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Abstract

Taking into account microscopic properties of most usual high–Tc su-
perconductors, like cuprates, we define a class of microscopic model Hamil-
tonians for two fermions (electrons or holes) and one boson (bipolaron) on
the two–dimensional square lattice. We establish that these model Hamilto-
nians can show d–wave paring at the bottom of their spectrum, despite their
space isotropy. This phenomenon appear when a “giant electron–phonon
anomaly” is present at the boundaries of the Brillouin zone (“half breath-
ing” bond–stretching mode), like in doped cuprates. Our results can be
used to derive effective electron–electron interactions mediated by bipo-
larons and we discuss regimes where the corresponding model is relevant
for the physics of high–temperature superconductivity and can be mathe-
matically rigorously studied.
Keywords: High Tc, Superconductivity, Hubbard model, BCS model, d–
wave, s–wave, Bipolaron
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1 Introduction
Cuprates and many other superconducting materials with high critical tempera-
tures have features which are non–usual as compared to conventional supercon-
ductors. Quoting [1]:

High–temperature superconductivity in the copper oxides, first discovered twen-
ty years ago, has led researchers on a wide-ranging quest to understand and
use this new state of matter. From the start, these materials have been viewed
as“exotic” superconductors, for which the term exotic can take on many mean-
ings. The breadth of work that has taken place reflects the fact that they have
turned out to be exotic in almost every way imaginable. They exhibit new states
of matter (d–wave superconductivity, charge stripes), dramatic manifestations of
fluctuating superconductivity, plus a key inspiration and testing ground for new
experimental and theoretical techniques.
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Some of these “exotic” properties, as for instance the d–wave pairing and den-
sity waves (charge stripes) mentioned above, turn out to be common to many
high–Tc superconductors, in particular to those based on cuprates [1]. Hence, the
understanding of generic microscopic structures leading to that typical behavior
can reveal mechanisms behind high–temperature superconductivity.

In fact, the microscopic foundations of high–Tc superconductivity are still
nowadays a subject of much debate. In the present paper we would like to ad-
dress this issue by analyzing a specific three–body problem. Indeed, we have
following aims:

• Taking into account microscopic properties of most usual high–Tc supercon-
ductors (in particular cuprates), as found in recent experiments, we define
a class of microscopic model Hamiltonians for two fermions (electrons or
holes) and one boson (bipolaron) on the two–dimensional square lattice.

• We mathematically rigorously analyze the spectral projection on the bottom
of the spectrum of model Hamiltonians and identify the range of parameters
that leads to d–wave paring.

• We use the properties of such spectral projections in order to derive an ef-
fective model, here called “effective uncoupled model”, in which the two
species, bosons and fermions, do not interact with each other.

Our main mathematical assertions are Theorems 2, 3, 4 and Corollary 5. The
paper is organized as follows:

• Based on experimental facts about typical high–Tc superconductors (like
cuprates), Section 2 gives and discusses assumptions on model Hamiltoni-
ans.

• Section 3 formulates the mathematical setting and our main results. In par-
ticular, we establish that model Hamiltonians which are invariant with re-
spect to 90◦–rotations can show d–wave paring at the bottom of their spec-
trum.

• We derive the effective uncoupled many–body model in Section 4, using
results of Section 3.

• Section 5 gathers technical proofs on which Sections 3–4 are based.
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• Section 6 is an appendix on direct integral decompositions and the Birman–
Schwinger principle, which are important technical tools to prove our asser-
tions.

Notation 1
To simplify notation, we denote positive and finite constants byD ∈ (0,∞). These
constants do not need to be the same from one statement to another. We denote the
Banach space of bounded operators acting on a Hilbert space H by B(H) with
operator norm ‖ · ‖op and identity 1H.

2 Prototypical Properties of High–Tc Superconduc-
tors

In the next four subsections we briefly discuss some experimental facts giving,
in our opinion, important hints about the nature of the microscopic interaction
involving electrons in superconducting cuprates. Based on this discussion, we
propose a list of assumptions on our model Hamiltonians.

2.1 Electron Repulsion and Hoppings
It is well-known that undopped cuprates are insulators. Moreover, experiments
showed that the insulating phase of cuprates is indeed a so–called “Mott insulat-
ing phase”. See for instance [1] for a review. This phase is characterized by a
periodic distribution of electrons with exactly one particle per lattice site. Such a
space distribution of electrons is a consequence of a strong repulsion of two charge
particles sitting at the same lattice site. Dopping cuprates with holes or electrons
leads to a mean density ρ different from one electron per site and the above con-
figuration is not anymore energetically favorable. It turns out that, in this case, at
sufficiently small temperatures, the superconducting phase is the one minimizing
the free–energy density. In particular, the system undergoes a phase transition
and becomes a superconductor. This phenomenon was rigorously proven in [2]
for the strong coupling reduced BCS Hamiltonian perturbed by a repulsive Hub-
bard interaction. Further properties of the phase diagram of real cuprates are also
captured if we consider the two–band version of this Hamiltonian. In fact, for
real cuprates the phase diagram is not symmetric with respect to the axis ρ = 1
(no doping, one electron per site). The critical temperature tends to be higher for
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hole doping than for electron doping. This property is shown to be true for the
two–band model studied in [3].

The results of [2, 3] confirm, from a mathematical point of view, that the
shape of the typical phase diagram of cuprates as well as the corresponding type
of phase transition can be drawn back to the competition between a strongly re-
pulsive short–range force between electrons and a weak but long–range BCS–type
interaction. We thus assume the following:

Assumption 1 (Hubbard repulsion)
The repulsive force between two near–lying electrons is represented by the usual
Hubbard repulsive interaction (which does not vanish only for particles at the
same lattice site).

The absence of hopping terms in the Hamiltonian studied in [2, 3] corresponds
to the so–called “strong coupling approximation” for the BCS model. Here, we
aim to introduce general hopping terms in our models. Note however that the
“strong coupling regime” is, from one side, technically convenient, but, first of
all, also the most relevant case in which concerns high–Tc superconductivity: Ex-
periments suggest [4] that the inter–particle interaction energy is five to eight times
bigger than the hopping strength:

Assumption 2 (Strong coupling regime)
The interactions between particles are strong with respect to the hopping ampli-
tudes.

Charge transport in cuprates take place within separated (almost) independent
layers. In fact, we focus on high–Tc materials for which superconducting carriers,
mainly holes in the case of cuprates, move within two–dimensional CuO2 layers
made of Cu++ and O−−, see, e.g., [4, Fig. 5.3. p. 127]. The following assumption
is thus reasonable:

Assumption 3 (Two–dimensionality)
The charge transport occurs within independent two–dimensional layers.

We also know from [2, 3] that the reduced BCS interaction, also in presence of
the Hubbard repulsive term, always lead to s–wave pairing of electrons in the su-
perconducting phase. Hence, this component should be replaced by another effec-
tive long–range attractive force. Effective microscopic forces between electrons,
which could play a role in the phenomenon of d–wave pairing, are deduced in
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Section 4 from results of Section 3. One important physical fact that gives hint on
the nature of the microscopic forces leading to high–temperature superconductiv-
ity are the anomalous dispersion relations of phonons in high–Tc superconductors
discussed in the following subsection.

2.2 Giant Electron–Phonon Anomalies in Dopped Cuprates
Anomalous dispersion relations of phonons, i.e., dispersion relations of a form
not expected from lattice–dynamical models, are usually due to the coupling of
phonon to electrons. Such a phenomenon is observed even in conventional met-
als. In doped cuprates and other high–Tc superconductors such an anomaly is
very strong (“giant electron–phonon anomaly”) and very localized in specific re-
gions of the Brillouin zone, suggesting a strong interaction between elastic and
charged modes in some small range of quasi–momenta. For a recent review on
giant electron–phonon anomalies in doped cuprates see for instance [5]. Exper-
iments with cuprates show that these anomalies get stronger at the boundaries
of the Brillouin zone (“half breathing” bond–stretching mode) as the doping is in-
creased [6]. Since, until a certain point, the increasing of doping also increases the
superconducting critical temperature, it is natural to expect that a strong coupling
between charged and “half breathing” bond-stretching modes is part of the mech-
anism leading to high temperature superconductivity [7]. In a two–dimensional
model for superconductors “half breathing” bond–stretching modes correspond to
(±π, 0) and (0,±π) quasi–momentum transfers.

The precise type of coupling between charged and elastic modes responsi-
ble for the giant electron–phonon anomalies is a subject of debate. One possible
mechanism is the existence incipient instability due to the formation of polarons
and bipolarons [8, 9, 10, 11, 12]. For other mechanisms see the review [5]. In the
next subsection we discuss the bipolaronic scenario in more details. The follow-
ing physical assumption, that is, strong bipolaron instabilities at quasi–momenta
(±π, 0) and (0,±π), is made with respect to the two–dimensional microscopic
models we consider:

Assumption 4 (Strong bipolaron instabilities)
The strong interaction between elastic and charged modes at half breathing bond–
stretching modes is related to the formation of bipolarons.

We also assume the following condition:
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Assumption 5 (Zero–spin bipolarons)
The total spin of bipolarons is zero.

Considering spin–one bipolarons would also be feasible, but we refrain from do-
ing it for simplicity.

2.3 Bipolaron–Electron Exchange Interaction
There are experimental evidences of polaron and bipolaron formation in high–Tc
superconductors, even in insulating and metallic phases. See, for instance, [13] for
a brief review on these experimental issues. Some efforts have been made to theo-
retically explain high–Tc superconductivity by assuming that bipolarons, and not
Cooper pairs, are the main charge carriers in the superconducting phase [14, 15].
Recall that it is experimentally known that, for cuprates and other high–Tc su-
perconductors, the charge carriers in the superconducting phase have two times
the charge of the electron, as in the case of conventional superconductors. Nev-
ertheless, there is an important objection to this picture: polarons and bipolarons
(more generally, n–polarons, n ∈ N) are charge carriers that are self–trapped in-
side a strong and local lattice deformation that surounds them (their are electrons
“dressed with phonons”). Such strong lattice deformations attached to bipolarons
can hardly move and this is not in accordance with the known mobility of super-
conducting charge carriers. Hence we assume:

Assumption 6 (Small bipolaron mobility)
The hopping strength of bipolarons (bosonic particles) is very small or even neg-
ligible.

One way out of this mobility problem is to assume that bipolarons can decay
into two–electrons and, reciprocally, two moving electrons can bind together to
form a new bipolaron [13]:

Assumption 7 (Bipolaron–electron exchange)
Bipolarons can decay into two electrons and moving electrons can bind to form
bipolarons. This exchange process is strong for quasi–momenta near the half
breathing bond–stretching modes, i.e., in two–dimensions, (±π, 0), (0,±π), and
weak away from these singular points.

This exchange process allows a good mobility of charge carriers because the
electronic state has a non–negligible hopping strength. Moreover, such a boson–
fermion exchange process effectively creates an attractive force between electrons,
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like in the Fröhlich model for conventional superconductivity. So, we expect a
binding mechanism for electron pairs similar, in a sense, to the Cooper pairing,
but with the mediating boson being a bipolaron instead of (directly) a phonon.

As the exchange process described above is concentrated (in momentum space)
around a few isolated points (half breathing bond-stretching modes) of the Bril-
louin zone, it is conceivable that the following holds true:

Assumption 8 (Long–range effective forces)
The forces between electrons mediated by bipolarons are long–ranged (in space).

This assumption is not in contradiction with the experimentally known fact
that the pairs responsible for charge transport in high–Tc superconductors have
(in contrast to conventional superconductors) a very small extension. Indeed, as
shown in [2], the small space extension of superconducting pairs is rather due
to the strong coupling regime. Note moreover that Assumption 8 is not used in
Section 3. It is only relevant for the effective many–body model we propose in
Section 4.

