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1. Introduction

Let us consider the problem

−∆u + V (x)u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) either vanishes or converges to0 at infinity. In the case of
a ≥ 0, the essential spectrum of the operatorA : E → F correspondent to the left-
hand side of equation (1.1) contains the origin. Consequently, this operator fails to
satisfy the Fredholm property. Its image is not closed, ford > 1 the dimensions of
its kernel and the codimension of its image are not finite. Thepresent work is de-
voted to the studies of certain properties of such operators. Let us note that elliptic
problems involving operators without Fredholm property were studied extensively
in recent years (see [12], [14], [15], [16], [17], [18], [19], [20], [21], [22],
also [6]) along with their potential applications to the theory of reaction-diffusion
equations (see [9], [10]). Non Fredholm operators arise also when studying wave
systems with an infinite number of localized traveling waves(see [1]). In the par-
ticular case wherea = 0 the operatorA satisfies the Fredholm property in certain
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properly chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case of
a 6= 0 is essentially different and the approach developed in these works cannot be
applied.

One of the important questions about problems with non-Fredholm operators
concerns their solvability. We will consider the nonlinearheat equation

∂u

∂t
= ∆u+ εg(u) + f(x), x ∈ R

5 (1.2)

with the parameterε ≥ 0. Seeking the stationary solutions of problem (1.2) yields
the nonlinear Poisson equation

−∆u = f(x) + εg(u). (1.3)

Let us make the following technical assumption about the source term of problem
(1.3).

Assumption 1.Letf(x) : R5 → R be nontrivial,f(x) ∈ L1(R5) and∇f(x) ∈
L2(R5).

Note that we do not need to assume additionally the square integrability off(x).
Indeed, by means of the Sobolev inequality (see e.g. p.183 of[11]) under the
assumption abovef(x) ∈ L

10

3 (R5). Evidently,f(x) ∈ L1(R5) ∩ L
10

3 (R5) yields

f(x) ∈ L2(R5).

We will be using the Sobolev space

H3(R5) = {u(x) : R5 → C | u(x) ∈ L2(R5), (−∆)
3

2u ∈ L2(R5)}

equipped with the norm

‖u‖2H3(R5) = ‖u‖2L2(R5) + ‖(−∆)
3

2u‖2L2(R5). (1.4)

The operator(−∆)
3

2 is defined via the spectral calculus. By means of the Sobolev
embedding we have

‖u‖L∞(R5) ≤ ce‖u‖H3(R5), (1.5)

wherece > 0 is the constant of the embedding. The hat symbol will stand for the
standard Fourier transform, such that

û(p) =
1

(2π)
5

2

∫

R5

u(x)e−ipxdx. (1.6)

This enables us to express the Sobolev norm as

‖u‖2H3(R5) =

∫

R5

(1 + |p|6)|û(p)|2dp. (1.7)
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When the parameterε vanishes, we arrive at the standard Poisson equation

−∆u = f(x). (1.8)

Under Assumption 1 by means of Lemma 7 of [22] problem (1.8) admits a unique
solutionu0(x) ∈ H2(R5) and no orthogonality relations are required. As discussed
in Lemmas 5 and 6 of [22], in dimensionsd < 5 we need certain orthogonality
conditions for the solvability of equation (1.8) inH2(Rd). We do not discuss the
problem in dimensionsd > 5 to avoid extra technicalities since the argument will
rely on similar ideas (see Lemma 7 of [22]). Due to our Assumption 1

∇(−∆u0) = ∇f(x) ∈ L2(R5).

