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Abstract

We consider free lattice fermions subjected to a static bounded potential
and a time– and space–dependent electric field. For any bounded convex
region R ⊂ Rd (d ≥ 1) of space, electric fields E within R drive currents.
At leading order, uniformly with respect to the volume |R| of R and the
particular choice of the static potential, the dependency on E of the cur-
rent is linear and described by a conductivity (tempered, operator–valued)
distribution. Because of the positivity of the heat production, the real part
of its Fourier transform is a positive measure, named here (microscopic)
conductivity measure of R, in accordance with Ohm’s law in Fourier space.
This finite measure is the Fourier transform of a time–correlation function of
current fluctuations, i.e., the conductivity distribution satisfies Green–Kubo
relations. We additionally show that this measure can also be seen as the
boundary value of the Laplace–Fourier transform of a so–called quantum
current viscosity. The real and imaginary parts of conductivity distribu-
tions are related to each other via the Hilbert transform, i.e., they satisfy
Kramers–Kronig relations. At leading order, uniformly with respect to pa-
rameters, the heat production is the classical work performed by electric
fields on the system in presence of currents. The conductivity measure is
uniformly bounded with respect to parameters of the system and it is never
the trivial measure 0 dν. Therefore, electric fields generally produce heat in
such systems. In fact, the conductivity measure defines a quadratic form in
the space of Schwartz functions, the Legendre–Fenchel transform of which
describes the resistivity of the system. This leads to Joule’s law, i.e., the
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heat produced by currents is proportional to the resistivity and the square of
currents.
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1 Introduction
The present paper belongs to a succession of works on Ohm and Joule’s laws
starting with [BPK1], where heat production of free lattice fermions subjected to
a static bounded potential and a time– and space–dependent electric field has been
analyzed in detail.

Ohm’s law is not only valid at macroscopic scales. Indeed, in a recent work
[W] the authors experimentally verified the validity of Ohm’s law at the atomic
scale for a purely quantum system. Such a behavior was unexpected [F]:

...In the 1920s and 1930s, it was expected that classical behavior would operate
at macroscopic scales but would break down at the microscopic scale, where it
would be replaced by the new quantum mechanics. The pointlike electron motion
of the classical world would be replaced by the spread out quantum waves. These
quantum waves would lead to very different behavior. ... Ohm’s law remains valid,
even at very low temperatures, a surprising result that reveals classical behavior
in the quantum regime.

[D. K. Ferry, 2012]

One aim of the present paper is to establish a form of Ohm and Joule’s laws at
microscopic scales, by introducing the concept of microscopic conductivity distri-
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butions for bounded regions R ⊂ Rd of space, whose existence and basic proper-
ties follow from rather general properties of fermion systems at equilibrium.

More precisely, consider any arbitrary smooth compactly supported function
E : R → R which yields a space–homogeneous electric field 1[x ∈ R] Et w⃗ at
time t ∈ R oriented along the normalized vector w⃗ := (w1, . . . , wd) ∈ Rd in some
open convex domain R ⊂ Rd. For free lattice fermions at thermal equilibrium
subjected to a static bounded potential, we show the existence of finite symmetric
measures {µR}R⊂Rd on R taking values in the set B+(Rd) of positive linear op-
erators on Rd such that, uniformly with respect to (w.r.t.) the volume |R| and the
choice of the static potential, the induced mean current response J(E)R (t) at time t
within R obeys:

J(E)R (t) =
1

2

∫
R
Ê (t)
ν µR (dν) w⃗ +

i

2

∫
R
H(Ê (t)) (ν)µR (dν) w⃗ +O

(
∥E∥2∞

)
,

with Ê being the Fourier transform of E , Ê (t)
ν := eiνtÊν , and where H is the Hilbert

transform. This expression allows us to define B(Rd)–valued tempered distribu-
tions µ∥

R, µ
⊥
R satisfying Kramers–Kronig relations and such that

J(E)R (t) =
(
µ
∥
R(Ê

(t)) + iµ⊥
R(Ê (t))

