

existence of an open set of parameters for which the respective transformation presents a

strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are

dense on this attractor and the attractor supports a unique ergodic invariant probability

measure.
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1 Introduction

We recover from [6] the family of bidimensional maps Λt,s defined on the triangle T = T0∪T1,

with

T0 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}, T1 = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}

by

Λt,s(x, y) =

 (tx+ sy, t(x− y)), if (x, y) ∈ T0

(t(2− x) + sy, t(2− x− y)) if (x, y) ∈ T1

(1)

It is easy to see that the critical set for any Λt,s is the line C = {(x, y) ∈ R2 : x = 1}.

Furthermore, the triangle T is invariant for the map Λt,s whenever (t, s) belongs to the set

Ω = {(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 2 − t}. Therefore, an attractor for Λt,s arises inside the
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triangle T . By an attractor for a transformation f defined in a compact manifold M , we

mean a transitive attracting set. An attracting set is a f -invariant set A whose stable set

W s (A) = {z ∈M : d (fn (z) , A)→ 0 as n→∞}

has nonempty interior. An attractor is said to be strange if it contains a dense orbit

{fn(z1) : n ≥ 0} displaying exponential growth of the derivative: there exists some constant

c > 0 such that, for every n ≥ 0,

‖Dfn(z1)‖ ≥ exp (cn).

In this paper we restrict ourselves to the case {(t, s) ∈ Ω : t = s}. Let us denote, for

simplicity, Λt=Λt,t, for 0 ≤ t ≤ 1. Hence, let us write

Λt(x, y) =

 (t(x+ y), t(x− y)), if (x, y) ∈ T0

(t(2− x+ y), t(2− x− y)) if (x, y) ∈ T1

(2)

As was proved in [4] the map Λ1 displays the same properties of the one-dimensional

tent map λ2(x) = 1 − 2|x|. Among them, the consecutive pre-images {Λ−n1 (C)}n∈N of the

critical line C define a sequence of partitions (whose diameter tends to zero as n goes to

infinity) of T leading us to conjugate Λ1 to a one sided shift with two symbols. Hence, it

easily follows that Λ1 is transitive in T . Furthermore, for every point (x0, y0) ∈ T whose

orbit never visits the critical line the Lyapounov exponent of Λ1 along the orbit of (x0, y0) is

positive (and coincides with 1
2 log 2) in all nonzero direction. Finally, it can be constructed

an absolutely continuous ergodic invariant measure for Λ1, see again [4]. These were the

main reasons why the authors called Λ1 the bidimensional tent map. Since the parameter t

in (2) essentially gives the rate of expansion for Λt (playing the same roll as the parameter

a does for λa(x) = 1 − a|x|), the family Λt can be consider a natural extension of the

one-dimensional family of tent maps. So, let us call Λt a family of 2−D tent maps.

The first objective will be to analytically obtain the maximal attracting set for Λt in

T , which will be called Rt, for any t ∈ (
√

2
2 , 1]. The dynamics of Λt for t ∈ [0,

√
2

2 ] was

completely described in [6]. Moreover, for t ∈ (t0, 1] with t0 = 1√
2
(
√

2 + 1)
1
4 ≈ 0.882, we are
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going to prove that the transformation Λt is transitive on this set Rt (see Theorem 1.1 for

details) and, furthermore, that on any Λt-dense orbit {Λnt (x0, y0) : n ∈ N} not intersecting

the critical line C, we have exponential grow of the derivatives (in fact, this is the easiest part

of the work, because one easily obtains that the Lyapounov exponent of Λt along any orbit

not visiting the critical line coincides with 1
2 log (2t) in all nonzero direction). Henceforth,

once we construct a dense orbit of Λt not intersecting the critical set C, an example of

two-dimensional robust strange attractors is given in the two-dimensional piecewise linear

setting. Moreover, we will also prove that the set of periodic orbits is dense on Rt and that

there exists a unique ergodic absolutely continuous invariant measure supported in Rt. In

fact, as we may see in Theorem 1.1, we will prove that, for any t ∈ (t0, 1], Λt is strongly

transitive in Rt; i. e., for any open set U contained in Rt, there exists a natural number n

depending on U such that Λnt (U) = Rt. This fact, in particular, implies that not only Λt

but also Λnt is transitive in Rt, for every n ∈ N.

Theorem 1.1 For every t ∈ (t0, 1] with t0 = 1√
2
(
√

2 + 1)
1
4 ≈ 0.882, the map Λt exhibits a

strange attractor Rt ⊂ T . Moreover the map Λt is strongly transitive in Rt, the periodic

orbits are dense in Rt, and Rt supports a unique absolutely continuous invariant and ergodic

measure. Furthermore, Rt is a two dimensional strange attractor: There exists a dense orbit

of Λt in Rt with two positive Lyapounov exponents.

The relationship between the family of piecewise linear maps given in (1) and the re-

turn maps emerging when certain kind of homoclinic bifurcations are unfolded by a two-

parameter family of three-dimensional diffeomorphisms has been explained in a recient

paper by the authors, see [6]. Let us only make a short summary about this relationship.

In [7], the author studies certain 3-D homoclinic tangencies where the unstable manifold of

the saddle point involved in the homoclinic tangency has dimension two. A two parameter

family, Ta,b, of limit return maps are obtained for these scenarios in [7]. Later, in [4] and [5],

a curve (a(t), b(t)) in the space of parameters (a, b) was chosen in order to make a numerical

study on the geometry of the respective attractors. Finally, in [6], see Proposition 2, and

the comments below it, it is stated that the family Λt given at (2), becomes the best choice
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in the piecewise linear setting for describing the dynamics of the limit return maps Ta(t),b(t)

studied in [4] and [5].

This paper is organized as follows: In Section 2 the maximal attracting set Rt of Λt

is described for every t ∈ (
√

2
2 , 1]. In Section 3 an useful partition on Rt is constructed.

In Section 4 we prove Theorem 1.1. The proof of Theorem 1.1 strongly depends on two

Lemmas whose proofs are given in Section 5. Section 6 contains some conclusions and final

remarks.

2 The invariant set Rt

In this section we will obtain the maximal attracting set for Λt, for any t ∈ (
√

2
2 , 1]. To this

end it will be very useful Figure 1.
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Figure 1: The maximal attracting set for Λt

Given two different points in R2, let us denote by AB the straight segment joining A and

B; moreover, we will denote by Aj the j-th iterate of a point A by Λt. Let V = (1, 0), and

H = (1, 1), then the critical set of Λt coincides with V H. We consider V1H1 the first image

of the critical set, with V1 = (t, t) and H1 = (2t, 0). This straight segment has slope −1 and
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intersects with the critical set at the point J = (1, 2t−1). Let us consider J1 = (2t2, 2t(1−t))

∈ V1H1 and compute the image of the segment JJ1. Since JJ1 is contained in T1, its image

is again a straight segment J1J2, with J2 = (2t(1+ t−2t2), 2t(1− t)). This straight segment

has null slope and the point J2 belongs to T0, so we denote by M = (1, 2t(1 − t)) the

intersection between J1J2 and the critical set C. It is easy to see that the symmetric by C

of J2M is contained in MJ1. Hence, since Λt is symmetric with respect to C, Λt(J1J2) =

Λt(MJ1) = M1J2, with M1 = (t+ 2t2(1− t), t− 2t2(1− t)). This last straight segment has

slope +1 and one can check that M1 ∈ T1. Hence, M1J2 intersects with the critical set at

the point K = (1, 1− 4t2 + 4t3). Since K ∈MJ , K1 = (2t− 4t3(1− t), 4t3(1− t)) ∈M1J1

and K1M2 = Λt(KM1) is a vertical straight segment with M2 = (2t − 4t3(1 − t), 2t(1 −

t)) ∈ MJ1. Finally, let us take K2M3 = Λt(K1M2). This is a straight segment with slope

−1 contained in T0, being M3 = (2t − 2t3 + 4t4(1 − t), 2t − 4t2 + 2t3 + 4t4(1 − t)) and

K2 = (2t− 2t2 + 8t4(1− t), 2t(1− t)).

We now denote by C1 = M1K1, C2 = M2K2, C3 = M3M1, C4 = K1M2 and C5 = K2M3.

One has that Ci ⊂ Λit(C) and the union of these five segments bound a compact and

connected pentagonal domain of T which will be called Rt, see also Figure 2.

Remark 2.1 For t = 1 one has M1 = J = K = H, M2 = J1 = K1 = H1, and so on.

Therefore, in this case we have that Rt is the whole triangle T . We refer the reader to a

previous paper, see [4], where statements of Theorem 1.1 were already obtained for the case

t = 1.

Henceforth, we will divide Rt into the sets Rt,0 = Rt ∩ T0 and Rt,1 = Rt ∩ T1. We also

define C0 = MK = C ∩ Rt, being as usual C the critical set for Λt (see Figure 2).

Lemma 2.2 For every
√

2
2 < t ≤ 1, Rt is invariant by Λt. Moreover, if

√
2

2 < t < 1, then

the stable set of Rt coincides with the interior of T .

Proof. First, we will prove that Λt(Rt,0) ⊂ Rt. In fact, we will demonstrate something

stronger (which will be used along this proof) by checking that the image of the triangle

with vertices M , J2 and K is contained in Rt. To this end, since Λt is linear on this triangle
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Figure 2: The attracting set Rt

and Rt is a convex set, it is enough to prove that the image of its vertices belong to Rt.