Therefore, for the unique solution of the linear Poisson equation (1.8) we have
u0(x) ∈ H3(R5). By seeking the resulting solution of the nonlinear Poissonequa-
tion (1.3) as

u(x) = u0(x) + up(x) (1.9)

we clearly arrive at the perturbative equation

−∆up = εg(u0 + up). (1.10)

Let us introduce a closed ball in our Sobolev space

Bρ := {u(x) ∈ H3(R5) | ‖u‖H3(R5) ≤ ρ}, 0 < ρ ≤ 1. (1.11)

We will seek the solution of (1.10) as the fixed point of the auxiliary nonlinear
problem

−∆u = εg(u0 + v). (1.12)

in the ball (1.11). Note that the left side of (1.12) involvesthe operator−∆ :
H2(R5) → L2(R5), which has no Fredholm property, since its essential spectrum
fills the nonnegative semi-axis[0,+∞) and therefore, a bounded inverse of this
operator does not exist. The similar situation arised in [20] and [22] but as dis-
tinct from the present work, the problems treated there werenonlocal. The fixed
point technique was used in [13] to estimate the perturbation to the standing soli-
tary wave of the Nonlinear Schrödinger (NLS) equation wheneither the external
potential or the nonlinear term in the NLS were perturbed butthe Schrödinger type
operator involved in such nonlinear problem possessed the Fredholm property (see
Assumption 1 of [13], also [7]). Let us define the interval on the real line as

I := [−ce‖u0‖H3(R5) − ce, ce‖u0‖H3(R5) + ce]. (1.13)

We make the following assumption about the nonlinear part ofproblem (1.3).

Assumption 2. Let g(s) : R → R, such thatg(0) = 0 andg′(0) = 0. We also
assume thatg(s) ∈ C2(R), such that

a2 := sups∈I |g
′′(s)| > 0.
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Note thata1 := sups∈I |g
′(s)| > 0 as well, otherwise the functiong(s) will be

constant on the intervalI anda2 will vanish. For instance,g(s) = s2 clearly satisfies
the assumption above. Our main statement is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.12) defines the
mapTg : Bρ → Bρ, which is a strict contraction for all0 < ε < ε∗ for a certain
ε∗ > 0. The unique fixed pointup(x) of the mapTg is the only solution of problem
(1.10) inBρ.

Note that the resulting solution of problem (1.3) given by (1.9) will be non-
trivial since the source termf(x) is nontrivial andg(0) vanishes according to our
assumptions. We will make use of the following elementary technical lemma.

Lemma 4. Consider the functionϕ(R) := αR +
β

R4
on the positive semi- axis

(0,+∞)with the constantsα, β > 0. It attains the minimal value atR∗ =

(
4β

α

) 1

5

,

which is given byϕ(R∗) =
5

4
4

5

α
4

5β
1

5 .

Let us proceed to the proof of our main result.

2. The existence of the perturbed solution

Proof of Theorem 3.Let us choose arbitrarilyv(x) ∈ Bρ and denote the right side of
equation (1.12) asG(x) := g(u0 + v). By applying the standard Fourier transform
(1.6) to both sides of problem (1.12), we arrive at

û(p) = ε
Ĝ(p)

p2
,

such that for the norm we have

‖u‖2L2(R5) = ε2
∫

R5

|Ĝ(p)|2

|p|4
dp. (2.14)

Clearly,

‖Ĝ(p)‖L∞(R5) ≤
1

(2π)
5

2

‖G(x)‖L1(R5). (2.15)

Let us estimate the right side of (2.14) using (2.15) withR > 0 as

ε2
∫

|p|≤R

|Ĝ(p)|2

|p|4
dp+ ε2

∫

|p|>R

|Ĝ(p)|2

|p|4
dp ≤

≤ ε2
1

(2π)5
‖G(x)‖2L1(R5)|S5|R + ε2

1

R4
‖G(x)‖2L2(R5). (2.16)
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Here and belowS5 stands for the unit sphere in the space of five dimensions centered
at the origin and|S5| for its Lebesgue measure (see e.g. p.6 of [11]). Sincev(x) ∈
Bρ, we have

‖u0 + v‖L2(R5) ≤ ‖u0‖H3(R5) + 1.

Also, the Sobolev embedding (1.5) yields

|u0 + v| ≤ ce‖u0‖H3(R5) + ce.

Using the representationG(x) =

∫ u0+v

0

g′(s)ds, with the intervalI given by (1.13),

we easily obtain

|G(x)| ≤ sups∈I |g
′(s)||u0 + v| = a1|u0 + v|,

such that

‖G(x)‖L2(R5) ≤ a1‖u0 + v‖L2(R5) ≤ a1(‖u0‖H3(R5) + 1).