)
w⃗ +O

(
∥E∥2∞

)
,

see Equations (54)–(55). By B(Rd)–valued tempered distributions, we mean a
map from the space S (R;C) of Schwartz functions to the space B(Rd) of linear
operators on Rd where each entry w.r.t. the canonical orthonormal basis of Rd

is a (tempered) distribution. µ
∥
R is the linear response in–phase component of

the total conductivity in Fourier space and µ∥
R + iµ⊥

R is named the (microscopic,
B(Rd)–valued) conductivity distribution of the region R, while µR is the (in–
phase) conductivity measure, similar to [KLM].

We show four important properties of µR:

• It is the Fourier transform of a time–correlation function of current fluc-
tuations, i.e., the microscopic conductivity measures satisfy Green–Kubo
relations. See Theorem 3.1 and Equation (46).

• ∥µR (R)∥op is uniformly bounded w.r.t. R and µR (R\{0}) > 0. See The-
orem 3.1.

• If the GNS representation of the equilibrium state of the system is denoted
by (H, π,Ψ), then µR is the spectral measure of the Liouvillean L of the
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system w.r.t. a vector ΨR ∈ H. We show that µR (R\{0}) = 0 if and
only if ΨR ∈ kerL. Thus, µR (R\{0}) > 0 is equivalent to the geometric
condition ΨR /∈ kerL which is easily verified in the present case. See
Equation (109), Theorem 5.6 and Corollary 5.7.

• µR can also be constructed on R\{0} as the boundary value of the Laplace–
Fourier transform of a so–called quantum current viscosity. See Equations
(32) and (40) as well as Theorem 5.9.

If the first law of thermodynamics holds true for the system under consid-
eration, then the existence and basic properties of the microscopic conductivity
measures are, roughly speaking, consequences of very general properties of KMS
states and decay bounds of space–time correlation functions of the equilibrium
state.

Indeed, the existence of the (in–phase) conductivity measure is related to the
positivity of the heat production induced by the electric field on the fermion sys-
tem at thermal equilibrium. When the so–called AC–condition∫

R
Etdt = 0 (1)

holds, the total heat production per unit of volume (of R) as the electric field is
switched off turns out to be equal to∫

R
Êν ⟨w⃗, µR (dν) w⃗⟩+O

(
∥E∥3∞

)
=

∫
R

⟨
Etw⃗, µ∥

R(Ê
(t))w⃗

⟩
dt+O

(
∥E∥3∞

)
,

uniformly w.r.t. |R| and the choice of the static potential. Since∫
R

⟨
Etw⃗, µ⊥

R(Ê (t))w⃗
⟩
dt = 0 ,

this expression is the classical work performed by the electric field on the fermion
system in the presence of currents J(E)R :∫

R

⟨
Etw⃗, J(E)R (t)

⟩
dt+O

(
∥E∥3∞

)
. (2)

As µR (R\{0}) > 0, this implies that electric fields generally produce heat in
such systems and heat production is directly related to the electric conductivity.
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Note that the elements of the dual S∗
0 of the space S0 of Schwartz functions

R → R satisfying the AC–condition (1) are restrictions to S0 of tempered distribu-
tions. S∗

0 is interpreted here as a space of AC–currents and (S0,S∗
0 ) is a dual pair.

To obtain Joule’s law in its original formulation, which relates the heat production
with currents rather than with electric fields, we consider the Legendre–Fenchel
transform Q∗

R of the positive quadratic form

QR (E) :=
∫
R

⟨
Etw⃗, µ∥

R(Ê
(t))
⟩
dt .

Let ∂QR (E) ⊂ S∗
0 be the subdifferential of QR at the point E ∈ S0.The multi-

function
E 7→ σR (E) = 1

2
∂QR (E)

from S0 to S∗
0 (i.e., the set–valued map from S0 to 2S

∗
0 ) is single–valued with

domain Dom(σR) = S0. It is interpreted as the AC–conductivity of the region R.
Similarly, the multifunction

J 7→ ρR (J ) =
1

2
∂Q∗

R (J )

from S∗
0 to S0 (i.e., the set–valued map from S∗

0 to 2S0) is the AC–resistivity of the
region R. Indeed, for all J ∈ Dom(ρR) ̸= ∅ and E ∈ Dom(σR) = S0,

σR (ρR (J )) = {J } and ρR (σR (E)) ⊃ {E} .