This follows by taking into account that Λt(KJ2) is a horizontal segment joining K1 with

certain point J3 of C3. Then, it is enough to obtain that J3 ∈ M3K or, in other words,

that the ordinate of K1 is greater or equal than the ordinate of M3. Consequently, we must

check that η(t) = (2t2 − 1)(t− 1)2 ≥ 0 for t ∈ [
√

2
2 , 1]. Therefore, the result is proved.

On the other hand, the equality Λt(Rt,1) = Rt directly follows from the fact that Λt is

linear also in Rt,1. Therefore, Λt(Rt) = Rt.

Now, let us take
√

2
2 < t < 1, (x, y) any point in int(T ) and prove that for some

natural number n, one has Λnt (x, y) ∈ Rt. To this end let us first observe that, for every

t, the boundary of T is invariant and, moreover, since t 6= 1 then the interior of T is also

invariant. Therefore, if (x, y) ∈ int(T ), then for an infinite number of iterates nk one must

have Λnkt (x, y) ∈ T1 because the orbit of (x, y) can not visit the boundary of T and it

can not remain for an infinite number of successive iterates in T0. Let us divide the set

(T1 ∩Λt(T )) \Rt into three different zones: The triangle U with vertices K,J and M1, the

triangle Λt(U) and the polygonal open region V with vertices J1, H1, V and M . See again

Figure 1. In the first part of this proof we have demonstrated that Λ3
t (U) ⊂ Rt hence, now,

it is enough to prove that every orbit passing through V converges to Rt. We may assume

that if Λnt (x, y) ∈ V, then Λn−1
t (x, y) ∈ T0 because the pre-image of V in T1 (the symmetric

of the pre-image of V in T0 with respect to the critical line) is outside Λt(T ). Moreover,

Λt(V) is the polygonal region with vertices J2, H2, V1 and M1. Hence, Λt(V) ⊂ T0 ∪ U .
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Now the result is consequence of the following three claims:

Claim 1.- If some point (x, y) satisfies (x, y), Λt(x, y) and Λ2
t (x, y) belong to int(T0)

then, since (x, y) and Λ2
t (x, y) = (x2, y2) belong to the same line y = mx, 0 < m < 1, with

x2 > x, one has dist(Λ2
t (x, y), 0H) > dist((x, y), 0H).

Claim 2.- If some point (x, y) satisfies (x, y) ∈ T0, Λt(x, y) ∈ V, Λ2
t (x, y) ∈ T0 then, for

every t ∈ (
√

2
2 , 1], dist(Λ2

t (x, y), 0H) > dist((x, y), 0H). This fact is due to the expansiveness

of Λt for every t ∈ (
√

2
2 , 1]. In fact, Λt expands all the segments not intersecting the critical

line by a factor
√

2t.

Claim 3.- If some point (x, y) ∈ V satisfies Λit(x, y) ∈ T0, i = 1, . . . , k and Λk+1
t (x, y) ∈

V, then k is odd, and dist(Λk+2
t (x, y), 0H) > dist(Λt(x, y), 0H). This last claim easily

follows if we take into account that, since J ∈ V1M1 then J−1 ∈ VM and therefore Λ−2j
t (V)∩

Λt(V) = ∅, for every j ∈ N.

Therefore, for every point (x, y) in the interior of T one has Λnt (x, y) ∈ (T1 ∩Λt(T )) \V,

for some n ∈ N and thus the result is proved.

3 A partition of Rt

We are going to construct a partition for the maximal attracting set Rt = Rt,0 ∪ Rt,1,

see Figure 4. To this end, let us define the sets, Θ0 = Rt,0, Θ−1 = (Λ−1
t (Θ0)) ∩ T1 =

(Λ−1
t (Θ0)) ∩Rt,1, and, successively, Θ−k = (Λ−1

t (Θ−(k−1))) ∩Rt,1. Let us observe that, for

every t ∈ (
√

2
2 , 1], there exists a fixed point of Λt in Rt,1 given by

P = Pt = (
2t(2t+ 1)

2t2 + 2t+ 1
,

2t

2t2 + 2t+ 1
). (3)

From the fact that Λt|Rt,1 is a linear expansion, the Λt-orbit of any point in Rt, except

for the fixed point P , must visits Rt,0 = Θ0. Hence,

Rt \ {P} =

∞⋃
k=0

Θ−k.
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Moreover, for any k = 1, 2, . . ., we define the set

Ak = Rt \
k−1⋃
j=0

Θ−j (4)

which is a pentagonal domain containing P such that Λt(Ak) = Ak−1 and Λkt (Ak) = Rt.

The family of sets {Ak}∞k=1 is a basis of neighborhoods of the fixed point P.

Remark 3.1 The map Λkt|Ak linearly sends Ak into Rt and moreover, Λkt (Θ−j) = Θ−j+k,

for every j ≥ k. Furthermore, since Λt rotates (under an angle ρ = −3π
4 ) and expands

(uniformly in any direction) any set contained in Rt,1, it easily follows that {Θ−j}∞j=k is a

partition of Ak which coincides (of course up to a linear change in coordinates) with the

original partition {Θ−j}∞j=0 of Rt. See Figure 3 where the set Rt is rotated by an angle

ρ = −3π
4 and observe the shape of {Θ−j}∞j=1 as a partition of A1 compared with the shape

of {Θ−j}∞j=0 as a partition of Rt.

Figure 3: Self-similarities of the partition of Rt

Now, let us consider the straight segments given by C−1 = (Λ−1
t (C0))∩Rt,1 and, succes-

sively, C−k = (Λ−1
t (C−(k−1))) ∩ Rt,1 (see Figure 4). Recall that the sets Cj , for j = 0, . . . , 5

were also defined in the last section. If, for some i, j ∈ Z with i < j ≤ 5, the sets Ci

and Cj intersect, let us denote by Pi,j = Ci ∩ Cj (see Figure 4). In this way we have

Λt(Pi,j) = Pi+1,j+1.

It is not hard to see that, for every j ≤ 2, Cj is a straight segment joining the point

Pj,j+2 of Cj+2 with the point Pj,j+3 of Cj+3. Hence, we may write Cj = Pj,j+2Pj,j+3, for
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j ≤ 2. Moreover, for every j ≤ 2, Cj also intersects Cj−3 and Cj−2 in Pj−3,j and Pj−2,j ,

respectively.

Henceforth, for every point (x, y) ∈ Θ−k we will consider Sk(x, y) the symmetric of (x, y)

with respect to C−k.

Lemma 3.2 For every k = 0, 1, 2 . . . the following statements hold:

i) Sk(Θ−k) ⊂ Ak+1 = Rt \
⋃k
j=0 Θ−j ⊂ Rt,1.

ii) For every (x, y) ∈ Θ−k, Λjt (x, y) = Λjt (Sk(x, y)) for every j > k.

iii) For every t ∈ ( 3

√
1
2 , 1], P ∈ Sk(Θ−k). Consequently, the fixed point P has a pre-image

P ?k in Θ−k. This point P ?k satisfies Λt(P
?
k+1) = P ?k , Λt(P

?
0 ) = P and Sk(P ?k ) = P .

Proof. From Remark 3.1, it is enough to prove the first statement for k = 0. But,

for proving that S0(Θ0) ⊂ A1 = Rt,1 it suffices to observe that the point K belongs to

the segment M3M1 and therefore S0(M3K) ⊂ A1 (see Figure 1). The second statement

easily follows because for each (x, y) ∈ Θ−k, the points (x, y) and Sk(x, y) are symmetric

with respect to C−k and, since Λjt ((x, y)Sk(x, y)) ∩ C0 = ∅, for j = 0, 1, . . . , k − 1, we have

that Λk(x, y) and Λk(Sk(x, y)) are symmetric with respect to C0. Hence, Λk+1(x, y) =

Λk+1(Sk(x, y)). Once again due to Remark 3.1, it is enough to prove the third statement

only for k = 0; i. e., that P ∈ S0(Θ0), for every t ∈ ( 3

√
1
2 , 1]. Let us first compute the pre-

image of P in T0 (observe that this pre-image has to be the symmetric of P with respect to

the critical line):

P ?0 = (
2t+ 2

2t2 + 2t+ 1
,

2t

2t2 + 2t+ 1
). (5)

Then, we must obtain the value of the parameter t for which this point P ?0 belongs to the

straight segment C3 = M3M1. As this segment takes part of the line given by L3 = {(x, y) ∈

R2 : y = x+4t2(t−1)} we must solve the equation σ(t) = 0, with σ(t) = 4t5−2t3−2t2 +1.

It holds that σ( 3

√
1
2) = 0 and σ(t) 6= 0 for every 3

√
1
2 < t ≤ 1. The fact that each P ?k is a

pre-image of P is now consequence of the second statement.
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Figure 4: The partition of Rt

For proving the main theorem it will be useful to control the maximal distance between

each point P ?k and the boundary of the respective Θ−k. Let us denote by ∂(Θ−k) the

boundary of Θ−k and define

Dk = max
(x,y)∈∂(Θ−k)

dist(P ?k , (x, y)). (6)

To bound this distance it is enough to control D0, the maximal distance between P ?0 to

the boundary of Θ0. This is due to the fact that, given two points A and B in Θ−k, then

Λkt (A) and Λkt (B) belong to Θ0 and dist(A,B) = (
√

2t)−kdist(Λkt (A),Λkt (B)). Therefore

since Λkt (P
?
k ) = P ?0 , D0 = (

√
2t)kDk. Moreover, since Θ0 is a convex polygonal domain one

has that D0 coincides with the maximum distance between P ?0 and the four vertices of the

boundary of Θ0, see Figure 4. That is, denoting by

D0,3 = dist(P ?0 , P0,3) , D2,5 = dist(P ?0 , P2,5)

D0,2 = dist(P ?0 , P0,2) , D3,5 = dist(P ?0 , P3,5).

then it follows that D0 = max{D0,3, D0,2, D2,5, D3,5}.
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Then, in the proof of Lemma 4.7 we will use the following result:

Lemma 3.3 There exist t0,2 ≈ 0.8478, t0,3 ≈ 0.9112 such that

i) D0 = D0,2 if t ∈ [1/ 3
√

2, t0,2].

ii) D0 = D0,3 if t ∈ [t0,2, t0,3].

iii) D0 = D3,5 if t ∈ [t0,3, 1].