2.4 Space Isotropy
There are theoretical studies showing that an anisotropic phonon–electron (or,
more generally, boson–fermion) interaction can explain d–wave pairing of elec-
trons [16]. On the other hand, there is absolutely no evidence of such an anisotropy
in cuprates, see [5] for instance. So, we aim to derive d–pairing (among other phe-
nomena typical to high–Tc superconductors) from strictly isotropic models and we
assume the following:

Assumption 9 (Isotropy of interactions)
The interactions are invariant unter lattice translations, reflections and 90◦–rota-
tions.

This condition concludes the list of assumptions on which we base our math-
ematically rigorous study.

3 Mathematical Setting and Main Results
In this section, we mathematically implement (the physical) Assumptions 1–7 and
9.
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3.1 Bipolaron–Electron Model for High–Tc Superconductors
By taking into account all model assumptions formulated above, we propose bel-
low a Hamiltonian for bosons and fermions in the Z2–lattice. In particular, the
host material supporting particles is assumed to be a (perfect) two–dimensional
cubic crystal (cf. Assumption 3).

For any n ∈ N, let Sn,± be the orthogonal projections onto the subspace of,
respectively, antisymmetric (−) and symmetric (+) n–particle wave functions in
h⊗n± , the n–fold tensor product of either h− := `2(Z2;C2) or h+ := `2(Z2;C). Let
hn,± := Sn,±h⊗n± for all n ∈ N, h0,± := C, and define

F± :=
∞⊕
n=0

hn,±

to be respectively the fermion ((−), spin 1/2) and boson ((+), spinless, cf. As-
sumptions 4 and 5) Fock spaces. The Hilbert space of the compound system is
thus

F−,+ := F− ⊗F+ '
∞⊕

n,m=0

hm,− ⊗ hn,+ .

Here, ' denotes the existence of a canonical isomorphism of Hilbert spaces. A
dense subset of F−,+ is given by the subspace

D := span

{ ⋃
m,n∈N0

hm,− ⊗ hn,+

}
. (1)

The creation and annihilation operators are denoted by

a∗x,s ≡ a∗x,s ⊗ 1F+ , ax,s ≡ ax,s ⊗ 1F+ , x ∈ Z2, s ∈ {↑, ↓} ,

for fermions and

b∗x ≡ 1F− ⊗ b∗x , bx ≡ 1F− ⊗ bx , x ∈ Z2,

in the boson case.
The fermionic part of the (infinite volume) Hamiltonian is defined on the dense

subspace D ⊂ F−,+ by the symmetric operator

Hf := ε

−1

2

∑
s∈{↑,↓},x,y∈Z2,|x−y|=1

a∗x,say,s + 2
∑

s∈{↑,↓},x∈Z2

a∗x,sax,s

+U
∑
x∈Z2

nx,↑nx,↓

(2)

9



with ε, U ≥ 0. The first term of this operator represents, as usual, next–neighbor
hoppings of fermions on the Z2–lattice. More generally, we could take a term of
the form

ε
∑

s∈{↑,↓},x,y∈Z2

hf (|x− y|)a∗x,say,s ,

for some real–valued function hf satisfying∑
x∈Z2

|hf (x)| <∞ .

We refrain from considering this general case for simplicity, only, but our study
can be easily generalized to this situation. The last term of (2) stands for the
(screened) Coulomb repulsion as in the celebrated Hubbard model. So, the pa-
rameter U is a positive number, i.e., U ≥ 0. See Assumption 1. The parameter
ε ≥ 0 represents the relative strengh of the hopping amplitude with respect to the
interparticle interaction. In high–Tc superconductors, ε is expected to be relatively
small. Cf. Assumption 2.

The bosonic part of the Hamiltonian is meanwhile defined on D by

Hb := ε

−hb
2

∑
x,y∈Z2,|x−y|=1

b∗xby + 2hb
∑
x∈Z2

b∗xbx

 , (3)

where hb ≥ 0 is very small or even zero (cf. Assumption 6). This symmetric
operator does not include any density–density interaction. Indeed, we only con-
sider below the one–boson subspace and such interactions are thus irrelevant in
the sequel. [If some density–density interaction is added here for the bosons, then
the effective model (26) has to include it.]

We define the full Hamiltonian (fermion–boson compound system) by the
symmetric operator

H := Hf +Hb +W ∈ L(D,F−,+) , (4)

where L(D,F−,+) stands for the space of linear operators from D to F−,+ and

W :=
∑
x,y∈Z2

v (x− y)
(
b∗xcy + c∗ybx

)
(5)

encodes (spin–conserving) exchange interactions between electron pairs and bipo-
larons (cf. Assumption 7) withZ2–summable coupling functions v. The fermionic
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operator cx is defined, for all x ∈ Z2 and some (large) parameter κ > 0, by

cx :=
∑

z∈Z2,|z|≤1

e−κ|z|ax+z,↑ax,↓ . (6)

Note that we do not use the operator

c̃x :=
∑
z∈Z2

e−κ|z|ax+z,↑ax,↓ = cx +O(e−
√

2κ) (7)

instead of cx in the sequel in order to simplify technical arguments, only. The
action of c̃x can be viewed as the annihilation of an electron pair localized in a
region of radius O(κ−1). It could be interesting to replace the Hubbard repulsion
by general density–density interaction resulting from the second quantization of
two–body interactions, like for instance

U
∑

s∈{↑,↓},x,y∈Z2

u (|x− y|) a∗yaya∗xax (8)

on D, where u (r) : R+
0 → R+ is some real–valued function. See discussion at

the end of Section 3.2.
We consider fermion–boson interactions (5) with real–valued coupling func-

tions v which are Z2–summable, symmetric and 90◦–rotation invariant (cf. As-
sumption 9): v ∈ `1 (Z2,R) and, for all x ≡ (x1, x2) ∈ Z2,

v(x) = v(−x) , v(x) ≡ v(x1, x2) = v(−x2, x1) .

Note that the Fourier transform v̂ of such a v exists as a real–valued continuous
function which is symmetric and 90◦–rotation invariant, i.e., for all k ≡ (k1, k2) ∈
[−π, π)2,

v̂(k) = v̂(−k) , v̂(k) ≡ v̂(k1, k2) = v̂(−k2, k1) . (9)

It is convenient, for reasons which become clear later on, to take v of the form

v = v+ − v− , (10)

where v± ∈ `1 (Z2,R) are functions of positive type, i.e., their Fourier transforms
v̂± are non–negative.
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3.2 d–Wave Pairing in the 2-Fermions–1-Boson Sector
We aim to study the unitary group generated by H on the smallest invariant space
of H containing the subspace related to one pair of electrons with total spin equal
to zero. This invariant space is

H(2,1)
↑,↓ := (h

(0)
2,− ⊗ h0,+)⊕ (h0,− ⊗ h1,+) ' h

(0)
2,− ⊕ h1,+ (11)

with h
(0)
2,− being the subspace of one zero–spin fermion pair. h

(0)
2,− is canonically

isomorphic to the spaces

`2
(
Z2;C

)
⊗ `2

(
Z2;C

)
' `2(Z2 × Z2;C) . (12)

The first Hilbert space `2 (Z2;C) in the tensor product encodes the wave functions
of a fermion with spin up (↑), whereas the second one refers to a fermion with spin
down (↓). The isomorphism between h

(0)
2,− and `2(Z2 × Z2;C) is choosen in such

a way that, for any x, y ∈ Z2, ax,↑ay,↓, seen as an operator from `2(Z2 ×Z2;C) to
C, satisfies

ax,↑ay,↓ (c) = c (x, y) , c ∈ `2(Z2 × Z2;C) . (13)

Since h1,+ = `2(Z2;C), it follows that

H(2,1)
↑,↓ ' `2(Z2 × Z2;C)× `2(Z2;C) . (14)

In particular, we denote elements ψ of H(2,1)
↑,↓ by ψ = (c, b), where c and b are

respectively the wave function of one fermion pair and one boson. Observe that

H(2,1) := H|H(2,1)
↑,↓

(15)

is a bounded self–adjoint operator on the subspaceH(2,1)
↑,↓ . Recall that v ∈ `1 (Z2,R).

We study below the unitary group generated by the Hamiltonian H(2,1) in order to
show the formation of a bound fermion pair of minimum energy via a mediating
bipolaron (spinless boson, in the present case), as discussed in the introduction.

To this end, we define the ground state energy of the Hamiltonian H(2,1) by

E0 := inf σ(H(2,1)) ,

where σ(A) is, by definition, the spectrum of any self–adjoint operator A. From
Lemma 8, observe that E0 ≤ 0. In fact, we can give an explicit criterium for the
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strict negativity of E0, which is interpreted as a bound fermion pair formation.
See Theorem 3 and discussion thereafter.

Indeed, for any ε ≥ 0, κ > 0, λ < 0 and k ∈ [−π, π)2, let

R(0)
s,s :=

1

(2π)2

∫
[−π,π)2

1

ε (4− cos(k↑↓ − k)− cos(k↑↓))− λ
d2k↑↓ , (16)

R
(0)
d,d :=

1

(2π)2

∫
[−π,π)2

(1 + 2e−κ cos(k↑↓ − k))2

ε (4− cos(k↑↓ − k)− cos(k↑↓))− λ
d2k↑↓ , (17)

R
(0)
s,d :=

1

(2π)2

∫
[−π,π)2

1 + 2e−κ cos(k↑↓ − k)

ε (4− cos(k↑↓ − k)− cos(k↑↓))− λ
d2k↑↓ , (18)

where

cos(q) := cos(qx) + cos(qy) , q ≡ (qx, qy) ∈ [−π, π)2 . (19)

These strictly positive constants can easily be determined to a very high precision
by numerical computations. Then, define the (possibly infinite) numbers

I(k, U) := lim sup
λ→0−

|v̂ (k)|2

 R
(0)
d,d

1 + UR
(0)
s,s

+ U
R

(0)
d,dR

(0)
s,s −

(
R

(0)
s,d

)2

1 + UR
(0)
s,s

 ∈ [0,∞]

I(k,∞) := lim sup
λ→0−

|v̂ (k)|2


R

(0)
d,dR

(0)
s,s −

(
R

(0)
s,d

)2

R
(0)
s,s

 ∈ [0,∞]

for any U ≥ 0 and k ∈ [−π, π)2, see (64). A sufficient condition to obtain a
bound pair (i.e., E0 < 0) is as follows:

Theorem 2 (Strict negativity of E0)
(i) E0 < 0 if and only if

sup
k∈[−π,π)2

{I(k, U)− εhb(2− cos(k))} > 0 .

The latter always holds true whenever v̂ (0) 6= 0.
(ii) At fixed ε ≥ 0,

lim inf
U→∞

E0 < 0

if and only if
sup

k∈[−π,π)2
{I(k,∞)− εhb(2− cos(k))} > 0 .

13



Proof. The assertions are direct consequences of Proposition 10 and Lemmata 11,
14 and 15. 2

Note that Theorem 2 yields E0 < 0 for sufficiently small ε ≥ 0, unless v = 0.
We are interested in the time evolution driven by this Hamiltonian for three–

body wave functions with minimum energy. We thus consider initial wave func-
tions (c0, b0) in the subspace

Hε := Ran
(
1[E0,E0(1−ε)](H

(2,1))
)
⊂ H(2,1)

↑,↓ (20)

for small ε > 0. Here, for any α1, α2 ∈ R, α1 < α2, and self–adjoint operator
A, 1[α1,α2](A) denotes the spectral projector of A associated to its spectrum in
the interval [α1, α2], while Ran(A) stands for the range of A. Note that E0 is
generally not an eigenvalue of H(2,1), see Section 5.