Moreover, the multifunction ρR is linear, in the sense described in Section 4.5,
and, for any J ∈ Dom(ρR),

{Q∗
R (J )} = ⟨J ,ρR (J )⟩ = QR (ρR (J )) . (3)

Thus, ⟨J ,ρR (J )⟩ is the heat production (per unit of volume) in presence of the
current J ∈ Dom(ρR). In other words, (3) is an expression of Joule’s law in its
original formulation, that is, the heat produced by currents is proportional to the
resistivity and the square of currents.

Remark that we use the Weyl gauge for which E is minus the time derivative of
the potential A. Thus, the quantity

∫
R Etdt is the total shift of the electromagnetic

potential A between the times where the field E is turned on and off. For this
reason, we impose the AC–condition (1) to identify the total electromagnetic work
with the total internal energy change of the system, which turns out to be the heat
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production, by [BPK1, Theorem 3.2]. This condition is however not used in our
proofs and a general expression of the heat production as a function of the applied
electric field at any time is obtained.

Indeed, based on Araki’s notion of relative entropy, [BPK1] proves for the
fermion system under consideration that the first law of thermodynamics holds at
any time: We identify the heat production with an internal energy increment and
define an electromagnetic potential energy as being the difference between the
total and the internal energy increments. Both energies are studied in detail here
to get the heat production at microscopic scales for all times.

Besides the internal energy increment we introduce the paramagnetic and dia-
magnetic energy increments. The first one is the part of electromagnetic work
implying a change of the internal state of the system, whereas the diamagnetic en-
ergy is the raw electromagnetic energy given to the system at thermal equilibrium.
The paramagnetic energy increment is associated to the presence of paramagnetic
currents, whereas the second one is caused by thermal and diamagnetic currents.
We show that these currents have different physical origins:

• Thermal currents are currents coming from the space inhomogeneity of the
system. They exist, in general, even at thermal equilibrium.

• Diamagnetic currents correspond to the raw ballistic flow of charged parti-
cles due to the electric field, starting at thermal equilibrium.

• Diamagnetic currents produced by the electric field create a kind of “prop-
agating wave front” that destabilizes the whole system by changing its in-
ternal state. In presence of inhomogeneities the system opposes itself to the
propagation of that front by progressively creating so–called paramagnetic
currents. Such induced currents act as a sort of friction (cf. current viscos-
ity) to the diamagnetic current and produce heat as well as a modification
of the electromagnetic potential energy.

We thus analyze the linear response in terms of diamagnetic and paramag-
netic currents, which form altogether the total current of the system and yield the
conductivity distribution. For more details on the features of such currents, see
Sections 3.5 and 4.4.

For the sake of technical simplicity and without loss of generality, note that
we only consider in the sequel an increasing sequence {Λl}∞l=1 of boxes instead
of general convex regions R where the electric field is non–vanishing. We obtain
uniform bounds permitting to control the behavior of µΛl

at large size l ≫ 1 of the
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boxes {Λl}∞l=1. The uniformity of our results w.r.t. l and the choice of the static
potential is a consequence of tree–decay bounds of the n–point, n ∈ 2N, cor-
relations of the many–fermion system [BPK1, Section 4]. Such uniform bounds
are crucial in our next paper [BPK2] on Ohm’s law to construct the macroscopic
conductivity distribution in the case of free fermions subjected to random static
potentials (i.e., in the presence of disorder).

The validity of Ohm’s law at atomic scales mentioned in [W, F] suggests a
fast convergence of µΛl

, as l → ∞. Hence, we expect that the family {µΛl
}∞l=1

of measures on R obeys a large deviation principle, for some relevant class of
interactions between lattice fermions. This question is, however, not addressed
here.