Proof. The coordinates of P0,3(= K), P0,2(= M), P2,5(= K2) and P3,5(= M3), see

Figures 1 and 4, were given in Section 2. The coordinates of P ?0 were given at (5). Then,

one may check that

D2
0,3 =

(1− 2t2)2

1 + 2t+ 2t2
(2− 4t+ 4t2 − 8t3 + 8t4) (7)

D2
0,2 =

(1− 2t2)2

1 + 2t+ 2t2
(1− 2t+ 2t2)

D2
2,5 =

(1− 2t2)2

1 + 2t+ 2t2
(4− 8t+ 16t2 − 16t3 + 8t4 − 16t5 + 16t6 − 32t7 + 32t8)

D2
3,5 =

(1− 2t2)2

1 + 2t+ 2t2
(4− 8t+ 8t2 − 8t3 + 8t6 − 16t7 + 16t8)

Then, a numerical analysis in the interval of parameters [1/ 3
√

2, 1], allows us to conclude

the statement of the lemma.

4 Proof of Theorem 1.1

Along the rest of the paper we will denote by B(q, r) the ball in R2 centered at the point q

with radius r.

Let us begin by stating the following result whose proof, see the expression of Λt in (2),

is trivial:

Lemma 4.1 For every t ∈ [0, 1] if B = B(q, r) is a ball in Rt with B ∩ C0 = ∅, then Λt(B)

is also a ball with Λt(B) = B(Λt(q),
√

2tr).

In order to prove the strong transitivity of Λt it will be necessary to demonstrate the

next result, whose proof will be given in Section 4.1. Let us recall that t0 ≈ 0.882.
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Theorem 4.2 Let t ∈ (t0, 1] and B = B(q, r) be a ball with B ⊂ Rt and B ∩ C0 6= ∅. Then,

at least one of the two following situations holds:

A) There exists j ∈ N such that Λjt (B) = Rt, or

B) There exists a ball B̃ = B(q̃, r̃) with B̃ ⊂ B such that:

i) B̃ ∩ C0 = ∅.

ii) If n is the first natural number with Λnt (B̃) ∩ C0 6= ∅, then Λnt (B̃) is again a ball,

Λnt (B̃) = B(Λnt (q̃), (
√

2t)nr̃), with (
√

2t)nr̃ > r.

Of course, since item B in the above theorem can not occur up to the infinity, the

previous theorem easily implies the following:

Lemma 4.3 Let t ∈ (t0, 1]. If U is any open set in Rt, then there exists n ∈ N such that

Λnt (U) = Rt; i. e., Λt is strongly transitive in Rt.

Proof. Given any open set U in Rt, let us take any ball B contained in U . Let n1 be the

first time for which Λn1
t (B) intersects the critical line C0. Observe that, from Lemma 4.1,

B1 = Λn1
t (B) is again a ball. Then we apply Theorem 4.2 to B1 in order to obtain either

a natural number j ∈ N such that Λjt (B1) = Rt (in this case we have finished) or a ball

B̃1 = B(q̃1, r̃1) ⊂ B1 satisfying that B̃1 ∩ C0 = ∅ and, if n2 is the first natural number for

which Λn2
t (B̃1) ∩ C0 6= ∅, then B2 = Λn2

t (B̃1) is again a ball and area(B2) > area(B1). The

finiteness of the diameter of Rt allows us to conclude (after a finite number of steps) the

existence of a natural number n ∈ N such that Λnt (B) = Rt.

Let us assume by the moment that Theorem 4.2 is proved and let us finish the proof of

the Main Theorem, Theorem 1.1. The denseness of the periodic points of Λt in Rt is easily

obtained from Lemma 4.3: Namely, if U is any open set in Rt, then we may construct a

compact set D contained in U and a natural number n such that Λnt is linear in D and

Λnt (D) = Rt. Therefore, there must exist a periodic point in D for Λt.

Moreover, we recalling that in [6], Section 7, we have already announced that, applying

the results of M. Tsujii, see [8], or J. Buzzi, see [2], there exist absolutely continuous

12



invariant measures (a.c.i.m.’s for short) for the family of bidimensional tent maps given

in (2) whenever t ∈ (
√

2
2 , 1]. Since for t ∈ (

√
2

2 , 1], in Lemma 2.2 we have proved that the

dynamics converges to the invariant set Rt, it follows that the support of any a.c.i.m. has

to be contained in Rt. Moreover, see also Main Theorem in [3], any a.c.i.m. can be written

as a convex combination of a fixed, finite collection of ergodic ones. But, since for t ∈ (t0, 1]

we have demonstrated (ones Theorem 4.2 is proved) that Λt is (strongly) transitive on Rt

then there exists only one a.c.i.m and, henceforth, this a.c.i.m. is supported in Rt and it

must be ergodic.

Finally, let us show the existence of at least one dense Λt-orbit on Rt not visiting the

critical set C0 (this is enough to conclude that both Lyapounov exponents along this orbit

are positive). To this end, we denote by µt the (unique) ergodic a.c.i.m. described in the

last paragraph and by Leb the usual Lebesgue measure in R2. Then the existence of such

orbit directly follows from the next result:

Lemma 4.4 For every t ∈ (t0, 1] the following statements hold:

i) µt(C̃) = 0, where C̃ = {(x, y) ∈ Rt : Λjt (x, y) ∈ C0, for some j ∈ N}.

ii) There exists a set S ∈ Rt such that µt(S) = 1 and if (x0, y0) belongs to S then its

Λt-orbit is dense in Rt.

Proof. The first statement follows taking into account that µt is absolutely continuous

with respect to the Lebesgue measure and that Leb(C̃) = 0. The second statement can be

proved in the same way as Lemma 4 in [4].

Now, in order to finish the proof of the Main Theorem, see Theorem 1.1, it is enough

to prove Theorem 4.2.

4.1 Proof of Theorem 4.2

Let q be a point in R2, r a positive real number and α1, α2 real numbers with 0 ≤ α1 <

α2 ≤ 2π. We denote by CS(q, r, α1, α2) the circular sector defined by

CS(q, r, α1, α2) = {(x, y) : (x, y) = q + r′ exp (iα), (r′, α) ∈ [0, r]× [α1, α2]}

13



Then, we are interested in obtain the ball of maximum radius inside certain circular sectors.

The proof of next lemma is easy.

Lemma 4.5 Let B = B(q, r) be a ball and Γ = CS(q, r, α1, α2) be a circular sector. Then,

i) If α2 − α1 = π, then there exists a ball B̃ = B(q̃, r2) contained in Γ.

ii) If α2 − α1 = π
2 , then there exists a ball B̃ = B(q̃, (

√
2− 1)r) contained in Γ.

iii) If α2 − α1 = π
4 , then there exists a ball B̃ = B(q̃, δ0r) contained in Γ, being δ0 =

sin π
8

1+sin π
8
≈ 0.2767.

Let us take a ball B = B(q, r) with B ⊂ Rt and B ∩ C0 6= ∅. We may assume that the

center q belongs to Rt,1, because in the case in which q ∈ Rt,0 = Θ0 we may work with B∗,

being B∗ the symmetric of B with respect to the critical line C0.

Remark 4.6 Of course, B∗ is a ball centered at Rt,1. Moreover, the successive iterates of

B and B∗ coincide due to the fact that Λt is symmetric with respect to the critical line C0.

Therefore, if anyone of the two items of Theorem 4.2 is proved for B∗, then the same item

is proved for B.

We split the proof of Theorem 4.2 in several cases according in which Θ−k the center of

the ball q is situated. Let us begin with the simplest cases.

Lemma 4.7 Let t ∈ (t0, 1] and B = B(q, r) be a ball in Rt, then

i) If q ∈ Θ−1, then B ∩ C0 = ∅.

ii) If q ∈ Θ−k with k = 4 or k ≥ 6 and B ∩ C0 6= ∅, then there exists j ∈ N such that

Λjt (B) = Rt.

Proof. If B = B(q, r) ⊂ Rt and q ∈ Θ−1, then B ⊂ Θ−1 ∪ S1(Θ−1), being as usual,

S1(x, y) the symmetric of a point (x, y) ∈ Θ−1 with respect to C−1. Now, see Figure 4,

since P−1,2 ∈ P0,2P2,4 one has that S1(Θ−1) ∩ C0 = ∅ and the first statement follows. In

order to prove the second statement we will firstly check that, if q ∈ Θ−k, then P ?k ∈ B.
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To this end, let us recall that we have denoted by Dk the maximum distance between P ?k

to the boundary of Θ−k. Hence, let us now consider dk = dist(Θ−k, C0) and observe that

it will be enough to check that Dk < dk for k = 4 and k ≥ 6. Of course, if B = B(q, r)

satisfies q ∈ Θ−k and B ∩ C0 6= ∅ then it necessarily holds that r ≥ dk > Dk and therefore

P ?k ∈ B. Recall that Dk = (
√

2t)−kD0 satisfies Dk+1 < Dk for every k. Let us suppose

that we have proved Dk < dk for k ∈ {4, 6, 8}. Then, since d6 = dist(P−6,−3, C0) and

d7 = dist(P−7,−5, C0) with P−6,−3 ∈ Θ−8 and P−7,−5 ∈ Θ−7, one has d7 > d6 > D6 > D7.

