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1. Introduction
Let us consider the problem

—Au+V(x)u —au = f, (1.1)

whereu € E = H*(RY) andf € F = L?(R%), d € N, ais a constant and the scalar
potential functionl/(x) either vanishes or converges(at infinity. In the case of
a > 0, the essential spectrum of the operator £ — F correspondent to the left-
hand side of equation (1.1) contains the origin. Consedyéehis operator fails to
satisfy the Fredholm property. Its image is not closedfor 1 the dimensions of
its kernel and the codimension of its image are not finite. pitesent work is de-
voted to the studies of certain properties of such operatatsus note that elliptic
problems involving operators without Fredholm propertyevstudied extensively
in recent years (see [12], [14], [15], [16], [17], [18], [19]20], [21], [22],
also [6]) along with their potential applications to thedhgof reaction-diffusion
equations (see [9], [10]). Non Fredholm operators arise @&lsen studying wave
systems with an infinite number of localized traveling wafgee [1]). In the par-
ticular case where = 0 the operatorA satisfies the Fredholm property in certain
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properly chosen weighted spaces (see [2], [3], [4], [5]).[6Jowever, the case of
a # 0 is essentially different and the approach developed irethesks cannot be
applied.

One of the important questions about problems with non{tokd operators
concerns their solvability. We will consider the nonlinbaat equation

({;_1; =Au+eg(u)+ f(z), =€ R (1.2)

with the parameter > 0. Seeking the stationary solutions of problem (1.2) yields
the nonlinear Poisson equation

—Au = f(z) + eg(u). (1.3)

Let us make the following technical assumption about thecsoterm of problem
(1.3).

Assumption 1.Let f(z) : R® — R be nontrivial, f(z) € L'(R%) andV f(z) €
L?(R5).

Note that we do not need to assume additionally the squaagrartility of f ().
Indeed, by means of the Sobolev inequality (see e.g. p.188l&f) under the
assumption abovg(z) € L% (R?). Evidently, f(z) € L'(R) N L= (R?) yields

flx) € L*(R?).
We will be using the Sobolev space
H3(R) = {u(z) : R* — C | u(z) € L*(R?), (~A)%u € L*(R%)}
equipped with the norm

3
HU’H?{?’(E@) = HuH%Q(R5) + ”(—A)QUH%%RS)- (1.4)

The operato(—A)% is defined via the spectral calculus. By means of the Sobolev
embedding we have
[[w] Loo sy < cellull s sy, (1.5)

wherec, > 0 is the constant of the embedding. The hat symbol will stamdife
standard Fourier transform, such that

1
(2m)3

u(p) = /]Rs u(z)e P dr. (1.6)

This enables us to express the Sobolev norm as
ey = [ (1-+ I P, w7
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When the parametervanishes, we arrive at the standard Poisson equation
—Au = f(x). (1.8)

Under Assumption 1 by means of Lemma 7 of [22] problem (1.8)iésla unique
solutionuy(z) € H*(R?) and no orthogonality relations are required. As discussed
in Lemmas 5 and 6 of [22], in dimensiods< 5 we need certain orthogonality
conditions for the solvability of equation (1.8) i#*(R?). We do not discuss the
problem in dimensiong > 5 to avoid extra technicalities since the argument will
rely on similar ideas (see Lemma 7 of [22]). Due to our Assuampi

V(-Aug) = Vf(z) € L*(R®).

Therefore, for the unique solution of the linear Poissonatign (1.8) we have
ug(r) € H3*(R%). By seeking the resulting solution of the nonlinear Poissgua-
tion (1.3) as

u(z) = uo(z) + up(x) (1.9)

we clearly arrive at the perturbative equation
—Auy, = eg(ug + up). (1.10)
Let us introduce a closed ball in our Sobolev space
B, = {u(x) € H®%) | [ullmses) < p}, O<p<l.  (L11)

We will seek the solution of (1.10) as the fixed point of the ibary nonlinear
problem

—Au = eg(ug + v). (1.12)

in the ball (1.11). Note that the left side of (1.12) involube operator—A
H?*(R®) — L?(R®), which has no Fredholm property, since its essential spectr
fills the nonnegative semi-axi$, +oo) and therefore, a bounded inverse of this
operator does not exist. The similar situation arised in] f@l [22] but as dis-
tinct from the present work, the problems treated there werdocal. The fixed
point technique was used in [13] to estimate the perturbatdhe standing soli-
tary wave of the Nonlinear Schrodinger (NLS) equation wekéher the external
potential or the nonlinear term in the NLS were perturbedbeatSchrodinger type
operator involved in such nonlinear problem possessedrdga@hBlm property (see
Assumption 1 of [13], also [7]). Let us define the interval be teal line as

I = [—ce|luo|| m3msy — Cer Celltol| m3ms) + ce). (1.13)
We make the following assumption about the nonlinear paprolblem (1.3).