Then, for any positive real number 0 < ε � 1, we study the properties of the
time–dependent wave function (ct, bt), solution of the Schrödinger equation

∀t ∈ R : i
d

dt
(ct, bt) = H(2,1)(ct, bt) , (ct, bt) ∈ Hε . (21)

With this aim, define the (non–empty) set

Ξε :=
{

(ct, bt) ∈ C1(R,Hε) norm–one solution of Equation (21)
}

for 0 < ε� 1. Units are chosen so that ~ = 1.
We first show that the strict negativity of E0 corresponds to the existence a

bound fermion pair:

Theorem 3 (Existence of bound fermion pairs)
Assume that E0 < 0. For any η, ε ∈ (0, 1) and (ct, bt) ∈ Ξε, there is a constant
R <∞ such that, for all t ∈ R,∑

x↑,x↓∈Z2:|x↑−x↓|≤R

|ct(x↑, x↓)|2 ≥ ‖c0‖2
2(1− η) > 0 .

Moreover, if the hopping amplitude ε > 0 is sufficiently small then one can choose
R = 1.

Proof. It is a direct consequence of Proposition 13. 2

Since (ct, bt) ∈ Ξε has norm one for all t ∈ R, we infer from Theorem 3
that, uniformly in time t, the probability of finding an electron pair in a region of
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diameter 1 is always strictly positive for strictly negative E0 < 0 and sufficiently
small hopping amplitude 0 ≤ ε � 1. In other words, the fermion part ct never
vanishes in this regime while the two fermions behave as a composite particle, i.e.,
a bound fermion pair. We also have a non–vanishing boson part bt for all times.
The latter can be seen as a depletion of either the pair density or the boson (bipo-
laron) density. This depletion results from the interaction W (5) which implies
an effective attraction between fermions. This can heuristically be understood by
diagrammatic methods like in [17]. It is also reminiscent of the Bose condensate
depletion found in the rigorous study of the Bogoliubov model and its variants.
See for instance [18, 19]. The boson–fermion occupation ratio can be explicitly
computed in the limits ε→ 0 and U →∞:

‖ct‖2
2

‖ct‖2
2 + ‖bt‖2

2

→ 1

2
(22)

see Lemma 23. Similar results in the regime ε → 0 and U → 0 can also be
deduced from our study.

For sufficiently small hopping amplitudes, the last theorem says that the bound
pair is (s) either localized on a single lattice site or (d) the fermions forming the
bound pair have distance exactly equal to 1 to each other. (s) mainly appears at
small coupling U ≥ 0 and corresponds to a s–wave pair. By contrast, (d) occurs at
largeU ≥ 0 and is related to the formation of a d–wave pair whenever Assumption
7 is satisfied. If this assumption does not holds, we still have, at large U ≥ 0, a
distance exactly equal to 1 between the fermions in the bound pair, but the pairing
symmetry is rather of generalized s–wave type instead of d–wave. We now devote
the rest of this section to the precise statements of these facts.

At any k ∈ [−π, π)2, define the function sk : Z2 → C by

sk (y) :=
1

2

(
eik·(0,1)δy,(0,1) + eik·(0,−1)δy,(0,−1) + eik·(1,0)δy,(1,0) + eik·(−1,0)δy,(−1,0)

)
(23)

for all y ∈ Z2. Let

Kv :=

{
k ∈ [−π, π)2 : |v̂(k)| = max

q∈[−π,π)2
|v̂(q)| =: ‖v̂‖∞

}
(24)

be the non–empty closed set of maximizers of the absolute value of the Fourier
transform v̂ of v ∈ `1 (Z2,R).
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Theorem 4 (Generic space symmetry of bound pairs)
Assume that Kv is a finite set and take any η > 0. For sufficiently small ε, ε > 0
and any (ct, bt) ∈ Ξε, there is a family {f (k)}k∈K ⊂ C(R, `2(Z2;C)) of one–
particle wave functions such that:
(s) For sufficiently small U ≥ 0 and all t ∈ R,∑

x↑,x↓∈Z2

∣∣∣ct(x↑, x↓)−∑
k∈Kv

{
δx↑,x↓ + 2e−κsk(x↑ − x↓)

}
f

(k)
t (x↑)

∣∣∣2 ≤ η .

(d) For sufficiently large U > 0 and all t ∈ R,∑
x↑,x↓∈Z2

∣∣∣ct(x↑, x↓)−∑
k∈Kv

sk(x↑ − x↓)f (k)
t (x↑)

∣∣∣2 ≤ η .

Proof. It is a direct consequence of Corollaries 17–18, Proposition 21 and Lemma
22. Note that Proposition 21 only treats the case of large U � 1 and Lemma
22 analyzes the d–component of the wave function. To get Assertion (s) we need
similar results for the s–component at small U � 1. We omit the details since the
latter case is even simpler. 2

If the above theorem holds and v̂ is concentrated on half breathing bond-
stretching modes, i.e.,

Kv = {(−π, 0), (0,−π)} ⊂ [−π, π)2 (25)

(cf. Assumption 7), then the system shows d–wave pairing:

Corollary 5 (d–wave space symmetry)
Assume (25) and take η > 0. For sufficiently small ε, ε > 0 and any (ct, bt) ∈
Ξε, there is a one–particle wave function fε ∈ C(R, `2(Z2;C)) such that, for
sufficiently large U > 0 and all t ∈ R,∑

x↑,x↓∈Z2

∣∣∣ct(x↑, x↓)− d(x↑ − x↓)ft(x↑)
∣∣∣2 ≤ η ,

where
d := s(−π,0) = −s(0,−π).
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If |v̂(±π, 0)| (or |v̂(0,±π)|) is sufficiently large, then the wave function of the
bound fermion pair has the d–wave symmetry, by Corollary 5. Indeed, the Fourier
transform d̂ of d equals

d̂ (k) ≡ d̂ (k1, k2) = cos(k2)− cos(k1)

for any k ≡ (k1, k2) ∈ [−π, π)2. [See for instance (89).] This is precisely the
orbital function of the d–wave pair configuration, see [1].

Note that the Hubbard repulsion could be replaced by a general density–
density interaction resulting from the second quantization of two–body interac-
tions, like for instance (8). In this case, one has to consider the more general
fermion pair annihilation operator c̃x as given by (7) (instead of cx). Such models
would lead to much more general pairing configurations, beyond s– and d–wave
orbitals. Basically, if u (r) has finite range [0, R] then in the limit U →∞ bound
fermion pairs of radius less than R will be suppressed, but the interaction W will
bind pairs of fermion separated by a distance of at least R, even when U →∞. In
this case, the minimum energy of the system does not depend much on U . Similar
methods to those used here should be applicable to such a more general situation.
However, we only consider the most simple physically relevant case R = 0 to
keep technical aspects as simple as possible.

4 Uncoupled Effective Models for High–Tc Super-
conductors

4.1 Definition of the Effective Model
We propose a model which decouples bosons and fermions but which correctly
describes the dynamics ot the orginal model at low energies within the invariant
spaceH(2,1)

↑,↓ , as described in Section 3.2. The fermionic part is a BCS–like model,
as usually done in theoretical physics, while the bosonic part is a free model with
effective hopping amplitudes.

Indeed, using the decomposition (10) we define the bosonic effective Hamil-
tonian on the dense subspace D (1) by the symmetric operator

H̃b := −
∑

x,y∈Z2,|x−y|=1

wb (x− y) b∗xby (26)
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with

wb (x) := γb (v+ (x) + v− (x)) +
1

2U
(v ∗ v) (x) , x ∈ Z2 , (27)

and γb ≥ 0. Note that the function wb ∈ `1 (Z2,R) is of positive type, and
hence the bosonic hopping amplitudes are of negative type. wb is however not
necessarily positive, as usual hopping terms. Meanwhile, the fermionic effective
Hamiltonian is defined on D by the symmetric operator

H̃f := ε

−1

2

∑
s∈{↑,↓},x,y∈Z2,|x−y|=1

a∗x,say,s + 2
∑

s∈{↑,↓},x∈Z2

a∗x,sax,s


+U

∑
x∈Z2

nx,↑nx,↓ −
∑
x,y∈Z2

wf (x− y) c∗xcy (28)

with

wf (x) := γf (v+ (x) + v− (x))−
γ2
f

2U + 1
(v ∗ v) (x) , x ∈ Z2 , (29)

and ε, U, γf ≥ 0. See (6) for the definition of cx. Observe that, at large enough
U > 0, the BCS–like kernel above is of negative type and is thus of attractive
nature. The precise form (29) we have chosen for wf is obtained by imposing that
the effective model gives the exact energy and fermionic wave–function at orders
U0 and U−1, by expanding this quantities at any fixed quasi–momentum. Recall
that we focus on the large–U regime, because this is the one related to d–wave
pairing.

Then, the uncoupled effective model is defined by

H̃ := H̃f + H̃b ∈ L(D,F−,+) . (30)

Because of (9), the uncoupled model is 90◦–rotation, reflection and translation
invariant, in accordance to Assumption 9.

As in the case of the boson–fermion model H, the subspace H(2,1)
↑,↓ is an in-

variant space of H̃. Therefore, we analyze the dynamics driven by the bounded
self–adjoint operator

H̃(2,1) := H̃|H(2,1)
↑,↓

at the bottom of its spectrum in order to compare it with the one given by H(2,1),
see (15) and (21). The result is the following:
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Theorem 6 (Effectiveness of the uncoupled model)
Set γb := 2e−κ and γf = γ−1

b . Then, there is ε0 > 0 such that, uniformly for
ε ∈ (0, ε0), t ∈ R, and ε, U > 0,∥∥∥(e−itH

(2,1) − e−itH̃
(2,1)
)
1[E0,E0(1−ε)](H

(2,1))
∥∥∥

op
= O

(
(1 + |t|)(ε+ U−2)

)
.

Proof. The proof is a direct consequence of Lemmata 7 and 20, Corrollary 18,
Equations (90)–(91), and Propositions 24–25. 2

If the functions v± decay sufficiently fast in space, then we can find kernels
wb, wf ∈ `1 (Z2,R) of positive type such that∥∥∥(e−itH

(2,1) − e−itH̃
(2,1)
)
1[E0,E0(1−ε)](H

(2,1))
∥∥∥

op
= O

(
ε+ U−2

)
,

uniformly in time t ∈ R. Indeed, when E0 < 0, one chooses wf and wb with
Fourier transform ŵf and ŵb, respectively, such that

ŵf (k)R(k, U,E(k)) = 1

and ŵb(k) = E(k) for k in open neighborhood of the set of minimizers of E(·) on
[−π, π)2. See Proposition 10, Theorem 12, and Equation (92).

4.2 Long–Range Idealization of the Effective Electron–Electron
Interaction

The analysis of equilibrium states of fermionic models like (28) is known to be
a very difficult task. Indeed, the complete phase diagram of the Hubbard model,
which is (28) with wf ≡ 0, is still unknown for dimensions bigger than one, at
least in a mathematically rigorous sense. However, for certain classes of long–
range couplings wf , the equilibrium states of (28) become much more tractable:
We showed in [20] how to construct equilibrium states of long–range models as
convex combinations of equilibrium states of much more simple “Bogolioubov
approximations” of the starting model.

By Assumption 7, the Fourier transform v̂ of the coupling function v is con-
centrated around a few points in the Brillouin zone. See (25). This implies from
(29) that ŵf is also concentrated around the same points. We can thus consider
the idealization where the Fourier transform ŵf tends to a distribution supported
on that few points. More precisely, it is reasonable to replace ŵf by

w
(MF)
f (x) := γ

(MF)
f

(
ei(−π,0)·x + ei(0,−π)·x)
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for x ∈ Z2, where γ(MF)
f ≥ 0 is a positive constant. However, this kernel is not

anymore summable in the Z2–lattice. The corresponding interaction has thus to
be interpreted as a mean field term. Hence, we define the corresponding mean
field type model in cubic boxes Λl ⊂ Z2 of size length l ∈ R+ with volume |Λl|:

H̃
(MF)
f,l := ε

−1

2

∑
s∈{↑,↓},x,y∈Λl,|x−y|=1

a∗x,say,s + 2
∑

s∈{↑,↓},x∈Λl

a∗x,sax,s


+2U

∑
x∈Λl

nx,↑nx,↓ −
1

|Λl|
∑
x,y∈Λl

w
(MF)
f (x− y) c∗xcy . (31)

Compare with (28). Observe that the last term is |Λl| times the sum of the squares
of the space averages of two operators:

1

|Λl|
∑
x,y∈Λl

w
(MF)
f (x− y) c∗xcy

= γ(MF) |Λl|

(
1

|Λl|
∑
x∈Λl

ei(π,0)·xcx

)∗(
1

|Λl|
∑
x∈Λl

ei(π,0)·xcx

)

+γ(MF) |Λl|

(
1

|Λl|
∑
x∈Λl

ei(0,π)·xcx

)∗(
1

|Λl|
∑
x∈Λl

ei(0,π)·xcx

)
.