Moreover, since d8 = dist(P−5,−3, C0) < dk for every k > 8 we also have dk > d8 > D8 > Dk.

Hence, it is enough to prove Dk < dk for k ∈ {4, 6, 8}.

A direct calculation gives

d4 =
−1 + 2t− 4t3 + 4t4

4t4

d6 =
−1 + 2t− 8t5 + 8t6

8t6

d8 =
1− 2t+ 2t2 − 8t4 + 8t5

8t5

while Dk = (
√

2t)−kD0, being (according to Lemma 3.3), D0 = D0,3 = dist(P ?0 , P0,3) for

t ∈ (t0, t0,3], D0 = D3,5 = dist(P ?0 , P3,5), for t ∈ [t0,3, 1], with t0,3 ≈ 0.9112. The expression

of D0,3 and D3,5 were given in (7). Now, a numerical analysis shows that, for every t ∈ (t0, 1],

Dk < dk for k = 4, 6 and k = 8. Therefore we have proved that P ?k ∈ B.

Hence, there exists a sufficiently small neighborhood U ⊂ B of P ?k such that Λkt (U) is a

neighborhood of the fixed point P . This easily follows taking into account that the orbit of

P ?k never visits the critical set. Now, let us recall the sets Am = Rt \
⋃m−1
j=0 Θ−j , see again

(4) and Figure 4. These sets are a basis of neighborhoods of P and moreover Λmt (Am) = Rt.

Take m large enough so that Am ⊂ Λkt (U). Then, one has Λk+m
t (U) = Rt.

Next, we will study the case in which q ∈ Θ−5. We will use the following result whose

proof is given in the Section 5:

Lemma 4.8 Let t ∈ (t0, 1] and B = B(q, r) be a ball in R2 with q ∈ Θ0.

i) If B ∩ Ci 6= ∅, for i = 0, 2, 3 then there exists j ∈ N such that Λjt (B ∩Θ0) = Rt.
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ii) If B ∩ Ci 6= ∅, for i = 0, 5 then there exists j ∈ N such that Λjt (B ∩Θ0) = Rt.

Proposition 4.9 Let t ∈ (t0, 1] and B = B(q, r) be a ball in Rt with q ∈ Θ−5 and B∩C0 6= ∅.

Then the following statements holds:

i) If B ∩ C−5 6= ∅, then there exists j ∈ N with Λjt (B) = Rt.

ii) If B ∩ C−5 = ∅, then there exists a ball B̃ = B(q̃, r̃) contained in B ∩Θ−5 such that

Λ6
t (B̃) = B(Λ6

t (q̃), (
√

2t)6r̃)

with (
√

2t)6r̃ > r.

Proof. Let us take a ball B = B(q, r) with q ∈ Θ−5 and B ∩ C0 6= ∅. Firstly, let us

assume that B ∩ C−5 6= ∅. Let us consider the set D = B ∩ Θ−5. Then, Λ5
t (D) is a subset

of Θ0 such that there exists a ball B∗ in R2 centered at Λ5
t (q) ∈ Θ0 with Λ5

t (D) = B∗ ∩Θ0.

Moreover, B∗ ∩ Ci 6= ∅, for i = 0, 5. Therefore, applying the second statement of Lemma

4.8, there exists j ∈ N with Λjt (B∗ ∩Θ0) = Λj+5
t (D) = Rt.

Let us assume that B ∩ C−5 = ∅. Then, it is always possible to define a circular sector

CS(q, r, α1, α2) contained in B ∩ Θ−5, with α2 − α1 = π
4 , see Figure 5. Applying Lemma

4.5 item iii) we may choose a ball B̃ = B(q̃, δ0r), with δ0 ≈ 0.2767, contained in the above

circular sector, and therefore in B ∩ Θ−5. Hence, Λjt (B̃) ∩ C0 = ∅ for j = 0, 1, . . . , 5 and

henceforth, from Lemma 4.1, Λ6
t (B̃) is the ball B(Λ6

t (q̃), (
√

2t)6δ0r). Finally, it is easy to

check that

(
√

2t)6δ0 > 1

for every t ∈ (t0, 1].

Now, let us study the case in which q ∈ Θ−3. Hence, let us assume B = B(q, r) to be a

ball in Rt satisfying q ∈ Θ−3 and B ∩ C0 6= ∅.

We will make use of the point P−3,0 = C−3 ∩ C0. In fact, we will distinguish between

the case in which P−3,0 ∈ B, see Proposition 4.11 and the case in which P−3,0 /∈ B, see
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C0

C−2

C−3

C−5

Θ−2

Θ−3

q
B

Figure 5: A circular sector for the case q ∈ Θ−5

Proposition 4.12. Let W be the intersection between C0 and S−1
3 (C−5) (observe that this

point always exists because, from statement i) of Lemma 3.2, P ∈ S3(Θ−3) ⊂ A4). Then,

W3 = Λ3
t (W ) ∈ C3 and we may construct an isosceles right triangle, denoted by ∆, contained

in Θ0 with vertices W3, P0,3 and P−2,0, see Figure 6. Let us also denote by ∆−3 the triangle

contained in Θ−3 with vertices W , P−3,0 and P−5,−3. Observe that Λ3
t (∆−3) = ∆. We will

use the following result whose proof is also given in Section 5:

Lemma 4.10 Let t ∈ (t0, 1]. If B = B(q, r) is a ball in R2 with q ∈ ∆ such that P0,3 ∈ B

and B ∩ P−2,0W3 6= ∅, then there exists j ∈ N such that Λjt (B ∩∆) = Rt.

Proposition 4.11 Let t ∈ (t0, 1] and B = B(q, r) be a ball in Rt with q ∈ Θ−3 and

B ∩ C0 6= ∅. If P−3,0 ∈ B, then the following statements hold:

i) If P−5,−3W ∩ B = ∅, then there exists a ball B̃ = B(q̃, r̃) contained in B ∩∆−3 such

that Λit(B̃) ∩ C0 = ∅, for i = 0, . . . , 5, Λ6
t (B̃) = B(Λ6

t (q̃), (
√

2t)6r̃) and (
√

2t)6r̃ > r.

ii) If P−5,−3W ∩ B 6= ∅, then there exists j ∈ N such that Λjt (B) = Rt.

Proof. If P−5,−3W ∩ B = ∅, then we may always consider the circular sector Γ =

CS(q, r, 3π
2 ,

7π
4 ) which is contained in B ∩∆−3.
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∆

∆−3

P0,3

P−2,0 P−2,1

P−3,0

P−5,−3

P

W

W3

C0C3

C−2

Figure 6: The triangles ∆ and ∆−3

Hence, S3(Γ) = CS(S3(q), r, 7π
4 , 2π) is a circular sector contained in Θ−5. So, we may

pick a ball B∗ = B(q∗, δ0r) ⊂ S3(Γ) such that B∗ ⊂ Θ−5. Then, Λjt (B∗) ∩ C0 = ∅, for

i = 0, . . . , 5, Λ6
t (B∗) = B(Λ6

t (q
∗), (
√

2t)6δ0r), with (
√

2t)6δ0 > 1 for every t ∈ (t0, 1]. To

conclude the proof of the first statement it is enough to take B̃ = S−1
3 (B∗) = B(q̃, δ0r), with

q̃ = S−1
3 (q∗). From the second statement of Lemma 3.2, we have that Λ6

t (B̃) = Λ6
t (B∗) =

B(Λ6
t (q̃), (

√
2t)6δ0r).

Now, let us assume that P−5,−3W ∩ B 6= ∅, with B = B(q, r). Let D = B ∩∆−3. Then

Λ3
t (D) is a subset of ∆ such that there exists a ball B∗ in R2 centered at Λ3

t (q) ∈ ∆ with

Λ3
t (D) = B∗ ∩∆. Moreover, P0,3 ∈ B∗ and B∗ ∩ P−2,0W3 6= ∅, then applying Lemma 4.10,

there exists j ∈ N such that Λjt (B∗ ∩∆) = Λj+3
t (D) = Rt. Hence Λj+3

t (B) = Rt.

Now, we deal with the case P−3,0 /∈ B.

Proposition 4.12 Let t ∈ (t0, 1] and B = B(q, r) be a ball in Rt with q ∈ Θ−3 and

B ∩ C0 6= ∅. If P−3,0 6∈ B then the following statement holds:

i) If B does not intersects C−1 and C−3 at the same time, there is a ball B̃ = B(q̃, r̃)
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contained in B ∩Θ−3 such that

Λ4
t (B̃) = B(Λ4

t (q̃), (
√

2t)4r̃),

and (
√

2t)4r̃ > r.

ii) If B intersects C−1 and C−3, then there exists j ∈ N such that Λjt (B) = Rt.

Proof. Let us first assume that B does not intersect C−1 and C−3. Then there is a

circular sector CS(q, r, α1, α2) contained in B∩Θ−3 with α2−α1 = π. Then, from the first

statement of Lemma 4.5 there is a ball B̃ = B(q̃, r2) ⊂ B ∩Θ−3. Hence Λit(B̃) ∩ C0 = ∅, for

i = 0, . . . , 3, Λ4
t (B̃) = B(Λ4

t (q̃), (
√

2t)4 r
2), with 2t4 > 1 for every t ∈ (t0, 1].