Assumption 2. Letg(s) : R — R, such thaty(0) = 0 and¢’(0) = 0. We also
assume thag(s) € C»(R), such that

as = supser|g”(s)| > 0.
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Note thata; := supser|g’(s)| > 0 as well, otherwise the functiog(s) will be
constant on the intervdlanda, will vanish. For instance;(s) = s* clearly satisfies
the assumption above. Our main statement is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.12) defines the
map7, : B, — B,, which is a strict contraction for al0 < ¢ < e for a certain
ex > 0. The unique fixed point,(z) of the magl, is the only solution of problem
(1.10) inB,.

Note that the resulting solution of problem (1.3) given by9jlwill be non-
trivial since the source terryi(x) is nontrivial andg(0) vanishes according to our
assumptions. We will make use of the following elementacihtecal lemma.

B

Lemma 4. Consider the functiop(R) := aR + T 0N the positive semi- axis

1

: : - 48\ °

(0, +00) with the constants, 5 > 0. It attains the minimal value a* = (—5> ,
«

which is given byp(R*) = i s B3,

Let us proceed to the pFoof of our main result.

2. The existence of the perturbed solution

Proof of Theorem 3Let us choose arbitrarily(x) € B, and denote the right side of
equation (1.12) a&'(z) := g(uo + v). By applying the standard Fourier transform
(1.6) to both sides of problem (1.12), we arrive at

i) =47,
such that for the norm we have
R @14)
r D
Clearly,
G0 lwey < 5 IG @) e (2.15)

" (2m)3
Let us estimate the right side of (2.14) using (2.15) with- 0 as

S S
52/ |G(P4)| dp+€2/ |G(p2| dp <
pl<r [Pl pl>r 1Pl

<52 1
- (2m)

1
NG @) o) 1951 R + 62@||G($)||%2(R5>- (2.16)
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Here and belowb; stands for the unit sphere in the space of five dimensionsicaht
at the origin andSs| for its Lebesgue measure (see e.g. p.6 of [11]). Sirjee €

B,, we have
HUQ —+ UHLQ(RE’) S HUOHHC’,(RS) -+ 1.
Also, the Sobolev embedding (1.5) yields
[uo + v| < celluol| mamsy + ce.

ug+v
Using the representatidii(z) = / g'(s)ds, with the intervall given by (1.13),
0

we easily obtain
|G (@)] < supser|g'(s)]|uo + v| = arfuo + 0],

such that
1G(@)[|r2@s) < arlluo + vl|r2@s) < ar([luollmems) + 1)

uo+v s
/ ds[ / g”(t)dt]. Therefore, we estimate
0 0

Similarly, G(z)
1 i 2 as 2
|G(x)] < Zsuper|g” (t)]|uo +v|* = §|Uo + vl

(luoll o) + 1)

as a2
1G@) 1) < Flluo + vl Feqesy < 2
Thus we arrive at the upper bound for the right side of (2.%6) a
PP
£ aj 4 2 2 2 1
W|S5‘Z(HuOHH3(R5) + 1) R"— e al(”uO”HS(]RS) + 1) @
with R € (0,+00). By means of Lemma 4 we obtain the minimal value of the
expression above. Hence
NEAk g 38 29
<e (27?)4(12 (luo || g3 msy +1)"5ay s (2.17)

||U||%2(1R5) >

Clearly, (1.12) implies that
V(=Au) = eg'(ug + v)(Vug + Vo).

We will make use of the identity
uo+v
gt = [ g (s)ds
0
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along with the Sobolev embedding (1.5), such that
19/ (o + )| < supserlg”(s)luo + ] < ascel[|uollmages) + 1)

and
\V(=Au)| < eagee([Juol| msmsy + 1) Vug + Vol.

Using the inequality, which can be trivially derived via thiandard Fourier trans-
form, namely
IVullr2@s) < [lullm3es), (2.18)

we easily arrive at
3
I(=A)2ullfa@s) < e?azel(lluollmaes) + 1) (2.19)

By virtue of the definition of the norm (1.4) along with estit@s (2.17) and (2.19)
we derive

Ssls 25 2,
(27'(')4 1 4§ 2Ce S P
for all positive values of the parametersmall enough, such that(z) € B, as
well. Suppose for some(z) € B, there are two solutions, »(xz) € B, of prob-
lem (1.12). Then their difference(z) := ui(z) — us(x) € L*(R®) satisfies the
Laplace equation. Since there are no nontrivial squargiabée harmonic func-
tions,u(x) = 0 a.e. inR®. Therefore, equation (1.12) defines anigp B, — B,
whene > 0 is sufficiently small.