Similarly,G(x) =

∫ u0+v

0

ds
[ ∫ s

0

g′′(t)dt
]
. Therefore, we estimate

|G(x)| ≤
1

2
supt∈I |g

′′(t)||u0 + v|2 =
a2

2
|u0 + v|2,

‖G(x)‖L1(R5) ≤
a2

2
‖u0 + v‖2L2(R5) ≤

a2

2
(‖u0‖H3(R5) + 1)2.

Thus we arrive at the upper bound for the right side of (2.16) as

ε2

(2π)5
|S5|

a22
4
(‖u0‖H3(R5) + 1)4R + ε2a21(‖u0‖H3(R5) + 1)2

1

R4

with R ∈ (0,+∞). By means of Lemma 4 we obtain the minimal value of the
expression above. Hence

‖u‖2L2(R5) ≤ ε2
|S5|

4

5

(2π)4
a

8

5

2 (‖u0‖H3(R5) + 1)3
3

5a
2

5

1

5

4
8

5

. (2.17)

Clearly, (1.12) implies that

∇(−∆u) = εg′(u0 + v)(∇u0 +∇v).

We will make use of the identity

g′(u0 + v) =

∫ u0+v

0

g′′(s)ds
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along with the Sobolev embedding (1.5), such that

|g′(u0 + v)| ≤ sups∈I |g
′′(s)||u0 + v| ≤ a2ce(‖u0‖H3(R5) + 1)

and
|∇(−∆u)| ≤ εa2ce(‖u0‖H3(R5) + 1)|∇u0 +∇v|.

Using the inequality, which can be trivially derived via thestandard Fourier trans-
form, namely

‖∇u‖L2(R5) ≤ ‖u‖H3(R5), (2.18)

we easily arrive at

‖(−∆)
3

2u‖2L2(R5) ≤ ε2a22c
2
e(‖u0‖H3(R5) + 1)4. (2.19)

By virtue of the definition of the norm (1.4) along with estimates (2.17) and (2.19)
we derive

‖u‖H3(R5) ≤ ε(‖u0‖H3(R5) + 1)2a
4

5

2

√
|S5|

4

5

(2π)4
a

2

5

1

5

4
8

5

+ a
2

5

2 c
2
e ≤ ρ

for all positive values of the parameterε small enough, such thatu(x) ∈ Bρ as
well. Suppose for somev(x) ∈ Bρ there are two solutionsu1,2(x) ∈ Bρ of prob-
lem (1.12). Then their differenceu(x) := u1(x) − u2(x) ∈ L2(R5) satisfies the
Laplace equation. Since there are no nontrivial square integrable harmonic func-
tions,u(x) = 0 a.e. inR5. Therefore, equation (1.12) defines a mapTg : Bρ → Bρ

whenε > 0 is sufficiently small.
Let us show that this map is a strict contraction. We choose arbitrarily v1,2(x) ∈

Bρ, such that by virtue of the argument aboveu1,2 = Tgv1,2 ∈ Bρ as well. Explicitly,
via (1.12) we have

−∆u1 = εg(u0 + v1), −∆u2 = εg(u0 + v2). (2.20)

Let us introduce

G1(x) := g(u0 + v1), G2(x) := g(u0 + v2).

Then by applying the standard Fourier transform (1.6) to both sides of each of the
equations (2.20), we obtain

û1(p) = ε
Ĝ1(p)

p2
, û2(p) = ε

Ĝ2(p)

p2
.