Now, let us assume that B ∩ C−3 6= ∅ and B ∩ C−1 = ∅ (the case B ∩ C−3 = ∅ and

B ∩ C−1 6= ∅ can be demonstrated in the same way). Let us denote by q1 = q + r exp(iϕ1)

and q̃1 = q + r exp(iϕ̃1) the intersections between the boundary of B with C0 and by

q2 = q + r exp(iϕ2) and q̃2 = q + r exp(iϕ̃2) the intersections between the boundary of B

with C−3. See Figure 7. Since ϕ2−ϕ1 > 0, ϕ̃1−ϕ̃2 ≥ 0 and ϕ2−ϕ1−(ϕ̃1−ϕ̃2) = π/2 it holds

that ϕ2 − ϕ1 ≥ π/2. Then we may construct a circular sector CS(q, r, α1, α2) ⊂ B ∩ Θ−3

with α2 − α1 = π/2.

B

∗
q1

∗q̃1

∗ q2

∗q̃2

C0

C−2

C−3

C−5

Θ−2

Θ−3

Figure 7: The case B ∩ C−3 6= ∅, B ∩ C−1 = ∅

From the second statement of Lemma 4.5 there exists a ball B̃ = B(q̃, (
√

2 − 1)r) ⊂

B ∩ Θ−3 such that Λ4
t (B̃) = B(Λ4

t (q), (
√

2t)4(
√

2 − 1)r), with 4t4(
√

2 − 1) > 1, for every
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t ∈ (t0, 1]. Let us remark that this last inequality holds for every t > t0 = 1√
2
(
√

2 + 1)
1
4 .

This fact gives us the value of t0 in the Main Theorem. The first statement is proved.

Now, for proving the second statement let us assume that B = B(q, r) satisfies q ∈ Θ−3,

B∩C−j 6= ∅ for j = 0, 1, 3. We take D = B∩Θ−3. Then, the set Λ3
t (D) is a subset of Θ0 such

that there exists a ball B∗ in R2 centered at Λ3
t (q) ∈ Θ0 with Λ3

t (D) = B∗ ∩Θ0. Moreover,

B∗ ∩ Ci 6= ∅, for i = 0, 2, 3. Therefore, applying the first statement of Lemma 4.8, we

conclude that there is j ∈ N such that Λjt (B∗ ∩Θ0) = Λj+3
t (D) = Rt. Hence Λj+3

t (B) = Rt.

In order to finish the proof of Theorem 4.2 we must assume that we have a ball B =

B(q, r) under the assumptions of Theorem 4.2 with q ∈ Θ−2. Let us consider the set

C∗−2 = C−2 ∪ S−1
0 (C−2) = P−2,1W3, see Figure 6. Let us take B∗ = B(q∗, r) the symmetric of

B with respect to C∗−2. Then:

1) q∗ = S2(q) ∈ A3 = Rt \
⋃2
j=0 Θ−j .

2) B∗ ∩ C0 6= ∅.

3) For every j > 2, Λjt (B) = Λjt (B∗).

Let us distinguish between the following cases:

i) If q∗ belongs to A6 = Rt \
⋃5
j=0 Θ−j then we may apply Lemma 4.7 to conclude that,

Λjt (B∗) = Rt, for some j ∈ N. Therefore it also holds that Λjt (B) = Rt.

ii) If q∗ belongs to Θ−5 we apply Proposition 4.9 to get either some j ∈ N with Λjt (B∗) =

Rt (in this case Λjt (B) = Rt also holds) or a ball B̂ ⊂ B∗ ∩ Θ−5 (Λjt (B̂) ∩ C0 = ∅ for

j = 0, . . . , 5) such that Λ6
t (B̂) is a ball with radius greater than r. So, if we define

B̃ = S−1
2 (B̂) ⊂ B, then from Lemma 3.2, we have Λjt (B̂) = Λjt (B̃), for every j > 2 and

therefore Theorem 4.2 is also proved in this case.

iii) Finally, if q∗ belongs to Θ−3, then we apply either Proposition 4.11 (if P−3,0 ∈ B∗)

or Proposition 4.12 (if P−3,0 /∈ B∗). If P−3,0 ∈ B∗, then we get either j ∈ N with

20



Λjt (B∗) = Λjt (B) = Rt or a ball B̂ ⊂ B∗ ∩∆−3 (Λjt (B̂) ∩ C0 = ∅ for j = 0, . . . , 5) such

that Λ6
t (B̂) is a ball with radius greater than r. Defining B̃ = S−1

2 (B̂), we have done.

If P−3,0 /∈ B∗ then we get either j ∈ N with Λjt (B∗) = Λjt (B) = Rt or a ball B̂ ⊂

B∗ ∩ Θ−3 (Λjt (B̂) ∩ C0 = ∅ for j = 0, . . . , 3) such that Λ4
t (B̂) is a ball with radius

greater than r. Once again, if we define B̃ = S−1
2 (B̂), then we have Λjt (B̂) = Λjt (B̃),

for every j > 2 and therefore Theorem 4.2 is also proved in this case.

Hence, we have ended the proof of Theorem 4.2.

5 Proofs of Lemma 4.8 and Lemma 4.10

5.1 Proof of Lemma 4.10

Let W be the intersection between C0 and S−1
3 (C−5). Then, W3 = Λ3

t (W ) ∈ C3 and recall

that ∆ is the isosceles right triangle contained in Θ0 with vertices W3, P0,3 and P−2,0, see

Figure 6.

In order to avoid tedious notation, during this section, let us define A = P0,3 and

Z = P−2,0. We consider the point H in C0 given by H = S−1
2 (P−3,0), see Figure 8. This

point always exists for t ∈ (t1, 1] with t1 ≈ 0.8326 (for t = t1 one has that P2,5 and P−1,2

are symmetric with respect to C0, see Figure 4). In fact, when t = t1 we have H = A (that

is A and P−3,0 are symmetric with respect to C−2), and when t = 1 it follows that H = Z

because the lines C−2 and C−3 intersect at the point Z = P−2,0 = P−3,0.

Let us take the straight line L passing through H with slope −1 and define F the

intersection between L and C3. The triangle whose vertices are A, H and F is denoted by

∆′. Observe that ∆′ ⊂ ∆.

Lemma 5.1 For every t ∈ (t1, 1] there exists a three-periodic point Q3 of Λt in ∆′.

Proof. Let us describe how Λ3
t acts on the vertices of ∆′. The second image of A is the

point P2,5. The coordinates of this point were obtained in Section 2 (in fact this point was

earlier denoted by K2 = (2t− 2t2 + 8t4(1− t), 2t(1− t)), see Figure 1). Therefore, applying
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the expression of Λt given at (2) one has that A3 = Λ3
t (A) = Λt(K2) is the point in C3

given by A3 = (4t2(1 − t + 2t3 − 2t4), 8t5(1 − t)). Now, since H ∈ S−1
2 (C−3) ∩ C0 one has

H3 = Λ3
t (H) ∈ C0 ∩ C3. Therefore, H3 = A. Finally, since F ∈ S−1

0 (S−1
2 (C−3)) we conclude

F3 = Λ3
t (F ) ∈ C0. But, using that Λ3

t is not only linear on ∆′ but also preserves angles, we

know that Λ3
t (∆

′) must be an isosceles right triangle and therefore the ordinate of F3 must

coincide with the ordinate of A3. So, F3 = Λ3
t (F ) = (1, 8t5(1− t)). Observe that, for t = 1,

Λ3
t (∆

′) is the triangle T0 with vertices (0, 0), (1, 0) and (1, 1). Moreover,

dist(A,F3) = dist(H3, F3) = (
√

2t)3dist(H,F ) = (
√

2t)3 1√
2
dist(A,H) > dist(A,H)

for every t ∈ ( 3

√
1
2 , 1]. Hence ∆′ ⊂ Λ3

t (∆
′) and therefore there exists a three-periodic point,

denoted by Q3 of Λt in ∆′.

An easy numerical calculation shows that

Q3 = (xQ3 , yQ3) = (
4t2(1 + 2t3)

1 + 4t3 + 8t6
,

8t5

1 + 4t3 + 8t6
). (8)

Now, Lemma 4.10 follows from the following result:

Lemma 5.2 For every t ∈ (t0, 1], there exists a set U ⊂ ∆ satisfying the following proper-

ties:

i) If B = B(q, r) is a ball with q ∈ ∆ such that A = P0,3 ∈ B and B ∩ ZW3 = B ∩

P−2,0W3 6= ∅, then U ⊂ B.

ii) There exists m ∈ N and a set ∆′−m such that Q3 ∈ ∆′−m ⊂ U and Λmt (∆′−m) = ∆′.

iii) There exists j ∈ N such that Λjt (U) = Rt.

Proof. Let us begin by constructing the set U . Let us take again the triangle ∆ with

vertices A, Z and W3. For the sake of simplicity, we can make a linear change in coordinates

(X,Y ) = Lt(x, y), depending on the parameter t, in order to transport the point W3 into

the origin, the point A into (1, 1) and the point Z into (1, 0). So, the triangle ∆ becomes

into the triangle T0 with vertices (0, 0), (1, 1) and (1, 0). To this end, it is enough to denote
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by l = lt = dist(W3, Z) and define

(X,Y ) = Lt(x, y) = (l−1(x− xW3), l−1(y − yW3)), (9)

being W3 = (xW3 , yW3). In this way, any ball B = B(q, r) satisfying q ∈ ∆, A ∈ B and

B ∩ZW3 6= ∅ is mapping by Lt into a ball B′ = B(q′, r′), satisfying q′ ∈ T0, A′ = (1, 1) ∈ B′

and B′ ∩ Ỹ 6= ∅, being

Ỹ = {(X,Y ) ∈ R2 : Y = 0}.