This leads to a long–range interaction (cf. Assumption 8) similar to the ones
treated in [20]. The long–range component of the model discussed here is rather a
sum over periodic (but not translation invariant) mean field type quadratic terms.
The methods of [20] have to be adapted to this case, but they are still applicable.

In this case, one has to be able to study the “Bogolioubov approximations”
of the model H̃(MF)

f,l , at least in the strong coupling regime (Cf. Assumption 2),
i.e., for ε = 0. It is also important to check that the behavior of the system is not
singular at ε = 0. In this context, methods of constructive quantum field theory,
as Grassmann–Berezin integrations, Brydges–Kennedy tree expansions and de-
terminant bounds [21] will be important. We recently applied such methods in a
similar situation in [22] to analyze the Meissner–Ochsenfeld effect, starting from
a microscopic model. Technically speaking, this last study is difficult. We plan to
work out these problems in subsequent papers.
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5 Technical Proofs
Even if it is not explicitly mentioned, we always have ε, U, hb ≥ 0 and κ > 0.
For simplicity and without loss of generality, in this section we sometimes fix
hb ∈ [0, 1].

5.1 Fiber Decomposition of the 2-Fermions–1-Boson Hamilto-
nian

The (fermionic and bosonic) kinetic parts of the Hamiltonian H(2,1) defined by
(15) are diagonalizable by the Fourier transform. The interaction term (5) is such
that it annihilates either a boson to create a fermion pair or a fermion pair to
create a boson with same total quasi–momentum, in both cases. As a consequence,
it is natural to decompose H(2,1) on fibers parametrized by Fourier modes k ∈
[−π, π)2, which stand for total quasi–momenta on the torus. It is done as follows:

We denote the Haar measure on the torus [−π, π)2 by m, i.e.,

m
(
d2q
)

:= (2π)−2d2q .

Using the direct integral of Hilbert spaces (see Section 6.1), let

F
(2,1)
↑,↓ :=

∫ ⊕
[−π,π)2

L2([−π, π)2,m;C)× C m(d2k)

'
∫ ⊕

[−π,π)2
L2([−π, π)2,m;C) m(d2k)× L2([−π, π)2,m;C) .

This space is also unitarily equivalent to the Hilbert space

H(2,1)
↑,↓ ' `2(Z2 × Z2;C)× `2(Z2;C) ,

see (11) and (14). An isometry between both spaces is defined by

U(ĉ, b̂) := (U↑↓(ĉ),Ub(b̂)) ∈ H(2,1)
↑,↓ , (ĉ, b̂) ∈ F

(2,1)
↑,↓ , (32)

where the wave function U↑↓(ĉ) of one fermion pair inH(2,1)
↑,↓ equals

[U↑↓(ĉ)](x↑, x↓) :=

∫
[−π,π)2

m(d2k)

∫
[−π,π)2

m(d2k↑↓)

eik·x↑eik↑↓·(x↓−x↑) [̂c(k)] (k↑↓) , (33)
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for any x↑, x↓ ∈ Z2, while the wave function Ub(b̂) of one boson is

[Ub(b̂)](xb) :=

∫
[−π,π)2

eik·xb b̂(k) m(d2k) (34)

for xb ∈ Z2. Since

L2([−π, π)2× [−π, π)2,m⊗m;C) ⊂ L1([−π, π)2× [−π, π)2,m⊗m;C) , (35)

and
L2([−π, π)2,m;C) ⊂ L1([−π, π)2,m;C) , (36)

note that the r.h.s. of (33)–(34) are well–defined. Moreover, the operators

U↑↓ :

∫ ⊕
[−π,π)2

L2([−π, π)2,m;C) m(d2k)→ `2(Z2 × Z2;C)

and
Ub : L2([−π, π)2,m;C)→ `2(Z2;C)

are unitary. The inverse U−1 = U∗ is

U∗ = U∗↑↓ ⊕ U∗b (37)

and F
(2,1)
↑,↓ = U∗H(2,1)

↑,↓ (using (14)).
To obtain explicit expressions for the actions of U∗↑↓ and U∗b , it suffices to con-

sider dense subspaces of `2(Z2 × Z2;C) and `2(Z2;C), respectively. Note indeed
that, in contrast with (35)–(36),

`1(Z2 × Z2;C)  `2(Z2 × Z2;C) and `1(Z2;C)  `2(Z2;C) .

For any c ∈ `1(Z2 × Z2;C) and k, k↑↓ ∈ [−π, π)2,[
U∗↑↓(c)(k)

]
(k↑↓) =

∑
x↑,x↑↓∈Z2

e−ik·x↑e−ik↑↓·x↑↓c(x↑, x↑ + x↑↓) ,

while, for any b ∈ `1(Z2;C) and k ∈ [−π, π)2,

U∗b(b)(k) =
∑
xb∈Z2

e−ik·xbb(xb) .
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Now we study the operator U∗H(2,1)U acting on F
(2,1)
↑,↓ (cf. (15)). We start by

deriving that its fiber decomposition (see Section 6.1 for more details). To this
end, recall that v̂ is the Fourier transform of the coupling function v and, at each
k ∈ [−π, π)2, let s, d(k) ∈ L2([−π, π)2,m;C) be defined by

s(k↑↓) := 1 and [d(k)](k↑↓) := 2e−κ cos(k↑↓ − k) , (38)

for all k↑↓ ∈ [−π, π)2, where the function cos is defined on the torus [−π, π)2

by (19). Let Pd(k) = P ∗d(k) ∈ B(L2([−π, π)2,m;C)) be the orthogonal projection
with range

Ran(Pd(k)) = C(d(k) + s) . (39)

Similarly, P0 = P ∗0 ∈ B(L2([−π, π)2,m;C)) is the orthogonal projection with
range

Ran(P0) = Cs . (40)

At any k ∈ [−π, π)2, define now the bounded operators

A
(0)
1,1(k) : L2([−π, π)2,m;C)→ L2([−π, π)2,m;C) ,

A1,1(k) : L2([−π, π)2,m;C)→ L2([−π, π)2,m;C) ,

A2,1(k) : L2([−π, π)2,m;C)→ C ,
A1,2(k) : C→ L2([−π, π)2,m;C) ,

A2,2(k) : C→ C ,

by

[A
(0)
1,1(k)Ψ↑↓](k↑↓) := ε (4− cos(k↑↓ − k)− cos(k↑↓)) Ψ↑↓(k↑↓) , (41)

A1,1(k)Ψ↑↓ := A
(0)
1,1(k)Ψ↑↓ + UP0Ψ↑↓ , (42)

A2,1(k)Ψ↑↓ := v̂ (k) 〈d(k) + s,Ψ↑↓〉 , (43)
A1,2(k)Ψb := Ψbv̂ (k) (d(k) + s) , (44)
A2,2(k)Ψb := εhb(2− cos(k))Ψb , (45)

for all Ψ↑↓ ∈ L2([−π, π)2,m;C) and Ψb ∈ C. Here, 〈·, ·〉 stands for the scalar
product of L2([−π, π)2,m;C). By continuity of v̂, the maps k 7→ Ai,j(k) are
continuous, in operator norm sense, for all i, j ∈ {1, 2}. In particular,

A(·) :=

(
A1,1(·) A1,2(·)
A2,1(·) A2,2(·)

)
∈ L∞([−π, π)2,m;B(L2([−π, π)2,m;C)× C)) .

(46)
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By [23, Theorem XIII.83] (see also Section 6.1), there is a unique decomposable
operator

A :=

∫ ⊕
[−π,π)2

A(k) m(d2k) ∈ B(F
(2,1)
↑,↓ ) , (47)

which turns out to coincide with U∗H(2,1)U:

Lemma 7 (Direct integral decomposition)

A = U∗H(2,1)U and ‖H(2,1)‖op = max
k∈[−π,π)2

‖A(k)‖op .

Proof. Define the dense set

D(2,1)
↑,↓ := U∗

[
`1(Z2 × Z2;C)× `1(Z2;C)

]
⊂ F

(2,1)
↑,↓ .

For any (ĉ, b̂) ∈ D(2,1)
↑,↓ , we infer from (2), (3), (4), (5), (6), and (13) that

H(2,1)U(ĉ, b̂) = (c′, b′) ∈ H(2,1)
↑,↓ ,

where, for any x↑, x↓ ∈ Z2,

c′(x↑, x↓) = − ε
2

∑
z∈Z2, |z|=1

[U↑↓(ĉ)](x↑ + z, x↓)−
ε

2

∑
z∈Z2, |z|=1

[U↑↓(ĉ)](x↑, x↓ + z)

+4ε[U↑↓(ĉ)](x↑, x↓) + Uδx↑,x↓ [U↑↓(ĉ)](x↑, x↓)

+
∑
xb∈Z2

v (x↓ − xb) δx↑,x↓ [Ub(b̂)](xb)

+e−κ
∑
xb∈Z2

∑
z∈Z2, |z|=1

v (x↓ − xb) δx↑+z,x↓ [Ub(b̂)](xb)

and, for any xb ∈ Z2,

b′(xb) = −εhb
2

∑
z∈Z2, |z|=1

[Ub(b̂)](xb + z) + 2εhb[Ub(b̂)](xb)

+
∑
x∈Z2

v (xb − x) [U↑↓(ĉ)](x, x)

+e−κ
∑
x∈Z2

∑
z∈Z2, |z|=1

v (xb − x) [U↑↓(ĉ)](x+ z, x) .
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Therefore, for any (ĉ, b̂) ∈ D(2,1)
↑,↓ ,

U∗H(2,1)U(ĉ, b̂) = (ĉ′, b̂′) ∈ F
(2,1)
↑,↓ ,

where, for any k, k↑↓ ∈ [−π, π)2,

[̂c′(k)](k↑↓) = ε (4− cos(k↑↓ − k)− cos(k↑↓)) [̂c(k)](k↑↓)

+U

∫
[−π,π)2

[̂c(k)](k↑↓) m(d2k↑↓)

+v̂ (k) (1 + 2e−κ cos(k↑↓ − k))b̂(k) ,

b̂′(k) = εhb(2− cos(k))b̂(k)

+v̂ (k)

∫
[−π,π)2

(1 + 2e−κ cos(k↑↓ − k)) [̂c(k)] (k↑↓) m(d2k↑↓) .

By (41)–(47), it follows that U∗H(2,1)U = A on the dense subspace D(2,1)
↑,↓ . By the

boundedness of both operators on F
(2,1)
↑,↓ , we arrive at the first assertion. To prove

that
‖A‖op = max

k∈[−π,π)2
‖A(k)‖op ,

and thus the second assertion, note that

‖A‖op = ess sup
k∈[−π,π)2

‖A(k)‖op .