To conclude, our main assertions are Theorems 3.1 (existence of the conduc-
tivity measure), 3.3 (cf. Ohm’s law) and 4.1, 4.7 (cf. Joule’s law). This paper is
organized as follows:

• In Section 2 we briefly describe the non–autonomous C∗–dynamical sys-
tem for (free) fermions associated to a discrete Schrödinger operator with
bounded static potential in presence of an electric field that is time– and
space–dependent. For more details, see also [BPK1, Section 2].

• Section 3 introduces Ohm’s law at microscopic scales via paramagnetic and
diamagnetic currents. Mathematical properties of the corresponding con-
ductivities are explained in detail and a notion of current viscosity is dis-
cussed.

• Section 4 is devoted to the derivation of Joule’s law at microscopic scales. In
particular, we introduce there four kinds of energy increments: the internal
energy increment or heat production, the electromagnetic potential energy,
the paramagnetic energy increment and the diamagnetic energy. The AC–
resistivity is also described.

• All technical proofs are postponed to Section 5. Additional properties on
the conductivity measure are also proven, see Section 5.1.2.

• Finally, Section A is an appendix on the Duhamel two–point function. It is
indeed an important mathematical tool used here which frequently appears
in the context of linear response theory.
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Notation 1.1 (Generic constants)
To simplify notation, we denote by D any generic positive and finite constant.
These constants do not need to be the same from one statement to another.

2 Setup of the Problem
The aim of this section is to describe the non–autonomous C∗–dynamical system
under consideration. Since almost everything is already described in detail in
[BPK1, Section 2], we only focus on the specific concepts or definitions that are
important in the sequel.

2.1 Free Fermion Systems on Lattices
2.1.1 Algebraic Formulation of Fermion Systems on Lattices

The d–dimensional lattice L := Zd (d ∈ N) represents the (cubic) crystal and we
define Pf (L) ⊂ 2L to be the set of all finite subsets of L. We denote by U the CAR
C∗–algebra of the infinite system and define annihilation and creation operators
of (spinless) fermions with wave functions ψ ∈ ℓ2(L) by

a(ψ) :=
∑
x∈L

ψ(x)ax ∈ U , a∗(ψ) :=
∑
x∈L

ψ(x)a∗x ∈ U .

Here, ax, a∗x, x ∈ L, and the identity 1 are generators of U and satisfy the canoni-
cal anti–commutation relations: For any x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗yax = δx,y1 . (4)

2.1.2 Static External Potentials

Let Ω := [−1, 1]L. For any ω ∈ Ω, Vω ∈ B(ℓ2(L)) is defined to be the self–adjoint
multiplication operator with the function ω : L → [−1, 1]. The static external
potential Vω is of order O(1) and we rescale below its strength by an additional
parameter λ ∈ R+

0 (i.e., λ ≥ 0).
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2.1.3 Dynamics on the One–Particle Hilbert Space

Let ∆d ∈ B(ℓ2(L)) be (up to a minus sign) the usual d–dimensional discrete
Laplacian defined by

[∆d(ψ)](x) := 2dψ(x)−
∑

z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ ℓ2(L) . (5)

Then, for ω ∈ Ω and λ ∈ R+
0 , the dynamics in the one–particle Hilbert space

ℓ2(L) is implemented by the unitary group {U(ω,λ)
t }t∈R generated by the (anti–

self–adjoint) operator −i(∆d + λVω):

U
(ω,λ)
t := exp(−it(∆d + λVω)) ∈ B(ℓ2(L)) , t ∈ R . (6)

2.1.4 Dynamics on the CAR C∗–Algebra

For all ω ∈ Ω and λ ∈ R+
0 , the condition

τ
(ω,λ)
t (a(ψ)) = a((U

(ω,λ)
t )∗(ψ)) , t ∈ R , ψ ∈ ℓ2(L) , (7)

uniquely defines a family τ (ω,λ) := {τ (ω,λ)t }t∈R of (Bogoliubov) ∗–automorphisms
of U , see [BR2, Theorem 5.2.5]. The one–parameter group τ (ω,λ) is strongly
continuous and we denote its generator by δ(ω,λ). Clearly,