One may easily deduce that any such ball B′ contains the polygonal domain U ′ whose

vertices are G′ = (1
2 ,

1
2), R′ = (13

16 ,
3
16), S′ = (1, 3

8) and A′ = (1, 1). This last claim follows

by bearing in mind that the set U ′ is convex and therefore it is enough to check that for

any such ball B′, Ω′ ∈ B′ for every Ω′ ∈ {G′, R′, S′, A′}. But this fact can be showed by

using that the two sets

{(X,Y ) : dist((X,Y ), (1, 1)) < dist((X,Y ),Ω′)}

{(X,Y ) : dist((X,Y ), Ỹ ) < dist((X,Y ),Ω′)}

are disjoint for every Ω′ ∈ {G′, R′, S′, A′}. Hence, defining U = L−1
t (U ′) ⊂ ∆, the first

statement of the lemma follows.

The vertices of the domain U are denoted by G = L−1
t (G′) (this is a point in C3),

R = L−1
t (R′) (this is a point in the straight segment GZ), S = L−1

t (S′) (this is a point in

ZA) and A = P0,3 = L−1
t (A′). The shape of this polygonal domain can be seen in Figure 8.

Now, let us show the second statement of the lemma. Recall that Q3 ∈ ∆′ and thus in

order to prove that Q3 ∈ U it is enough to check that, denoting by LRS = {(x, y) ∈ R2 :

y − x = α} the straight line passing through R and S, then yQ3 − xQ3 > α. But, taking

into account equation (8) and the fact that

α =
−5 + 10t− 10t2 − 24t4 + 24t5

16t2

then, one may check that yQ3 −xQ3 > α, for every t > t1 ≈ 0.8326 (the value of t for which

the periodic point Q3 arises). Observe that we have proved that Q3 ∈ int(U). From the
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∗
P1,3

∗P−3,0

∗ P−5,−3

∗A = P0,3

∗Z = P−2,0

∗H

∗G

∗W

∗ S

∗F

∗
R

∗ F3∗A3

∗W3

Figure 8: The case F3 /∈ ∆

fact that Q3 is a repelling periodic orbit and Λ3
t|∆′ is linear, there is m ∈ N large enough

and a neighborhood ∆′−m of Q3 such that ∆′−m ⊂ U and Λmt (∆′−m) = ∆′. Therefore, the

second statement of the Lemma is proved.

To prove the third statement, let us recall that ∆ is the triangle with vertices A, Z and

W3 and Λ3
t (∆

′) is the triangle with vertices A = H3, F3 = (1, 8t5(1 − t)) and A3. Let us

distinguish between the following cases:

i) Suppose that F3 /∈ ∆ (or, equivalently, that ∆ ⊂ Λ3
t (∆

′)) (this situation is showed

in Figure 8). This fact takes place when the ordinate of the point F3 is smaller than the

ordinate of the point Z = P−2,0. By using Λ2
t (P−2,0) = P0,2 = (1, 2t(1 − t)) we have

P−2,0 = Z = (1, 2t−1
2t2

). Then, F3 /∈ ∆ when

8t5(1− t) < 2t− 1

2t2
.

An easy calculation shows that the above inequality holds if t ∈ (t∗, 1] with t∗ ≈ 0.8894.

Then, if t ∈ (t∗, 1] third statement easily follows by taking into account that Θ−2 ⊂ Λ6
t (∆

′).
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This can be checked by observing that, in fact, Θ−2 ⊂ Λ3
t (∆). This last inclusion can be

obtained from the facts that Λ3
t (Z) = P1,3 and Λ3

t (∆) is an isosceles right triangle (Λ3
t|∆ is

linear and preserves angles) with one of its vertices coinciding with P1,3 and the ordinate

of A3 = Λ3
t (A) smaller than the ordinate of Z. Since, from the third statement of Lemma

3.2, P ?2 ∈ Θ−2 and Λ3
t (P

?
2 ) = P we have P ∈ Λ6

t (∆) ⊂ Λ9
t (∆

′) = Λ9+m
t (∆′−m) ⊂ Λ9+m

t (U).

Thus using the basin of neighborhoods of P given at (4), Ak = Rt \
⋃k−1
j=0 Θ−k, we get some

k ∈ N with Ak ⊂ Λ9+m
t (U). Hence, for j = k +m+ 9 we obtain Λjt (U) = Rt.

∗
P1,3

∗P−3,0

∗ P−5,−3

∗A = P0,3

∗
Z = P−2,0

∗H

∗W

∗F

∗W3

∗A3 ∗ A6∗F3

∗F6

∗F9

Figure 9: The case F3 ∈ ∆

ii) Suppose F3 ∈ ∆ or, equivalently, t0 < t < t∗ (this case is showed in Figure 9). Let

us consider d = dist(H,Z). Let us observe that, by definition of Z the distance d coincides

with dist(Z,P−3,0). Recall that P−2,0 = Z = (1, 2t−1
2t2

) and, moreover, since the image of

P−3,0 belongs to C−2, one easily has P−3,0 = (1, 2t3−2t+1
2t3

) and therefore

d =
2t− 1

2t2
− 2t3 − 2t+ 1

2t3
=
−2t3 + 2t2 + t− 1

2t3
.

Let us also consider d1 = dist(H,F3). In order to compute d1, let us write

H = (1,
2t− 1

2t2
+ d) = (1,

−2t3 + 4t2 − 1

2t3
).
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Since F3 = (1, 8t5(1− t)), we conclude that

d1 =
−2t3 + 4t2 − 1

2t2
− 8t5(1− t) =

16t9 − 16t8 − 2t3 + 4t2 − 1

2t3
.

Now, observe that F6 is a point in C3 with dist(F6, A) = (
√

2t)3dist(F3, H) = (
√

2t)3d1.

Moreover, one may check that F9 is a point in the same vertical line that of A3 with

dist(F9, A3) = (
√

2t)3dist(F6, A) = (
√

2t)6d1 = 8t6d1. Then, the result follows if we prove

that d1 + 8t6d1 = d1(1 + 8t6) > d. This holds for every t ∈ (t2, 1] with t2 ≈ 0.85. This

means that for every t ∈ (t0, 1], t0 ≈ 0.882, the point Z = P−2,0 belongs to Λ9
t (∆

′), so P1,3

belongs to Λ12
t (∆′) and hence Θ−2 ⊂ Λ12

t (∆′). Therefore, also using the second statement

of this lemma, P ∈ Λ15
t (∆′) = Λ15+m

t (∆′−m) ⊂ Λ15+m
t (U) and we get again Λjt (U) = Rt,

with j = 15 +m+ k (k large enough so that Ak ⊂ Λ15+m
t (U)).

5.2 Proof of Lemma 4.8

We will use the three-periodic point Q3 ∈ ∆ constructed during the proof of Lemma 4.10.

Let us recall that (see (8)):

Q3 = (xQ3 , yQ3) = (
4t2(1 + 2t3)

1 + 4t3 + 8t6
,

8t5

1 + 4t3 + 8t6
).

We also compute Q = (xQ, yQ) = Λ2
t (Q

3). It is easy to see that Q ∈ Θ0 and, since

Λt(Q) = Q3, from the expression of Λt given at (2) it follows that

Q = (xQ, yQ) = (
xQ3 + yQ3

2t
,
xQ3 − yQ3

2t
) = (

2t+ 8t4

1 + 4t3 + 8t6
,

2t

1 + 4t3 + 8t6
). (10)

First statement of Lemma 4.8 will be proved if we check that for every t ∈ (t0, 1], t0 ≈

0.882, any ball B = B(q, r) ⊂ R2 with q ∈ Θ0, B ∩ Ci 6= ∅, for i = 0, 2, 3, contains

either P ?0 or Q. This claim follows by recalling that any sufficiently small neighborhood

of P ?0 (respectively, Q) is sent by Λt (respectively, a convenient power of Λt) into some

neighborhood of the fixed point P containing, for large enough k, some Ak = Rt\
⋃k−1
j=0 Θ−k

with Λkt (Ak) = Rt (the sets Ak where defined in (4)).

Let us recall that, see (5),

P ?0 = (xP ?0 , yP ?0 ) = (
2t+ 2

2t2 + 2t+ 1
,

2t

2t2 + 2t+ 1
). (11)
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Let us divide Θ0 = Θ+
0 ∪Θ−0 with

Θ+
0 = {(x, y) ∈ Θ0 : y ≥ yP ?0 } (12)

and Θ−0 = Θ0 \Θ+
0 .

Lemma 5.3 Let t ∈ (t0, 1] and B = B(q, r) be a ball in R2 with q ∈ Θ+
0 and B ∩ C2 6= ∅,

then P ?0 ∈ B.

Proof. It will be enough to check that, if q = (xq, yq) ∈ Θ+
0 then dist(q, P ?0 ) ≤ dist(q, C2).

But this last claim follows if we prove that dist(q, P ?0 ) ≤ dist(q, C2) whenever yq = yP ?0 .