Therefore, we express the norm

‖u1 − u2‖
2
L2(R5) = ε2

∫

R5

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp,

6



which can be estimated via (2.15) as

ε2
∫

|p|≤R

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp+ ε2

∫

|p|>R

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp ≤

≤
ε2

(2π)5
‖G1(x)−G2(x)‖

2
L1(R5)|S5|R +

ε2

R4
‖G1(x)−G2(x)‖

2
L2(R5)

with R ∈ (0,+∞). Let us make use of the representation

G1(x)−G2(x) =

∫ u0+v1

u0+v2

g′(s)ds,

such that

|G1(x)−G2(x)| ≤ sups∈I |g
′(s)||v1 − v2| = a1|v1 − v2|

and therefore

‖G1(x)−G2(x)‖L2(R5) ≤ a1‖v1 − v2‖L2(R5) ≤ a1‖v1 − v2‖H3(R5).

We can also express

G1(x)−G2(x) =

∫ u0+v1

u0+v2

ds
[ ∫ s

0

g′′(t)dt
]
.

This enables us to estimateG1(x)−G2(x) in the absolute value from above by

1

2
supt∈I |g

′′(t)||(v1 − v2)(2u0 + v1 + v2)| =
a2

2
|(v1 − v2)(2u0 + v1 + v2)|.

Via the Schwarz inequality we derive the upper bound for the norm ‖G1(x) −
G2(x)‖L1(R5) as

a2

2
‖v1 − v2‖L2(R5)‖2u0 + v1 + v2‖L2(R5) ≤ a2‖v1 − v2‖H3(R5)(‖u0‖H3(R5) + 1).

Thus we arrive at

‖u1(x)−u2(x)‖
2
L2(R5) ≤ ε2‖v1−v2‖

2
H3(R5)

{ a2
2

(2π)5
(‖u0‖H3(R5)+1)2|S5|R+

a1
2

R4

}
.

Lemma 4 enables us to minimize the right side of the inequality above overR > 0,
such that we obtain

‖u1(x)− u2(x)‖
2
L2(R5) ≤ ε2‖v1 − v2‖

2
H3(R5)

5

4
4

5

a
8

5

2

(2π)4
(‖u0‖H3(R5) + 1)2|S5|

4

5a
2

5

1 .

(2.21)
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Using (2.20) we express∇(−∆)(u1 − u2) as

ε[g′(u0 + v1)(∇u0 +∇v1)− g′(u0 + v2)(∇u0 +∇v2)] =

= ε
[
(∇u0 +∇v1)

∫ u0+v1

u0+v2

g′′(s)ds+ (∇v1 −∇v2)

∫ u0+v2

0

g′′(s)ds
]
.

This yields the upper bound for|∇(−∆)(u1 − u2)| as

εsups∈I|g
′′(s)||v1 − v2||∇u0 +∇v1|+ εsups∈I |g

′′(s)||u0 + v2||∇v1 −∇v2|,

which can be easily estimated from above by virtue of the Sobolev embedding (1.5)
by

εa2ce‖v1 − v2‖H3(R5)|∇u0 +∇v1|+ εa2ce‖u0 + v2‖H3(R5)|∇v1 −∇v2|,

such that

‖∇(−∆)(u1 − u2)‖L2(R5) ≤ εa2ce‖v1 − v2‖H3(R5)‖∇u0 +∇v1‖L2(R5)+

+εa2ce(‖u0‖H3(R5) + 1)‖∇v1 −∇v2‖L2(R5).

By virtue of (2.18) using thatv1 ∈ Bρ we arrive at

‖∇(−∆)(u1 − u2)‖
2
L2(R5) ≤ 4ε2a22c

2
e(‖u0‖H3(R5) + 1)2‖v1 − v2‖

2
H3(R5). (2.22)

Inequalities (2.21) and (2.22) imply that

‖u1−u2‖H3(R5) ≤ ε(‖u0‖H3(R5)+1)a
4

5

2

[ 5

4
4

5

a
2

5

1

(2π)4
|S5|

4

5 +4a
2

5

2 c
2
e

] 1

2

‖v1− v2‖H3(R5).

Therefore, the mapTg : Bρ → Bρ defined by equation (1.12) is a strict contraction
for all values ofε > 0 sufficiently small. Its unique fixed pointup(x) is the only
solution of problem (1.10) inBρ, such that the resultingu(x) ∈ H3(R5) given by
(1.9) is the stationary solution of our nonlinear heat equation (1.2).
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