See Section 6.1. Now, to complete the proof, use the continuity of the map k 7→
A(k). 2

By using Lemma 7 and Proposition 25, we can extract spectral properties of
H(2,1). In particular, the spectrum σ(H(2,1)) of H(2,1) is bounded from below by

E0 := inf σ(H(2,1)) ≥ inf
k∈[−π,π)2

{minσ(A(k))} . (48)

In fact, the latter bound holds with equality:

Lemma 8 (Bottom of the spectrum of H(2,1))
For any k ∈ [−π, π)2, let σd(A(k)) be the discrete spectrum of A(k). Then

E0 = minσ(H(2,1)) = min
k∈[−π,π)2

{minσ(A(k))}

= min

{
0, min

k∈[−π,π)2
{minσd(A(k))}

}
≤ 0 .
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Proof. The operators A2,1, A1,2 and P0 are compact operators. Hence, for any
k ∈ [−π, π)2, the essential spectrum σess(A(k)) of A(k) equals

σess(A(k)) = 2ε cos(k/2) · [−1, 1] + 4ε ⊂ [0, 8ε] (49)

for any ε > 0, while σess(A(k)) = ∅ when ε = 0. It follows from (48)–(49)
and Proposition 25 together with Kato’s theory for the perturbation of the discrete
spectrum σd of closed operators that

E0 = minσ(H(2,1)) = min
k∈[−π,π)2

{min {σess(A(k)) ∪ σd(A(k))}} . (50)

Since
min

k∈[−π,π)2
{minσess(A(k))} = 0 , (51)

we thus infer the assertion from (50). 2

5.2 Negative Eigenvalues of the Fiber Hamiltonians
We analyze now the bottom of the spectrum of the fiber Hamiltonians A(k) for
quasi–momenta k ∈ [−π, π)2:

Lemma 9 (Negative eigenvalues of A(k) – I)
Let k ∈ [−π, π)2 and λ < 0. Then, λ ∈ σ(A(k)) if and only if v (k) 6= 0 and there
is Ψ↑↓ ∈ L2([−π, π)2,m;C)\{0} such that[

(A1,1(k)− λ)− A1,2(k)(A2,2(k)− λ)−1A2,1(k)
]

Ψ↑↓ = 0 .

In this case, λ < 0 is an eigenvalue of A(k) with associated eigenvector(
Ψ↑↓,−(A2,2(k)− λ)−1A2,1(k)Ψ↑↓

)
∈ L2([−π, π)2,m;C)\{0} × C\{0} .

Proof. Fix k ∈ [−π, π)2 and λ < 0. Assume that λ ∈ σ(A(k)). Then λ ∈
σd(A(k)), by (49). For such a discrete eigenvalue there is Ψ↑↓ ∈ L2([−π, π)2,m;C)
and Ψb ∈ C such that (Ψ↑↓,Ψb) 6= (0, 0) and(

(A1,1(k)− λ)Ψ↑↓ + A1,2(k)Ψb

A2,1(k)Ψ↑↓ + (A2,2(k)− λ)Ψb

)
=

(
0
0

)
, (52)

see (46). From (41)–(42) and (45) with U, ε, hb ≥ 0 and λ < 0, note thatA2,2(k)−
λ > 0 and A1,1(k) − λ > 0. This yields Ψ↑↓ 6= 0, Ψb 6= 0 and v (k) 6= 0.

26



Hence, if λ < 0 then λ ∈ σ(A(k)) if and only if (52) holds true with Ψ↑↓ ∈
L2([−π, π)2,m;C)\{0} and Ψb ∈ C\{0}. By combining the two equations of
(52) we arrive at the assertion. 2

We next analyze conditions for the existence of negative eigenvalues of A(k)
for k ∈ [−π, π)2. With this aim, we use the Birman–Schwinger principle (Propo-
sition 26) to transform the eigenvalue problem (52) into a non–linear equation for
λ on negative reals. This permits us to study afterwards the behavior of negative
eigenvalues of A(k) as functions of the couplings v̂ and U .

Proposition 10 (Negative eigenvalues of A(k) – II)
Let k ∈ [−π, π)2 and λ < 0. Then, λ ∈ σ(A(k)) if and only if

|v̂ (k)|2R(k, U, λ) + λ− εhb(2− cos(k)) = 0 , (53)

where
R(k, U, λ) :=

〈
d(k) + s, (A1,1(k)− λ)−1(d(k) + s)

〉
. (54)

In this case, λ is a non–degenerated discrete eigenvalue of A(k).

Proof. Fix k ∈ [−π, π)2. Since

‖d(k) + s‖2
2 = ‖d(k)‖2

2 + ‖s‖2
2 = 4e−2κ + 1 , (55)

note from (43)–(44) that

A1,2(k)A2,1(k) =
(
1 + 4e−2κ

)
|v̂ (k)|2 Pd(k) ,

where Pd(k) is the orthogonal projection with range (39). Because U, ε, hb ≥ 0,
recall that A1,1(k) ≥ 0 and A2,2(k) ≥ 0, see (41)–(42) and (45). Hence, by
applying Lemma 9 and Proposition 26 (Birman–Schwinger principle) to

H0 = A1,1(k) and V = A1,2(k)(A2,2(k)− λ)−1A2,1(k) ,

λ < 0 is an eigenvalue of A(k) if and only if(
1 + 4e−2κ

)
|v̂ (k)|2 Pd(k)(A1,1(k)− λ)−1Pd(k) = (εhb(2− cos(k))− λ)Pd(k) .

(56)
Note that Pd(k) is a rank one projector and hence, again by Proposition 26, λ is a
non–degenerated eigenvalue of A(k). So, we deduce the assertion from (55), (56)
and the fact that λ ∈ σ(A(k)) with λ < 0 implies λ ∈ σd(A(k)), by (49). 2

We next study the behavior of the function R(k, U, λ) for negative spectral
parameters λ < 0 at any k ∈ [−π, π)2.
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Lemma 11 (Behavior of the function λ 7→ R(k, U, λ))
Let k ∈ [−π, π)2 and U ≥ 0. Then

R(k, U, λ) = 4 |λ|−1 e−2κ + (U + |λ|)−1 + S(k, U, λ)

is a strictly increasing function of λ < 0 with

|S(k, U, λ)| ≤ 8ελ−2(1 + 4e−2κ) .

Proof. Fix in all the proof k ∈ [−π, π)2, U ≥ 0 and λ < 0. First, it is easy to
check that the function λ 7→ R(k, U, λ) is strictly increasing for negative λ < 0,
by strict positivity of the operator (A1,1(k) − λ)−2 when ε, U ≥ 0. Secondly, by
using (41)–(42) and the second resolvent equation we obtain

(A1,1(k)− λ)−1 = (UP0 − λ)−1 − (UP0 − λ)−1A
(0)
1,1(k)(A1,1(k)− λ)−1 . (57)

Clearly,

‖(UP0 − λ)−1‖op, ‖(A1,1(k)− λ)−1‖op ≤ |λ|−1 and ‖A(0)
1,1(k)‖op ≤ 8ε .

It follows that ∥∥(A1,1(k)− λ)−1 − (UP0 − λ)−1
∥∥

op
≤ 8ελ−2 .

Therefore, from (54) and (55),∣∣R(k, U, λ)−
〈
d(k) + s, (UP0 − λ)−1(d(k) + s)

〉∣∣ ≤ 8ελ−2(1 + 4e−2κ) . (58)

Meanwhile, recall that P0 is the orthogonal projection with range (40) while
〈d(k), s〉 = 0. Therefore,〈

d(k) + s, (UP0 − λ)−1(d(k) + s)
〉

=
〈
d(k), (UP0 − λ)−1d(k)

〉
+
〈
s, (UP0 − λ)−1s

〉
= |λ|−1 〈d(k), d(k)〉+ (U + |λ|)−1 〈s, s〉 ,

which, combined with (58), yields the assertion. 2

From Proposition 10 and Lemma 11 we deduce the possible existence of a
unique negative eigenvalue:
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Theorem 12 (Estimates on the negative eigenvalue of A (k))
Let k ∈ [−π, π)2, hb ∈ [0, 1], U ≥ 0 and set

ε0 :=
e−2κ

4(1 + 4e−2κ)
e−κ , κ > 0 .

(i) There is at most one negative eigenvalue E(k) < 0 of A(k). If it exists, E(k) is
non–degenerated.
(ii) If 0 ≤ ε ≤ ε0 |v̂ (k)| with |v̂ (k)| 6= 0 then there is a negative eigenvalue
E(k) ≡ E(k, U, ε) of A(k) that satisfies

e−κ |v̂ (k)| < |E(k)| < |v̂ (k)|
√

1 + 5e−2κ .

Proof. (i) Use Proposition 10 and the monotonicity of the map λ 7→ R(k, U, λ)
on R− (Lemma 11).
(ii) Fix k ∈ [−π, π)2, hb ∈ [0, 1] and U ≥ 0. Assume that |v̂ (k)| 6= 0, let
x := e−κ |v̂ (k)| and take ε ≥ 0 such that

0 ≤ ε ≤ ε0 |v̂ (k)| < x

4
. (59)

Then, by Lemma 11,

|v̂ (k)|2R(k, U,−x)− 2x

= |v̂ (k)|2
(
4x−1e−2κ + (U + x)−1 + S(k, U,−x)

)
− 2x

≥ |v̂ (k)|2 4
(
x−1e−2κ − 2εx−2(1 + 4e−2κ)

)
− 2x

≥ |v̂ (k)|2 2x−1e−2κ − 2x = 0 .

Recall now that R(k, U, λ) > 0 is a strictly positive and increasing function of
λ < 0, by Lemma 11. Therefore, for any parameter ε satisfying (59), there is
a solution E(k) of (53) that satisfies |E(k)| > x. Note that one also uses here
hb ∈ [0, 1].

Now, take
y = |v̂ (k)|

√
1 + 5e−2κ ,

where we recall that |v̂ (k)| 6= 0. Then, using (59) and Lemma 11, we obtain that

|v̂ (k)|2R(k, U,−y)− y ≤ |v̂ (k)|2 y−1
(
4e−2κ + 1 + 8εy−1(1 + 4e−2κ)

)
− y

≤ |v̂ (k)| e−3κ

(1 + 5e−2κ)

(
2−
√

5 + e2κ
)
< 0 .
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Then, by Lemma 11, if ε satisfies (59), there is a solution E(k) of (53) satisfying
|E(k)| < y. 2

We now conclude this subsection by proving the existence of a bound fermion
pair whenever the bottom E0 of the spectrum of H(2,1) is strictly negative:

Proposition 13 (Bound fermion pair formation at strictly negative energy – I)
Assume that E0 < 0 and take any (c0, b0) ∈ Hε\{0} with ε ∈ (0, 1). Let

(ct, bt) := e−itH
(2,1)

(c0, b0) , t ∈ R .

(i) Non–vanishing fermion component:

‖ct‖2 = ‖c0‖2 > 0 , t ∈ R .

(ii) Bound fermion pair formation:

lim
R→∞

∑
x↑,x↓∈Z2:|x↑−x↓|≤R

|ct(x↑, x↓)|2 = ‖c0‖2
2 ,

uniformly with respect to t ∈ R.