Hence, denote by Q1 = (xQ1 , yQ1) = (1, yP ?0 ) and by Q2 = (xQ2 , yQ2) the intersections

between the line y = yP ?0 and the sets C0 and C3, respectively, see Figure 10. It suffices to

demonstrate that dist(Q1, P
?
0 ) ≤ dist(Q1, C2) and dist(Q2, P

?
0 ) ≤ dist(Q2, C2). Recall that

the segment C2 is contained in the line

L2 = {(x, y) ∈ R2 : y = 2t(1− t)}, (13)

then

dist(Q1, P
?
0 ) = 1− xP ?0 ≤ yP ?0 − 2t(1− t) = dist(Q1, C2)

for every t ∈ [0, 1]. Moreover, since C3 is contained in the line

L3 = {(x, y) ∈ R2 : y = x− 4t2 + 4t3} (14)

the point Q2 is given by Q2 = (xQ2 , yQ2) = (yP ?0 + 4t2 − 4t3, yP ?0 ). Hence, one has

dist(Q2, P
?
0 ) = xP ?0 −yP ?0 −4t2+4t3 =

2

2t2 + 2t+ 1
−4t2+4t3 ≤ yP ?0 −2t(1−t) = dist(Q2, C2)

for every t ∈ (
√

2
2 , 1].

Let us consider the straight segment I1 = P0,3A formed by all the points (x, y) in Θ0

satisfying dist((x, y), C0) = dist((x, y), C3), see Figure 10. Then,

Lemma 5.4 For any t ∈ (t0, 1], A ∈ C2.
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Proof. Denoting by b =
√

2 + 1, I1 is contained in the straight line

LI1 = {(x, y) ∈ R2 : y = bx−
√

2− 4t2 + 4t3}. (15)

Now, since C2 is contained in the line L2 (see(13)) and C5 is contained in the line

L5 = {(x, y) ∈ R2 : y + x = 4t− 4t2 + 8t4 − 8t5} (16)

it holds that LI1 intersects L2 at the point (1
b (
√

2 + 2t + 2t2 − 4t3), 2t(1 − t)) and LI1

intersects L5 at the point (
√

2+4t−4t3+8t4−8t5

1+b , y0) (the value of y0 is not interesting). Since,

for every t ∈ (0.8576, 1], one may check that

√
2 + 4t− 4t3 + 8t4 − 8t5

1 + b
<

1

b
(
√

2 + 2t+ 2t2 − 4t3)

we conclude that A = (xA, yA) = (1
b (
√

2+2t+2t2−4t3), 2t(1− t)) ∈ C2, for every t ∈ (t0, 1].

Now, let us consider the parabolas

V0,P ?0
= {(x, y) ∈ R2 : dist((x, y), P ?0 ) = dist((x, y), C0)}

V3,P ?0
= {(x, y) ∈ R2 : dist((x, y), P ?0 ) = dist((x, y), C3)}

(see Figure 10). Then, V0,P ?0
and V3,P ?0

intersect in two points. Let us denote by H =

(xH , yH) the one closer to C2 (the ordinate of H is smaller than the ordinate of P ?0 ). In

fact, one may check that, since

dist(A, C0) = 1− xA < dist(A,P ?0 )

for every t ∈ (
√

2
2 , 1], then for every t ∈ (t0, 1] this point H unfortunately always belongs

to Θ0 and henceforth it also follows that H ∈ I1. Moreover, if we define A1 = (xA1 , yA1)

the intersection between V3,P ?0
and C2 (the fact that this point belongs to C2 follows from

Lemma 5.4) and A2 the point where V0,P ?0
intersects with the boundary of Θ0 (it does not

matter if this point belongs to C2 or C5) then the points H, A1 and A2 delimit a region Z

in Θ0 (lower shading region in Figure 10) formed by those points (x, y) satisfying

dist((x, y), P ?0 ) > dist((x, y), C0)

dist((x, y), P ?0 ) > dist((x, y), C3)
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Of course, there exists another region, Z ′, in Θ0 (containing P0,3) for which points (x, y)

in Z ′ also satisfy dist((x, y), P ?0 ) > dist((x, y), C0) and dist((x, y), P ?0 ) > dist((x, y), C3).

Nevertheless, the first statement of Lemma 4.8 is proved when the center q of the ball B

belong to this region Z ′. This claim follows from Lemma 5.3 and the following result:

Figure 10: Regions Z and Z ′

Lemma 5.5 For every t ∈ (t0, 1] it holds that Z ′ ⊂ Θ+
0 .

Proof. If we denote by A3 = (xA3 , yA3) the intersection between C0 and V3,P ?0
. Then in

order to prove that Z ′ is contained in the set Θ+
0 (see (12)) it is enough to prove that

yA3 > yP ?0 . This fact follows if we prove that

dist(Q1, P
?
0 ) < dist(Q1, C3),

being Q1 = (1, yP ?0 ). Using that C3 is contained in L3 (see (14)) one has

dist2((x, y), C3) =
1

2
(y − x+ 4t2 − 4t3)2 (17)

for every (x, y) ∈ R2.
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Then, since

dist2(Q1, P
?
0 ) = (xP ?0 − 1)2 <

1

2
(yQ1 − xQ1 + 4t2 − 4t3)2 = dist2(Q1, C3),

holds for every t ∈ (0.845, 1] the lemma follows.

Therefore, the first statement of Lemma 4.8 is now consequence of the following result:

Lemma 5.6 Let B = B(q, r) be a ball in R2 with q ∈ Θ−0 , B ∩ Ci 6= ∅, for i = 0, 2, 3 then if

q /∈ Z one has P ?0 ∈ B and if q ∈ Z then Q ∈ B.

Proof. Let us first assume that q /∈ Z. This assumption directly implies that either

dist(q, P ?0 ) ≤ dist(q, C0) or dist(q, P ?0 ) ≤ dist(q, C3). Then P ?0 ∈ B.

Let us now assume that q ∈ Z. Let us consider the new parabola:

V0,Q = {(x, y) ∈ R2 : dist((x, y), Q) = dist((x, y), C0)}.

We remark that the lemma will be proved if we demonstrate that Z ⊂ {(x, y) ∈ R2 :

dist((x, y), Q) < dist((x, y), C0)} because in this case any ball in the hypotheses of the

lemma (with q ∈ Z) must contains Q. Let us therefore consider S = (xS , yS) the intersection

between V0,Q and C2 and D = (xD, yD) the intersection between V0,Q and I1. Then the

lemma follows if we prove the following claims (see again Figure 10):

i) For every t ∈ (t0, 1] one has xS > xA1 .

ii) For every t ∈ (t0, 1] one has yD > yH .

To prove the first claim it is enough to check that, for every t ∈ (t0, 1]:

dist(S, P ?0 ) < dist(S, C3), (18)

and to prove the second claim it is enough to get, for every t ∈ (t0, 1], a point U = (xU , yU ) ∈

I1 satisfying

max{dist(U,P ?0 ), dist(U,Q)} < dist(U, C0) = dist(U, C3). (19)

Remark 5.7 Denoting by J the intersection in Θ0 between V0,P ?0
and V0,Q then, if (19)

holds then J necessarily satisfies dist(J, C0) < dist(J, C3) and therefore one easily obtains

yD > yJ > yH .
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Let us start by proving (18). To this end, we compute the equation of V0,Q which is

given by

2(1− xQ)x+ (y − yQ)2 + x2
Q = 1.

Then, also using that any point in C2 is contained in the line L2 (see (13)), one gets

S = (xS , yS) = (
1− x2

Q − (2t(1− t)− yQ)2

2(1− xQ)
, 2t(1− t)). (20)

Now, from (17), the inequality given at (18) follows by observing that for every t ∈ (t1, 1]

(t1 ≈ 0.8326 the value of t for which the periodic point Q arises), it holds that

dist2(S, P ?0 ) = (xS − 1)2 <
1

2
(yS − xS + 4t2 − 4t3)2 = dist2(S, C3).

To prove (19), let us consider the straight segment I2 formed by those points (x, y) ∈ Θ0

such that dist((x, y), C0) = dist((x, y), C2). Then, I2 is contained in the straight line

LI2 = {(x, y) ∈ R2 : y + x = 1 + 2t− 2t2}. (21)

Let U = (xU , yU ) be the intersection between LI2 and LI1 (see equation (15)). We obtain

(recall that b =
√

2 + 1)

U = (xU , yU ) = (
1

1 + b
(b+ 2t+ 2t2 − 4t3), 1 + 2t− 2t2 − 1

1 + b
(b+ 2t+ 2t2 − 4t3)).

Then the inequality given at (19) holds for t ∈ (0.833, 1].

Therefore the result is proved

To demonstrate the second statement of Lemma 4.8, we will need the next result:

Lemma 5.8 Let t ∈ (t0, 1] and B = B(q, r) be a ball in R2 with q ∈ Θ0 and B ∩ Ci 6= ∅, for

i = 0, 5 then:

i) B ∩ C2 6= ∅, for every t ∈ ( t̃, 1] with t̃ ≈ 0.928.

ii) If t ∈ (t0, t̃ ], then either B ∩ C3 6= ∅ or B ∩ C2 6= ∅.
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Proof. Along the proof it will be very useful Figure 11. Let us again consider I1 = P0,3A

formed by all the points (x, y) in Θ0 satisfying dist((x, y), C0) = dist((x, y), C3). Recall that

the segment I1 is contained in LI1 , see (15). We also use again I2 = P0,2R1 the straight

segment formed by all the points (x, y) in Θ0 satisfying dist((x, y), C0) = dist((x, y), C2).

This segment is contained in the straight line LI2 , see (21). The point R1 belongs to C3

and since C3 is contained in the straight line L3, see (14), one gets

R1 = (xR1 , yR2) = (
1 + 2t+ 2t2 − 4t3

2
,
1 + 2t− 6t2 + 4t3

2
) (22)

Let us consider I3 = P2,5R2 the straight segment formed by all the points (x, y) in Θ0

satisfying dist((x, y), C2) = dist((x, y), C5). This segment is contained in the line

LI3 = {(x, y) ∈ R2 : y − 2t+ 2t2 = b(x− h)}, (23)

being as usual b =
√

2 + 1 and where we have introduced

h = h(t) = 2t− 2t2 + 8t4 − 8t5.