τ
(ω,λ)
t (B1B2) = τ

(ω,λ)
t (B1)τ

(ω,λ)
t (B2) , B1, B2 ∈ U , t ∈ R . (8)

In the following, we will need the time–reversal operation Θ. It is the unique map
Θ : U → U satisfying the following properties:

• Θ is antilinear and continuous.

• Θ(1) = 1 and Θ(ax) = ax for all x ∈ L.

• Θ(B1B2) = Θ (B1)Θ (B2) for all B1, B2 ∈ U .

• Θ(B∗) = Θ (B)∗ for all B ∈ U .

In particular, Θ is involutive, i.e., Θ ◦ Θ = IdU . This operation can be explicitly
defined by using the Fock representation of U . It is called time–reversal of the
dynamics τ (ω,λ)t because of the following identity

Θ ◦ τ (ω,λ)t = τ
(ω,λ)
−t ◦Θ ,

which is valid for all ω ∈ Ω, λ ∈ R+
0 and t ∈ R, see Lemma 5.1. This feature is

important to obtain a symmetric conductivity measure.
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2.1.5 Thermal Equilibrium State

For any realization ω ∈ Ω and strength λ ∈ R+
0 of the static external potential, the

thermal equilibrium state of the system at inverse temperature β ∈ R+ (i.e., β >
0) is by definition the unique (τ (ω,λ), β)–KMS state ϱ(β,ω,λ), see [BR2, Example
5.3.2.] or [P, Theorem 5.9]. It is well–known that such a state is stationary with
respect to (w.r.t.) the dynamics, that is,

ϱ(β,ω,λ) ◦ τ (ω,λ)t = ϱ(β,ω,λ) , β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R . (9)

The state ϱ(β,ω,λ) is gauge–invariant and quasi–free. Such states are uniquely
characterized by bounded positive operators d ∈ B(ℓ2(L)) obeying 0 ≤ d ≤ 1.
These operators are named symbols of the corresponding states. The symbol of
ϱ(β,ω,λ) is given by

d
(β,ω,λ)
fermi :=

1

1 + eβ(∆d+λVω)
∈ B(ℓ2(L)) . (10)

Let us remark here that ϱ(β,ω,λ) is time–reversal invariant, i.e., for all parameters
β ∈ R+, ω ∈ Ω, λ ∈ R+

0 ,

ϱ(β,ω,λ) ◦Θ(B) = ϱ(β,ω,λ) (B) , B ∈ U .

See Lemma 5.1.

2.2 Fermion Systems in Presence of Electromagnetic Fields
2.2.1 Electric Fields

Using the Weyl gauge (also named temporal gauge), the electric field is defined
from a compactly supported potential

A ∈ C∞
0 =

∪
l∈R+

C∞
0 (R× [−l, l]d ; (Rd)∗)

by
EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd . (11)

Here, (Rd)∗ is the set of one–forms1 on Rd that take values in R and A(t, x) ≡
0 whenever x /∈ [−l, l]d and A ∈ C∞

0 (R × [−l, l]d ; (Rd)∗). Since A ∈ C∞
0 ,

1In a strict sense, one should take the dual space of the tangent spaces T (Rd)x, x ∈ Rd.
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A(t, x) = 0 for all t ≤ t0, where t0 ∈ R is some initial time. We also define the
integrated electric field between x(2) ∈ L and x(1) ∈ L at time t ∈ R by

EA
t (x) :=

∫ 1

0

[
EA(t, αx

(2) + (1− α)x(1))
]
(x(2) − x(1))dα , (12)

where x := (x(1), x(2)) ∈ L2.