Proof. (i) For any t ∈ R, let (ĉt, b̂t) := U∗(ct, bt), see (37). If E0 < 0 and
(c0, b0) ∈ Hε, then we infer from Lemma 8, Equation (49) and Theorem 12 (i)
together with Proposition 25 (iii) that

(ct, bt) = U

(∫ ⊕
[−π,π)2

e−itE(k)(ĉ0 (k) , b̂0 (k)) m(d2k)

)
(60)

for any t ∈ R, where, by Lemma 9,

ĉ0 (k) = 0 if and only if b̂0 (k) = 0 . (61)

This implies Assertion (i), because

‖ct‖2
2 =

∫
[−π,π)2

‖ĉ0 (k)‖2
2 m(d2k) = ‖c0‖2

2 . (62)

(ii) By (60), there is a family {P (R)}R∈R+ of orthogonal projectors acting on
L2([−π, π)2,m;C), converging strongly to the identity as R→∞, and such that∑

x↑,x↓∈Z2:|x↑−x↓|≤R

|ct(x↑, x↓)|2 =

∫
[−π,π)2

∥∥P (R)ĉ0 (k)
∥∥2

2
m(d2k) . (63)

By Lebesgue’s dominated convergence theorem, Assertion (ii) then follows. 2
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5.3 CoefficientsR(k, U, λ) in terms of Explicit Integrals
To prove Theorem 2, we need to express the positive numbers R(k, U, λ) for
k ∈ [−π, π)2, U ≥ 0 and λ < 0 in terms of the explicit quantities R(0)

s,s , R(0)
d,d , and

R
(0)
s,d defined by (16)–(18). See Proposition 10 for the definition and the use of
R(k, U, λ). This is done in the following lemma:

Lemma 14 (Explicit expression forR(k, U, λ))
Let k ∈ [−π, π)2, U ≥ 0 and λ < 0. Then

R(k, U, λ) =
R

(0)
d,d

1 + UR
(0)
s,s

+ U
R

(0)
d,dR

(0)
s,s − (R

(0)
s,d )2

1 + UR
(0)
s,s

with
R

(0)
d,d

1 + UR
(0)
s,s

> 0 and U
R

(0)
d,dR

(0)
s,s − (R

(0)
s,d )2

1 + UR
(0)
s,s

≥ 0 . (64)

Proof. Fix k ∈ [−π, π)2, U ≥ 0 and λ < 0. From Definitions (16)–(18), (38), and
(41), note that

R(0)
s,s =

〈
s, (A

(0)
1,1(k)− λ)−1s

〉
,

R
(0)
d,d =

〈
d(k) + s, (A

(0)
1,1(k)− λ)−1(d(k) + s)

〉
,

R
(0)
s,d =

〈
s, (A

(0)
1,1(k)− λ)−1(d(k) + s)

〉
.

Define the real numbers

Rs,s :=
〈
s, (A1,1(k)− λ)−1s

〉
,

Rd,d :=
〈
d(k) + s, (A1,1(k)− λ)−1(d(k) + s)

〉
, (65)

Rs,d :=
〈
s, (A1,1(k)− λ)−1(d(k) + s)

〉
.

and observe that Rd,d is only another notation forR(k, U, λ):

Rd,d = R(k, U, λ) . (66)

From the resolvent equation

(A1,1(k)− λ)−1 = (A
(0)
1,1(k)− λ)−1−U(A

(0)
1,1(k)− λ)−1P0(A1,1(k)− λ)−1 (67)
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(see (42)), we arrive at the linear system(
Rs,s Rs,d

Rs,d Rd,d

)
= −U

(
R

(0)
s,sRs,s R

(0)
s,sRs,d

R
(0)
s,dRs,s R

(0)
s,dRs,d

)
+

(
R

(0)
s,s R

(0)
s,d

R
(0)
s,d R

(0)
d,d

)

= −

(
UR

(0)
s,s 0

UR
(0)
s,d 0

)(
Rs,s Rs,d

Rs,d Rd,d

)
+

(
R

(0)
s,s R

(0)
s,d

R
(0)
s,d R

(0)
d,d

)
,

which means(
UR

(0)
s,s + 1 0

UR
(0)
s,d 1

)(
Rs,s Rs,d

Rs,d Rd,d

)
=

(
R

(0)
s,s R

(0)
s,d

R
(0)
s,d R

(0)
d,d

)
.

Note that, by positivity of the constants R(0)
s,s ≥ 0 and U ≥ 0, the matrix(

UR
(0)
s,s + 1 0

UR
(0)
s,d 1

)
is invertible and we obtain(

Rs,s Rs,d

Rs,d Rd,d

)
=

1

1 + UR
(0)
s,s

(
1 0

−UR(0)
s,d UR

(0)
s,s + 1

)(
R

(0)
s,s R

(0)
s,d

R
(0)
s,d R

(0)
d,d

)
.

In particular,

Rd,d =
R

(0)
d,d(1 + UR

(0)
s,s )− U(R

(0)
s,d )2

1 + UR
(0)
s,s

=
R

(0)
d,d

1 + UR
(0)
s,s

+ U
R

(0)
d,dR

(0)
s,s − (R

(0)
s,d )2

1 + UR
(0)
s,s

,

which, combined with (66), implies the assertion. Note that the second inequality
of (64) follows from the positivity of the operator (A

(0)
1,1(k)− λ)−1. 2

The behavior of R(k, U, λ) at large Hubbard coupling U ≥ 0 can now be
deduced. This is useful for the proof of Theorem 2 (ii).

Lemma 15 (R(k, U, λ) at large U ≥ 0)
For any k ∈ [−π, π)2, U ≥ 0 and λ < 0.

4e−2κ (|λ|+ 4ε)−1 + (U + 4ε+ |λ|)−1 ≤ R(k, U, λ) ≤ 4e−2κ |λ|−1 + (U + |λ|)−1

(68)
and for any U > 0,∣∣∣∣∣R(k, U, λ)−

R
(0)
d,dR

(0)
s,s − (R

(0)
s,d )2

R
(0)
s,s

∣∣∣∣∣ < (1 + 4e−κ)2U−1 . (69)
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Proof. The Inequalities (68) are direct consequences of the definition ofR(k, U, λ)
(see, e.g., (65) and (66)) and the fact that A−1 ≤ B−1 for any strictly positive op-
erators A,B > 0 with B ≤ A. Moreover, we infer from Lemma 14 that

R(k, U, λ)−
R

(0)
d,dR

(0)
s,s − (R

(0)
s,d )2

R
(0)
s,s

=
(R

(0)
s,d )2

(1 + UR
(0)
s,s )R

(0)
s,s

. (70)

Note that R(0)
s,s > 0, by strict positivity of (A

(0)
1,1(k)− λ)−1 > 0. Since, by (16) and

(18),
|R(0)

s,d | ≤
(
1 + 4e−κ

)
R(0)

s,s ,

we thus deduce from (70) Inequality (69) for any U > 0. 2

5.4 Pairing Mode of Fermions with Minimum Energy
Recall that if at quasi–momentum k ∈ [−π, π)2,

0 ≤ ε ≤ ε0 |v̂ (k)| = e−2κ

4(1 + 4e−2κ)
e−κ |v̂ (k)| ,

then there is a unique negative eigenvalue E(k) ≡ E(k, U, ε) of A(k) for any
hb ∈ [0, 1] and U ≥ 0. See Theorem 12. In this section, we are interested in the
asympotics of E(k) in the limits of small kinetic terms ε→ 0+ and large or small
Hubbard repulsions U → ∞, 0+. We start by general results which hold for any
U ≥ 0, provided ε ≤ ε̃0 |v̂ (k)| with

ε̃0 :=
e−2κ

4
min

{
1

6
√

1 + 5e−2κ
,

e−κ

(1 + 4e−2κ)

}
≤ ε0 . (71)

Theorem 16 (Asymptotics of the negative eigenvalue of A (k) – I)
There is a constant Dκ < ∞ depending only on κ > 0 such that, for every hb ∈
[0, 1], U ≥ 0, k ∈ [−π, π)2 and any parameter ε ≥ 0 satisfying 0 ≤ ε < ε̃0 |v̂ (k)|,
one has:
(i) Negative (non–degenerated) eigenvalue of A (k):∣∣∣∣∣E(k) +

|v̂ (k)|
2

(
|v̂ (k)|

U − E(k)
+

√
16e−2κ +

|v̂ (k)|2

(U − E(k))2

)∣∣∣∣∣ ≤ εDκ .

(ii) Eigenvector: There is an eigenvector

(Ψ↑↓(k),Ψb(k)) ≡ (Ψ↑↓(k, U, v̂),Ψb(k, U, v̂))
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associated with E(k) such that∥∥∥∥Ψ↑↓(k)−
(

e2κ

4

(
E(k)

v̂ (k)
+

v̂ (k)

U − E(k)

)
d(k)− v̂ (k)

U − E(k)
s

)∥∥∥∥
2

≤ ε |v̂ (k)|−1Dκ

and
|Ψb(k)− 1| ≤ ε |v̂ (k)|−1Dκ . (72)

Proof. Similarly to A(k), for any U ≥ 0 and k ∈ [−π, π)2, let

B(k) :=

(
UP0 A1,2(k)
A2,1(k) 0

)
∈ B(L2([−π, π)2,m;C)× C)) ,

where P0 is the orthogonal projection with range (40). Compare this with (41)–
(46) in the limit ε→ 0+ to see that B(k) = A(k)|ε=0. Therefore, by Theorem 12,
if v̂ (k) 6= 0 then there is a negative eigenvalue F(k) of B(k) that satisfies

e−κ |v̂ (k)| < |F(k)| < |v̂ (k)|
√

1 + 5e−2κ . (73)

This eigenvalue is moreover non–degenerated and the unique strictly negative
eigenvalue of B(k). In fact, it can be explicitly computed together with its eigen-
vector.

Indeed, for any k ∈ [−π, π)2, let

Φ↑↓(k) :=
e2κ

4

(
F(k)

v̂ (k)
+

v̂ (k)

U − F(k)

)
d(k)− v̂ (k)

U − F(k)
s . (74)

Then, by explicit computations, observe that (Φ↑↓(k), 1) is an eigenvector ofB(k)
associated with the eigenvalue

F(k) = −|v̂ (k)|
2

 |v̂ (k)|
U − F(k)

+

√
16e−2κ +

(
|v̂ (k)|

U − F(k)

)2
 < 0 . (75)

Observe that a solution F(k) < 0 of (75) always exists. Indeed, F(k) < 0 solves
(75) if and only if ξ (F(k)) = 4e−2κ, where

ξ (x) :=
x2

|v̂ (k)|2
+

x

U − x
, x < 0 . (76)
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Note that ξ (x)→∞, as x→ −∞, and

x0 =
1

2

(
U −

√
U2 + 4 |v̂ (k)|2

)
is the unique strictly negative solution of ξ (x) = 0. Therefore, by continuity of ξ
on−R+

0 , there is a solution x1 < x0 of (76). Hence (75) holds for some F(k) < 0.
By Theorem 12 (ii), if ε ≤ ε0 |v̂ (k)| with v̂ (k) 6= 0 then there is a strictly

negative and non degenerated eigenvalue E(k) ofA(k). This eigenvalue is close to
F(k) for ε� 1 because of the equality B(k) = A(k)|ε=0 and Kato’s perturbation
theory.

Indeed, let

z (k) :=
1

2

(√
1 + 5e−2κ + e−κ

)
, k ∈ [−π, π)2 , (77)

and C be the contour defined by

C (y) := |v̂ (k)|
(
−z (k) +

(
z (k)− e−κ

2

)
e2πiy

)
∈ C , y ∈ [0, 1] , (78)

for any k ∈ [−π, π)2 with v̂ (k) 6= 0. Then, we define the Riesz projections
associated with E(k) and F(k) respectively by

P(E(k)) :=
1

2πi

∮
C

(ζ−A(k))−1dζ and P(F(k)) :=
1

2πi

∮
C

(ζ−B(k))−1dζ .