Since LI3 and LI1 (see (15)) have the same slope (equal to b =
√

2 + 1), Lemma 5.4 implies

that R2 ∈ C3. From the fact that C3 is contained in the straight line L3 (see (14)) we

conclude that

R2 = (xR2 , yR2) = (
1

b− 1
(4t3 − 2t2 − 2t+ bh),

1

b− 1
(4t3 − 2t2 − 2t+ bh) + 4t3 − 4t2). (24)

Now from the equation of R1 given at (22), we have that xR1 > xR2 (and also yR1 > yR2)

for every t ∈ ( t̃, 1] with t̃ ≈ 0.928. This means that, if t ∈ ( t̃, 1] there is no ball B = B(q, r)

with q ∈ Θ0, B ∩ Ci 6= ∅ for i = 0, 5 and B ∩ C2 = ∅. The first statement if proved.

To prove the second statement, let us assume that t ∈ (t0, t̃ ]. In this case LI2 and LI3

((21) and (23)) intersect in one point R3 ∈ Θ0 with

R3 = (xR3 , yR3) = (
1 + bh

b+ 1
, 1 + 2t− 2t2 − 1 + bh

b+ 1
). (25)

Observe that, since B ∩ Ci 6= ∅, for i = 0, 5, if B ∩ C2 = ∅ then q must belong to the triangle

Z1 with vertices R1, R2 and R3, see Figure 11.
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Let us take I4 = P3,5R4 the straight segment formed by all the points (x, y) in Θ0

satisfying dist((x, y), C3) = dist((x, y), C5). Of course, I4 is horizontal and (see Section 2)

since P3,5 = M3 = (2t− 2t3 + 4t4(1− t), 2t− 4t2 + 2t3 + 4t4(1− t)), I4 is contained in the

line

LI4 = {(x, y) ∈ R2 : y = 2t− 4t2 + 2t3 + 4t4(1− t)}. (26)

Hence, R4 is the point in C0 given by R4 = (1, 2t− 4t2 + 2t3 + 4t4(1− t)). The segment I4

intersects I1 in a point R5 = (xR5 , yR5) with

yR5 = 2t− 4t2 + 2t3 + 4t4(1− t).

Then, if some ball B = B(q, r) satisfies q ∈ Θ0, B ∩ Ci 6= ∅, for i = 0, 5, if B ∩ C3 = ∅ then q

must belong to the polygonal region Z2 with vertices A, R4, R5 and P0,2 (see Figure 11).

To conclude the proof of the lemma it is enough to check that Z1 ∩Z2 = ∅. This follows

from the fact that the ordinate of the point R3 is greater than the ordinate of the point R5

for every t ∈ (0.857, 1].

P0,3

P0,2P2,5

P3,5

A

R1

R2

R3

R4

R5

Z1

Z2

I1

I2

I3

I4

C0

C2

C3

C5

Figure 11: The case t ∈ (t0, t̃ ]

Now, we may prove the second statement of Lemma 4.8. We will distinguish between

two cases:
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A) Let us assume that t ∈ ( t̃, 1]. Then from Lemma 5.8 we have that B ∩ C2 6= ∅.

Therefore, we may suppose that B∩C3 = ∅, because if not we may apply the first statement

of Lemma 4.8 to conclude. Hence, q must belong to Z2 (recall that this set exists for every

t ∈ (t0, 1]). We will demonstrate that the three-periodic orbit Q given at (10) must belong

to B. To this end, let us again use the parabola

V0,Q = {(x, y) ∈ R2 : dist((x, y), Q) = dist((x, y), C0)}.

This parabola intersects C2 in the point S, see (20) and Figures 10 and 12. We also need

to compute S̃ the intersection between V0,Q and I4 ⊂ LI4 (see (26)):

S̃ = (x
S̃
, y
S̃

) = (
1− x2

Q − (c− yQ)2

2(1− xQ)
, c)

with c = c(t) = 2t− 4t2 + 2t3 + 4t4(1− t).

Now, it is sufficient to demonstrate that if (x, y) ∈ Z2 with dist((x, y), Q) > dist((x, y), C0)

then dist((x, y), Q) < dist((x, y), L5), being L5 (see (16)) the straight line containing C5

(the region {(x, y) ∈ Z2 : dist((x, y), Q) > dist((x, y), C0)} is the shading region in Fig-

ure 12). To this end, it suffices to check that dist((x, y), Q) < dist((x, y), L5) for (x, y) ∈

{S, S̃, P0,2, R4}. This is because the set {(x, y) ∈ R2 : dist((x, y), Q) < dist((x, y), L5)}

is convex. Hence, if dist((x, y), Q) < dist((x, y), L5) for (x, y) ∈ {S, S̃, P0,2, R4} then

dist((x, y), Q) < dist((x, y), L5) for every (x, y) in the polygonal domain with vertices

S, S̃, P0,2 and R4. Since one easily gets

dist2((x, y), L5) =
1

2
(4t− 4t2 + 8t4 − 8t5 − x− y)2, (27)

for every (x, y) ∈ R2, we conclude

dist2(S,Q) <
1

2
(4t− 4t2 + 8t4 − 8t5 − xS − yS)2 = dist2(S,L5),

for every t ∈ [0.846, 1],

dist2(S̃, Q) <
1

2
(4t− 4t2 + 8t4 − 8t5 − x

S̃
− y

S̃
)2 = dist2(S̃, L5),

for every t ∈ [0.85, 1]. Moreover, recalling that P0,2 = (1, yP0,2) = (1, 2t(1− t)),

dist2(P0,2, Q) <
1

2
(4t− 4t2 + 8t4 − 8t5 − 1− yP0,2)2 = dist2(P0,2, L5),
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for every t ∈ [0.858, 1] and finally

dist2(R4, Q) <
1

2
(4t− 4t2 + 8t4 − 8t5 − xR4 − yR4)2 = dist2(R4, L5),

for every t ∈ [0.833, 1].

Remark 5.9 Observe that all the arguments used in the case t ∈ ( t̃, 1] still remain valid

for t ∈ (t0, 1] under the assumption B ∩ C2 6= ∅.

B) Let us assume that t ∈ (t0, t̃ ]. In this case applying Lemma 5.8 we have that either

B ∩ C3 6= ∅ or B ∩ C2 6= ∅. If B ∩ C2 6= ∅, then we may assume that B ∩ C3 = ∅ (in other

case, the result will follow from the first statement of Lemma 4.8). Hence, we may repeat

the arguments of the previous case (see Remark 5.9), because they do not depend on the

value of t ∈ (t0, 1].

Figure 12: The region in Z2 with d((x, y), Q) > d((x, y), C0)

Hence let us assume that t ∈ (t0, t̃ ] and B ∩ C3 6= ∅. Therefore we may assume that

B ∩ C2 = ∅. Then q must belong to the triangle Z1 with vertices R1, R2 and R3 (see Figure

11). To conclude the proof of the lemma we will prove that any such ball must contain P ?0 ,

see (5). To this end, let us consider the parabola

V5,P ?0
= {(x, y) ∈ R2 : dist((x, y), P ?0 ) = dist((x, y), C5)}.

The proof of the lemma ends if we check that the set Z1 is contained in the set of points

satisfying dist((x, y), P ?0 ) < dist((x, y), L5). However, since both sets are convex it suffices
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to obtain dist((x, y), P ?0 ) < dist((x, y), L5) for (x, y) ∈ {R1, R2, R3}. Using the formula

(27) and the expressions given for P ?0 , R1, R2 and R3 in (11), (22), (24) and (25), one may

deduce that

dist2(R1, P
?
0 ) <

1

2
(4t− 4t2 + 8t4 − 8t5 − xR1 − yR1)2 = dist2(R1, L5)

for every t ∈ (1/ 3
√

2, 1],

dist2(R2, P
?
0 ) <

1

2
(4t− 4t2 + 8t4 − 8t5 − xR2 − yR2)2 = dist2(R2, L5)

for every t ∈ [0.759, 0.944] (recall that if suffices to suppose t < t̃ ≈ 0.928), and

dist2(R3, P
?
0 ) <

1

2
(4t− 4t2 + 8t4 − 8t5 − xR3 − yR3)2 = dist2(R3, L5)

for every t ∈ [0.847, 1].

Lemma 4.8 is proved.

6 Conclusions and final remarks

Along this paper we have proved the existence of a pentagonal domain Rt which is the

maximal attracting set for the 2−D tent map Λt for every t ∈ (
√

2
2 , 1]. Moreover, for every

t ∈ (t0, 1], t0 ≈ 0.882 we have proved that Rt is, in fact, a two-dimensional strange attractor

for Λt and there is a unique ergodic a.c.i.m. µt with supp(µt) = Rt.

In order to extend Theorem 1.1 to every t ∈ [ 3

√
1
2 , 1] it seems enough to use a large

number of pre-images of P (or more periodic orbits) in all the arguments of this paper.

When t ∈ (
√

2
2 ,

3

√
1
2) the pentagonal domain Rt is no longer transitive as the numerical

evidences show to us, see Figure 13. We will consider these dynamics in a forthcoming

paper.

Finally, it seems possible to use similar results as the ones given at the main result in

[1] in order to prove that the map

t ∈ (t0, 1]→ dµt
dLeb

is continuous.
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Figure 13: The attractor for t = 0.73 and t = 0.77 respectively
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