2.2.2 Discrete Magnetic Laplacian

We consider without loss of generality negatively charged fermions. Thus, using
the (minimal) coupling of A ∈ C∞

0 to the discrete Laplacian −∆d, the discrete
time–dependent magnetic Laplacian is (up to a minus sign) the self–adjoint oper-
ator

∆
(A)
d ≡ ∆

(A(t,·))
d ∈ B(ℓ2(L)) , t ∈ R ,

defined by

⟨ex,∆(A)
d ey⟩ = exp

(
−i
∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
⟨ex,∆dey⟩ (13)

for all t ∈ R and x, y ∈ L. Here, ⟨·, ·⟩ is the scalar product in ℓ2(L) and {ex}x∈L
is the canonical orthonormal basis ex(y) ≡ δx,y of ℓ2(L). In (13), αy + (1− α)x
and y − x are seen as vectors in Rd.

2.2.3 Perturbed Dynamics on the One–Particle Hilbert Space

The dynamics of the system under the influence of an electromagnetic potential is
defined via the two–parameter group {U(ω,λ,A)

t,s }t≥s of unitary operators on ℓ2(L)
generated by the (time–dependent anti–self–adjoint) operator −i(∆(A)

d +λVω) for
any ω ∈ Ω, λ ∈ R+

0 and A ∈ C∞
0 :

∀s, t ∈ R, t ≥ s : ∂tU
(ω,λ,A)
t,s = −i(∆(A(t,·))

d + λVω)U
(ω,λ,A)
t,s , U(ω,λ)

s,s := 1 .
(14)

The dynamics is well–defined because the map

t 7→ (∆
(A(t,·))
d + λVω) ∈ B(ℓ2(L))

from R to the set B(ℓ2(L)) of bounded operators acting on ℓ2(L) is continuously
differentiable for every A ∈ C∞

0 .
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Note that, as explained in [BPK1, Section 2.3], the interaction between mag-
netic fields and electron spins is here neglected because such a term will become
negligible for electromagnetic potentials slowly varying in space, see Section
2.3.1. This justifies the assumption of fermions with zero–spin.

2.2.4 Perturbed Dynamics on the CAR C∗–Algebra

For all ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞

0 , the condition

τ
(ω,λ,A)
t,s (a(ψ)) = a((U

(ω,λ,A)
t,s )∗(ψ)) , t ≥ s, ψ ∈ ℓ2(L) , (15)

uniquely defines a family of Bogoliubov automorphisms of the C∗–algebra U , see
[BR2, Theorem 5.2.5]. The family {τ (ω,λ,A)

t,s }t≥s is itself the solution of a non–
autonomous evolution equation, see [BPK1, Sections 5.2-5.3].

2.2.5 Time–Dependent State

Since ϱ(β,ω,λ) is stationary (cf. (9)) and A(t, x) = 0 for all t ≤ t0, the time
evolution of the state of the system equals

ρ
(β,ω,λ,A)
t :=

{
ϱ(β,ω,λ) , t ≤ t0 ,

ϱ(β,ω,λ) ◦ τ (ω,λ,A)
t,t0 , t ≥ t0 .

(16)

This state is gauge–invariant and quasi–free for all times, by construction.

2.3 Space–Scale of Fields, Linear Response Theory and SGM
2.3.1 From Microscopic to Macroscopic Electromagnetic Fields

For space scales large compared to 10−14 m, electron and nuclei are usually treated
as point systems and electromagnetic phenomena are governed by microscopic
Maxwell equations. However, the electromagnetic fields produced by these point
charges fluctuate very much in space and time and macroscopic devices gener-
ally measure averages over intervals in space and time much larger than the scale
of these fluctuations. This implies relatively smooth and slowly varying macro-
scopic quantities. As explained in [Ja, Section 6.6], “only a spatial averaging is
necessary.” The macroscopic electromagnetic fields are thus coarse–grainings of
microscopic ones and satisfy the so–called macroscopic Maxwell equations. In
particular, their spacial variations become negligible on the atomic scale.
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Similarly, we consider that the infinite bulk containing conducting fermions
only experiences mesoscopic electromagnetic fields, which are produced by meso-
scopic devices. In other words, the heat production or the conductivity is measured
in a local region which is very small w.r.t. the size of the bulk, but very large w.r.t.
the lattice spacing of the crystal. We implement this hierarchy of space scales
by rescaling vector potentials. That means, for any l ∈ R+ and A ∈ C∞