Both operators are well–defined for any hb ∈ [0, 1], U ≥ 0, k ∈ [−π, π)2 with
v̂ (k) 6= 0 and ε ≤ ε0 |v̂ (k)| because of Theorem 12, see also (73). Using the
resolvent equation,

P(E(k)) −P(F(k)) =
1

2πi

∮
C

(ζ −B(k))−1 (A(k)−B(k)) (ζ − A(k))−1dζ

from which we deduce∥∥P(E(k)) −P(F(k))
∥∥

op
≤ 2e2κ

√
1 + 5e−2κ

|v̂ (k)|

(
‖A(0)

1,1(k)‖op + ‖A2,2(k)‖op

)
≤ 24e2κ

√
1 + 5e−2κ |v̂ (k)|−1 ε (79)
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for any hb ∈ [0, 1], U ≥ 0, k ∈ [−π, π)2 such that v̂ (k) 6= 0, and parameters
ε ≤ ε0 |v̂ (k)|. See Theorem 12 and Equations (41)–(46), (49), (73) and (77)–(78).
Since

P(F(k))(Φ↑↓(k), 1) = (Φ↑↓(k), 1) , (80)

it follows that, for any hb ∈ [0, 1], U ≥ 0, k ∈ [−π, π)2 such that v̂ (k) 6= 0, and
parameters ε < ε̃0 |v̂ (k)| (cf. (71)), the vector

(Ψ↑↓(k),Ψb(k)) := P(E(k))(Φ↑↓(k), 1) 6= 0 (81)

is an eigenvector of A(k) associated with the unique strictly negative eigenvalue
E(k) of A(k) while

|E(k)− F(k)| ≤ 12ε . (82)

By combining (79)–(82) with Theorem 12 (ii) and (74)–(75) we arrive at the as-
sertions from direct estimates. Note only thatDκ is a function of e2κ exponentially
growing to infinity when κ→∞. 2

Clearly,
‖Ψ↑↓(k)‖2

2 = 1− |Ψb(k)|2 ≤ 1

is the probability of finding a pair of fermions, and not a boson, with quasi–
momentum k ∈ [−π, π)2. Similarly, |Ψb(k)|2 is the probability of finding a boson
with the same quasi–momentum. The norm–one function ‖Ψ↑↓(k)‖−1

2 Ψ↑↓(k) de-
scribes the orbital structure of the bound fermion pair. Theorem 16 says that, for
small parameters ε ≤ ε̃0 |v̂ (k)|, the orbital structure of the bound fermion pair has
mainly s– and d–wave components. This fact holds true even in the limit U → 0+:

Corollary 17 (Asymptotics of the negative eigenvalue of A (k) – II)
There is a constant Dκ < ∞ depending only on κ > 0 such that, for every hb ∈
[0, 1], U ≥ 0, k ∈ [−π, π)2 and any parameter ε ≥ 0 satisfying 0 ≤ ε < ε̃0 |v̂ (k)|,
one has:
(i) Negative (non–degenerated) eigenvalue of A (k):∣∣∣E(k) + |v̂ (k)|

√
1 + 4e−2κ

∣∣∣ ≤ Dκ (ε+ U) .

(ii) Eigenvector: There is an eigenvector (Ψ↑↓(k),Ψb(k)) associated with E(k)
such that (72) holds and

‖Ψ↑↓(k) + d(k) + s‖2 ≤ Dκ

(
ε |v̂ (k)|−1 + U

)
.
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In contrast to U � 1, in the limit of large Hubbard couplings U � 1 the s–
wave component of the orbital structure of the bound fermion pair is suppressed
by the Hubbard repulsion without changing (at leading order) the binding energy
of the particles.

Corollary 18 (Asymptotics of the negative eigenvalue of A (k) – III)
There is a constant Dκ < ∞ depending only on κ > 0 such that, for every hb ∈
[0, 1], U ≥ 0, k ∈ [−π, π)2 and any parameter ε ≥ 0 satisfying 0 ≤ ε < ε̃0 |v̂ (k)|,
one has:
(i) Negative (non–degenerated) eigenvalue of A (k):∣∣∣∣∣E(k) + 2e−κ |v̂ (k)|+ |v̂ (k)|2

2U

∣∣∣∣∣ ≤ Dκ

(
ε+ U−2

)
.

(ii) Eigenvector: There is an eigenvector (Ψ↑↓(k),Ψb(k)) associated with E(k)
such that (72) holds and∥∥∥∥Ψ↑↓(k)− eκ

2
sgn (v̂ (k)) d(k)− v̂ (k)

U
s

∥∥∥∥
2

≤ Dκ

(
ε |v̂ (k)|−1 + U−2

)
.

Note that Corollaries 17–18 and the operator monotonicity ofA1,1(k) with respect
to U imply that, for all k ∈ [−π, π)2 with ε < ε̃0 |v̂ (k)|, and every hb ∈ [0, 1] and
U ≥ 0,

2e−κ |v̂ (k)|+O (ε) ≤ |E(k)| ≤ |v̂ (k)|
√

1 + 4e−2κ +O (ε) .

Compare with Theorem 12 (ii).
By definition of d(k) (see (38)), observe that∥∥∥∥eκ

2
sgn (v̂ (k)) d(k)

∥∥∥∥
2

= 1

for all κ ∈ R+
0 . Hence, the fact that orbital of the bound pair is of d–wave type

only depends on |v̂ (k)|U−1 being small.
Recall that Proposition 13 shows the existence of a bound fermion pair when-

ever the bottom E0 of the spectrum of H(2,1) is strictly negative. In this case, for
any (c0, b0) ∈ Hε\{0} with ε ∈ (0, 1),

(ct, bt) := e−itH
(2,1)

(c0, b0) , t ∈ R , (83)
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has a non–vanishing fermion component, i.e., ‖ct‖2 = ‖c0‖2 > 0. By explicit
computations, one checks that the s– and d–wave components of the orbital struc-
ture of the bound fermion pair both corresponds in the lattice Z2 to wave functions
with a fermion pair localized in a ball of radius 1. Therefore, by using Theorem
16, we can improve Proposition 13 (ii):

Corollary 19 (Bound fermion pair formation at strictly negative energy - II)
Assume E0 < 0 and let (ct, bt) be defined by (83) for any t ∈ R and (c0, b0) ∈
Hε\{0} with ε ∈ (0, 1). Then, uniformly with respect to t ∈ R and (c0, b0) ∈
Hε\{0},

lim
ε→0+

‖c0‖−2
2

∑
x↑,x↓∈Z2:|x↑−x↓|≤1

|ct(x↑, x↓)|2
 = 1 .

Proof. From (63),∑
x↑,x↓∈Z2:|x↑−x↓|≤1

|ct(x↑, x↓)|2 =

∫
[−π,π)2

∥∥P (1)ĉ0 (k)
∥∥2

2
m(d2k) . (84)

Theorems 12 (ii) and 16 (ii) imply the existence of D < ∞ such that, for all
k ∈ [−π, π)2 and (c0, b0) ∈ Hε\{0},∥∥(1L2([−π,π)2,m;C) − P (1)

)
ĉ0 (k)

∥∥
2
≤ εD ‖ĉ0 (k)‖2 .

By (62) and (84) together with Proposition 13 (i), the assertion then follows. 2

The existence of the negative eigenvalue E(k) of A (k) is not clear in general.
Therefore, we define the function Eext(k) for all k ∈ [−π, π)2 by Eext(k) := E(k)
if there is a negative eigenvalue of A (k) and Eext(k) := 0 otherwise. To simplify
notation, we set Eext(k) ≡ E(k). [By Kato’s perturbation theory for the discrete
spectrum of closed operators together with Equation (49) and the continuity of v̂,
the map k 7→ E(k) from [−π, π)2 to R−0 is continuous. This information is not
important in the sequel.]

Recall (24), that is,

Kv :=
{
k ∈ [−π, π)2 : |v̂(k)| = ‖v̂‖∞

}
.

This set can be seen as being the set of quasi–momenta of minimal energy, up to
some small errors when ε−1, U →∞:
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Lemma 20 (Quasi–momenta of minimal energy at large ε−1, U )
Assume that |Kv| <∞. For any η > 0, there are ε > 0 and D <∞ such that, for
all ε−1, U ≥ D and all k ∈ [−π, π)2 \ {Kv +B (0, η)},

E (k) ≥ (1− ε) inf E
(
[−π, π)2) .

Proof. Assume without loss of generality that ‖v̂‖∞ > 0. For any η > 0, there is
ε > 0 such that, for all k ∈ [−π, π)2 \ {Kv +B (0, η)},

|v̂ (k)| ≤ (1− ε) max
k∈[−π,π)2

|v̂ (k)| , (85)

by continuity of v̂. Indeed, assume the existence of η > 0 such that, for all ε > 0,
there would exist kε ∈ [−π, π)2 \ {Kv +B (0, η)} so that

|v̂ (kε)| > (1− ε) max
k∈[−π,π)2

|v̂ (k)| .

By compacticity of [−π, π]2 and continuity of v̂, there is k0 ∈ [−π, π)2 \ {Kv +B (0, η)}
with

|v̂ (k0)| = max
k∈[−π,π)2

|v̂ (k)| .

Therefore, for any η > 0, there is ε > 0 such that, for all k ∈ [−π, π)2 \ {Kv +B (0, η)},
(85) holds true, which, combined with Corollary 18 (i), yields the assertion. 2

For any k ∈ [−π, π)2, let P̃d(k) be the orthogonal projection acting on the
Hilbert space L2([−π, π)2,m;C)× C with

Ran(P̃d(k)) = C
(

eκ

2
d(k), sgn (v̂ (k))

)
.

Recall that eκ = 2‖d(k)‖−1
2 . Then, for all ε > 0, define the projections

Pε :=

∫ ⊕
[−π,π)2

1[E0,E0(1−ε)](E (k)) P̃d(k) m(d2k)

and, for any k ∈ [−π, π)2 and η, ε > 0,

P̃ε,η(k) :=

∫ ⊕
[−π,π)2

χ(k)
ε,η(q) P̃d(k) m(d2q) . (86)
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where, for any q ∈ [−π, π)2,

χ(k)
ε,η(q) := 1[E0,E0(1−ε)](E (q))1k+B(0,η)(q) . (87)

These operators are used to approximate now the spectral projection

1[E0,E0(1−ε)](H
(2,1))

of the Hamiltonian H(2,1) on the bottom [E0, E0 (1− ε)] of its spectrum for any
parameter ε ∈ (0, 1).

Proposition 21 (Approximating projectors)
Let ε ∈ (0, 1) and assume that E0 < 0. For any η > 0, there is a constant D <∞
such that, for all ε−1, U ≥ D,∥∥1[E0,E0(1−ε)](H

(2,1))− Pε
∥∥

op
≤ η .

Moreover, if |Kv| <∞ and ε� 1 is sufficiently small, then∥∥∥∥∥1[E0,E0(1−ε)](H
(2,1))−

∑
k∈Kv

P̃ε,η(k)

∥∥∥∥∥
op

≤ η .

Proof. By Lemma 7 and Proposition 25 (iii),

1[E0,E0(1−ε)](H
(2,1)) =

∫ ⊕
[−π,π)2

1[E0,E0(1−ε)](A (k)) m(d2k) . (88)

and the assertion follows by using Theorem 12, Corollary 18 (ii) and Lemma 20.
Note that E0 < 0 yields ‖v̂‖∞ > 0, by Lemma 9. 2

Recall that the function sk : Z2 → C is defined, for any k ∈ [−π, π)2, by (23),
that is,

sk (y) :=
1

2

(
eik·(0,1)δy,(0,1) + eik·(0,−1)δy,(0,−1) + eik·(1,0)δy,(1,0) + eik·(−1,0)δy,(−1,0)

)
for all y ∈ Z2. For any η, ε > 0, k ∈ [−π, π)2 and y ∈ Z2, let

g(k)
ε,η (y) :=

1

2

∫
[−π,π)2

m(d2q) χ(k)
ε,η(q)e

iq·y
∫

[−π,π)2
m(d2p) cos(p− k) [̂c(q)] (p)

+
sgn (v̂ (k))

2

∫
[−π,π)2

m(d2q) χ(k)
ε,η(q) eiq·y b̂ (q)

with χ(k)
ε,η defined by (87). These functions are important because they are directly

related to the projections (86):
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Lemma 22 (Range of projections P̃ε,η)
For any (c, b) ∈ H(2,1)

↑,↓ , η, ε > 0, k ∈ [−π, π)2,[
U∗P̃ε,η(k)U

]
(c, b) = (c′, b′) ,

where, for any x↑, x↓ ∈ Z2,

c′(x↑, x↓) = sk(x↑ − x↓)g(k)
ε,η (x↑)

and, for any xb ∈ Z2,

b′(xb) =
1

2

∫
[−π,π)2

m(d2q) eiq·xb χ(k)
ε,η(q) b̂(q) +

sgn (v̂ (k))

2

∫
[−π,π)2

m(d2q)

×eiq·xbχ(k)
ε,η(q)

∫
[−π,π)2

m(d2k↑↓) cos(k↑↓ − k) [̂c(q)] (k↑↓) .