Let us show that this map is a strict contraction. We chodsirarily v, »(z) €
B,, suchthat by virtue of the argument abave = T,v, » € B, as well. Explicitly,
via (1.12) we have

4
|l s rsy < el|uoll msmsy + 1)2a§\/

—Auy =eg(up +v1), —Aug =eg(ug+ va). (2.20)
Let us introduce
Gi(z) :== glug +v1), Go(z) := g(ug + v).

Then by applying the standard Fourier transform (1.6) tdlsades of each of the
equations (2.20), we obtain

Therefore, we express the norm
G1(p) — Ga(p)?
[[ur —U2||%2(R5) =¢? /5 [Gr(p) 2(p) dp,
R
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which can be estimated via (2.15) as

o \éi<p>—é;<p>\2dp+€2/ Gil) o),
Ip|<R Ip|* Ip|>R p|* N

2 2

£ €
1G1(2) — Ga(2) 171 g 15| R + illGu) = Ga() 72 e)

(27)°
with R € (0, +00). Let us make use of the representation

<

uo+v1

Gi(2) — Galx) = / §(s)ds,

up+v2
such that
|G1(x) — Ga(z)| < supser|g'(s)||vr — va] = a1]vr — vs

and therefore

HGl(SL’) — G2(£)”L2(R5) S a1HU1 - U2HL2(R5) S CL1HU1 — UzHHS(RS).

We can also express

up+v1

Gi(z) — Go(x) = /

uo+v2

ds[/os g"(t)dt].

This enables us to estimatg () — G»(z) in the absolute value from above by

1 a
§supt€1\g"(t)||(v1 —v2)(2up + v1 +v2)| = 52\(1)1 — v9)(2ug + v1 + o).

Via the Schwarz inequality we derive the upper bound for tbem||G;(x) —
GQ(SL’)HLl(RS) as

a
5”@1 — UQHL2(R5)HQUQ + v + U2HL2(R5) < a2|]vl — UQHHS(R5)(”UOHH3(R5) + 1).

Thus we arrive at

2 2

45) ay
Jua(2) = ) ey < <lon =l { gy el + 121851 R+
Lemma 4 enables us to minimize the right side of the inequabbve oveR > 0,
such that we obtain

oo

5 a
2 2 2 2
Jur () — ue(®) || 72®s) < €°lor — v2||H3(R5)4_% )]

(l[woll sy + 1)%]S5| 5 a;
(2.21)



Using (2.20) we expresg (—A)(u; — uy) as

elg'(uo + v1)(Vug + Vuy) — ¢ (ug + v2)(Vug + Vug)] =
uo+v1

= (Vu0+Vv1)/

ug+v2

up+v2
g"(s)ds + (Vu; — Vo) / g”(s)ds]
0
This yields the upper bound fo¥ (—A)(u; — us)| as
esupser|g”(s)|[vr — val|[Vuo + Vi | + esupser|g” (s)|[uo + va| [V — Vi,

which can be easily estimated from above by virtue of the &bembedding (1.5)
by

ECLQCeHvl — UQHHS(R5)|VU0 + Vvl\ + €CL266HUQ -+ UQHHS(RS)‘V’Ul — VUQ‘,
such that
HV(—A)(ul — u2>HL2(R5) < ECLQCeHvl — UQHHS(R5) HVUO + VUIHLQ(R5)+

+€agce(||u0||H3(Rs) + 1)||V2)1 — VUQ||L2(R5).
By virtue of (2.18) using that, € 5, we arrive at

IV (=) (w1 — u2) | Zoges) < 4e®azed([luollmas) + 1) o1 — vallfses)-  (2.22)

Inequalities (2.21) and (2.22) imply that

2
4 5 4 2 5
s = sl sy < (uollsgus) + D [~ ) +4a50§] [v1 = v2 | 3 z).
45 (2m)4

Therefore, the map, : B, — B, defined by equation (1.12) is a strict contraction
for all values ofs > 0 sufficiently small. Its unique fixed point,(x) is the only
solution of problem (1.10) imB,, such that the resulting(z) € H?*(R®) given by
(1.9) is the stationary solution of our nonlinear heat equafl.2). [ |
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