Proof. Fix all the parameters of the lemma. We then compute from (86)–(87) that

c′(x↑, x↓) =
1

2

(∫
[−π,π)2

eik↑↓·(x↓−x↑) cos(k↑↓ − k) m(d2k↑↓)

)
×
∫

[−π,π)2
m(d2q) χ(k)

ε,η(q) eiq·x↑(
sgn (v̂ (k)) b̂ (q) +

∫
[−π,π)2

m(d2p) cos(p− k) [̂c(q)] (p)

)
,

while, for all y ∈ Z2,∫
[−π,π)2

eik↑↓·y cos(k↑↓ − k) m(d2k↑↓) = sk (y) , (89)

by using (19). A similar computation can be done for b′. We omit the details. 2

For any k ∈ [−π, π)2, let the orthogonal projection P
h
(0)
2,−

acting onH(2,1)
↑,↓ with

range h
(0)
2,−. Recall that h(0)

2,− is the subspace of one zero–spin electron pair, which
is canonically isomorphic to the spaces (12). Then, we can see a 50% depletion
of either the fermion pair density or the boson density for large ε−1, U (cf. (22)):
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Lemma 23 (Bosonic depletion at large ε−1, U )
Let ε ∈ (0, 1) and assume thatE0 < 0. Then, uniformly for all normalized vectors
ψ ∈ H(2,1)

↑,↓ ,

lim
ε−1,U→∞

∣∣∣∣‖Ph
(0)
2,−

1[E0,E0(1−ε)](H
(2,1))ψ‖H(2,1)

↑,↓
− 1√

2
‖1[E0,E0(1−ε)](H

(2,1))ψ‖H(2,1)
↑,↓

∣∣∣∣
= 0 .

Proof. It is direct consequence of Corollary 18 (ii) and Equation (88). 2

5.5 Effective Fermi Model
Similar to the three–body case studied above, the fermionic effective Hamiltonian

H̃(2,1) := H̃|H(2,1)
↑,↓

,

which is defined by (30), is decomposable:

U∗H̃(2,1)U =

∫ ⊕
[−π,π)2

Ã1,1(k)⊕ Ã2,2(k) m(d2k) , (90)

where, for any k ∈ [−π, π)2,

Ã1,1(k) := A1,1(k)−
(
1 + 4e−2κ

)
ŵf (k)Pd(k) , Ã2,2(k) := −ŵb(k) , (91)

with ŵb and ŵf being the Fourier transforms of wb (27) and wf (29), respectively.
See also (42) for the definition of A1,1(k) and recall that Pd(k) is the orthogonal
projection with range (39). The fiber decomposition of U∗H̃(2,1)U is obtained by
direct computations and we omit the details.

The bosonic and fermionic subspaces are clearly invariant under the action of
H̃(2,1). Eigenvalues and eigenvectors of Ã2,2(k), k ∈ [−π, π)2, do not need to be
discussed as these operators act on one–dimensional spaces. Thus, we focus on
the fermionic subspace. Here, by (29), ŵf (k) ≥ 0 and we can use the Birman–
Schwinger principle (Proposition 26) once again with

H0 = A1,1(k) and V =
(
1 + 4e−2κ

)
ŵf (k)Pd(k) ,

to study the negative eigenvalues of Ã1,1(k): Let k ∈ [−π, π)2. Then, λ < 0 is an
eigenvalue of Ã1,1(k) if and only if

ŵf (k)R(k, U, λ) = 1 (92)
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with R(k, U, λ) defined by (54). Moreover, this eigenvalue is non–degenerated
and unique, by Lemma 11. Note that, by compacticity of Pd(k) and Ã2,2(k) as
well as the positivity of A1,1(k), any strictly negative eigenvalue of Ã2,2(k) is
discrete. Comparing the last equation with Proposition 10 and Corollary 18, wf
(29) is chosen such that the negative eigenvalues Ẽ(k) and E(k) of Ã1,1(k) and
A(k), respectively, coincide in the limit ε→ 0+ and U →∞. Indeed, we tune the
parameter γf > 0 in (29) in order to maximize the rate of convergence of

|Ẽ(k)− E(k)| → 0 ,

as ε→ 0+, U →∞, and we obtain the following result:

Proposition 24 (Asymptotics of the negative eigenvalue of Ã1,1(k))
Let γf = eκ/2. Then, there is a constant Dκ <∞ depending only on κ > 0 such
that, for all k ∈ [−π, π)2, ε ≥ 0 satisfying 2ε ≤ ε̃0 |v̂ (k)|, and every U ≥ 0, one
has:
(i) There is a unique negative eigenvalue Ẽ(k) of Ã1,1(k). Moreover, it is non–
degenerated and satisfies∣∣∣∣∣Ẽ(k) + 2e−κ |v̂ (k)|+ |v̂ (k)|2

2U

∣∣∣∣∣ ≤ Dκ

(
ε+ U−2

)
.

(ii) There is an eigenvector Ψ̃↑↓(k) associated with Ẽ(k) satisfying∥∥∥∥Ψ̃↑↓(k)− eκ

2
sgn (v̂ (k)) d(k)− v̂ (k)

U
s

∥∥∥∥
2

≤ Dκ

(
ε |v̂ (k)|−1 + U−2

)
.

Proof. By (29) for γf = eκ/2 and (42), note that

Ã1,1(k) = A1,1(k)− eκ

2

(
1 + 4e−2κ

)(
|v̂ (k)| − eκ

4U + 2
|v̂ (k)|2

)
Pd(k) .

Therefore, similar to Theorem 16, it suffices to study the operator

UP0 −
eκ

2

(
1 + 4e−2κ

)(
|v̂ (k)| − eκ

4U + 2
|v̂ (k)|2

)
Pd(k)
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for large U ≥ 0. Explicit computations shows in this case that the negative eigen-
value of the last operator is

F̃(k) :=

(
|v̂ (k)|

2
− eκ

8U + 4
|v̂ (k)|2

)(
U

|v̂ (k)| − eκ

4U+2
|v̂ (k)|2

−
(

eκ

2
+ 2e−κ

)

−

√√√√( U

|v̂ (k)| − eκ

4U+2
|v̂ (k)|2

+ 2e−κ − eκ

2

)2

+ 4

 (93)

with associated eigenvector Φ̃↑↓(k) equal to

Φ̃↑↓(k) =

(
|v̂ (k)|
−F̃(k)

+
|v̂ (k)|
U

)
d(k) +

|v̂ (k)|
U

s . (94)

Then, direct estimates from (93)–(94) imply Assertions (i)–(ii). Note that, in order
to use Kato’s perturbation theory as in Theorem 16 we need the estimate Ẽ(k) =
O (1), uniformly with respect toU ≥ 0, which is deduced from (92) as in Theorem
12 for E(k). 2

6 Appendix

6.1 Direct Integral Decomposition
For more details, we refer to [23, Section XIII.16].

Let (M,m) be any σ–finite measure space and (H, 〈·, ·〉H) any separable Hilbert
space. The constant fiber direct integral∫ ⊕

M

H m(dx)

is denoted by L2(M,m;H) and corresponds to the usual Hilbert space of H–
valued functions on M with scalar product

〈f, g〉 :=

∫
M

〈f(x), g(x)〉H m(dx) .

Recall that we denote the Banach space of bounded operators acting on H
by B(H) with operator norm ‖ · ‖op. A map A(·) from M to B(H) is called
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measurable if and only if the map x 7→ 〈ψ1, A(x)ψ2〉 from M to R is measurable
for all ψ1, ψ2 ∈ H.

Let L∞(M,m;B(H)) be the space of equivalence classes of measurable func-
tions A : M→ B(H) with

‖A‖∞ := ess sup ‖A(·)‖op <∞ .

A bounded operator A on L2(M,m;H) is decomposable or decomposed by
the direct integral decomposition if and only if there is A(·) ∈ L∞(M,m;B(H))
such that

(AΨ) (x) = A (x) Ψ (x) , Ψ ∈ L2(M,m;H) .

The operators A (x) ∈ B(H) are the so–called fibers of A and we write

A =

∫ ⊕
M

A(x) m(dx) .

The space of decomposable operators can be isometrically identified with the
space L∞ (M,m;B(H)). See, e.g., [23, Theorem XIII.83]. [23, Theorem XIII.85]
also gives properties of self–adjoint operators on the space L∞ (M,m;B(H)) in
terms of its fibers. Only [23, Theorem XIII.85 (a), (c), (d)] is used in this paper
and so, for the reader’s convenience, we reproduce it below:

Proposition 25 (Self–adjoint decomposition)
Let A ∈ L∞ (M,m;B(H)) with A (x) being self–adjoint for any x ∈M. Then:
(i) A is self–adjoint with spectrum σ(A).
(ii) λ ∈ σ(A) if and only if, for all ε > 0,

m ({x ∈M : σ(A(x)) ∩ (λ− ε, λ+ ε) 6= ∅}) > 0 .

(iii) For any bounded Borel function f on R,

f (A) =

∫ ⊕
M

f (A(x)) m(dx) .

6.2 The Birman–Schwinger Principle
There are various versions of the Birman–Schwinger principle. The following one
is used in our proofs:
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Proposition 26 (Birman–Schwinger principle)
Let d ≥ 1 and H0, V ∈ B(`2(Zd)) be positive bounded operators. Assume further
that V is compact. For any λ < 0, define the compact, self-adjoint, positive
Birman–Schwinger operator by

B(λ) = B(λ,H0, V ) := V 1/2 (H0 − λ)−1 V 1/2 .

Then λ < 0 is an eigenvalue of (H0 − V ) of multiplicity M if and only if 1 is an
eigenvalue of B(λ) of multiplicity M .

Proof : We recall that, due to the compactness of V , the Birman-Schwinger op-
erator B(λ) is compact and has only discrete spectrum above 0. Similarly, the
spectrum of (H0 − V ) below 0 is discrete because V is compact.

Suppose that λ < 0 is an eigenvalue of (H0 − V ) of multiplicity M ∈ N and
let {ϕ1, . . . , ϕM} ⊆ `2(Zd) be an orthonormal basis (ONB) of the corresponding
eigenspace. Set

ψ1 := V 1/2ϕ1, . . . , ψM := V 1/2ϕM ∈ `2(Zd) . (95)

Then
ϕm = (H0 − λ)−1V ϕm = (H0 − λ)−1V 1/2ψm , (96)

and the boundedness of (H0 − λ)−1V 1/2 implies that {ψ1, . . . , ψM} ⊆ `2(Zd) is
a linearly independent family. Clearly, (95) and (96) also yield

B(λ)ψm = V 1/2(H0 − λ)−1V 1/2ψm = ψm , (97)

and hence the eigenspace of B(λ) corresponding to the eigenvalue 1 has at least
dimension M .

Conversely, if {ψ1, . . . , ψL} ⊆ `2(Zd) is an ONB of the eigenspace of B(λ)
corresponding to the eigenvalue 1 of multiplicity L ∈ N then we set

ϕ1 := (H0 − λ)−1V 1/2ψ1, . . . , ϕL := (H0 − λ)−1V 1/2ψL ∈ `2(Zd) . (98)

Then,
ψk = B(λ)ψk = V 1/2ϕk , (99)

and the boundedness of V 1/2 implies that {ϕ1, . . . , ϕL} ⊆ `2(Zd) is a linearly
independent family. Clearly, (98) and (99) also yield

(H0 − V )ϕk = λϕk , (100)
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and hence the eigenspace of (H0 − V ) corresponding to the eigenvalue λ has at
least dimension L. 2
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