0 , we
consider the space–rescaled vector potential Al defined by

Al(t, x) := A(t, l−1x) , t ∈ R, x ∈ Rd . (17)

Then, to ensure that an infinite number of lattice sites is involved, we eventually
perform the limit l → ∞. See [BPK2] for more details.

Indeed, the scaling factor l−1 used in (17) means, at fixed l, that the space scale
of the electric field (11) is infinitesimal w.r.t. the macroscopic bulk (which is the
whole space), whereas the lattice spacing gets infinitesimal w.r.t. the space scale
of the electric field when l → ∞.

2.3.2 Linear Response Theory

Linear response theory refers here to linearized non–equilibrium statistical me-
chanics and has been initiated by Kubo [K] and Mori [M]. Ohm’s law is one of
the first and certainly one of the most important examples thereof. It is indeed
a linear response to electric fields. Therefore, we also rescale the strength of the
electromagnetic potential Al by a real parameter η ∈ R and eventually take the
limit η → 0.

When |η| ≪ 1 and l ≫ 1, it turns out that, uniformly w.r.t. l, the mean currents
J(ω,ηĀl)
p and J(ω,ηĀl)

d , defined below by (42)–(43), are of order O (η). Similarly, the
energy increments S(ω,ηAl), P(ω,ηAl), I(ω,ηAl)

p and I
(ω,ηAl)
d , respectively defined by

(58), (59), (62) and (63), are all of order O
(
η2ld

)
. Such results are derived in the

next sections by using tree–decay bounds of the n–point, n ∈ 2N, correlations of
the many–fermion system [BPK1, Section 4].

2.3.3 Experimental Setting of Scanning Gate Microscopy

Our setting is reminiscent of the so–called scanning gate microscopy used to per-
form imaging of electron transport in two–dimensional semiconductor quantum
structures. See, e.g., [S]. In this experimental situation, the two–dimensional elec-
tron system on a lattice experiences a time–periodic space–homogeneous electro-
magnetic potential perturbed by a mesoscopic or microscopic time–independent
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electric potential. Physically speaking, this situation is, mutatis mutandis, analo-
gous to the one considered here. Therefore, we expect that our setting can also
be implemented in experiments by similar technics combined with calorimetry to
measure the heat production.

3 Microscopic Ohm’s Law
In his original work [O] G.S. Ohm states that the current in the steady regime is
proportional to the voltage applied to the conducting material. The proportionality
coefficient is the conductivity of the physical system. Ohm’s laws is among the
most resilient laws of (classical) electricity theory and is usually justified from
a microscopic point of view by the Drude model or some of its improvements
that take into account quantum corrections. [Cf. the Landau theory of fermi
liquids.] As in the Drude model we do not consider here interactions between
charge carriers, but our approach will be also applied to interacting fermions in
subsequent papers.

In this section, we study, among other things, (microscopic) Ohm’s law in
Fourier space for the system of free fermions described in Section 2. Without loss
of generality, we only consider space–homogeneous (though time–dependent)
electric fields in the box

Λl := {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ l} ∈ Pf (L) (18)

with l ∈ R+. More precisely, let w⃗ := (w1, . . . , wd) ∈ Rd be any (normalized)
vector, A ∈ C∞

0 (R;R) and set Et := −∂tAt for all t ∈ R. Then, Ā ∈ C∞
0

is defined to be the electromagnetic potential such that the value of the electric
field equals Etw⃗ at time t ∈ R for all x ∈ [−1, 1]d and (0, 0, . . . , 0) for t ∈ R
and x /∈ [−1, 1]d. This choice yields rescaled electromagnetic potentials ηĀl as
defined by (17) for l ∈ R+ and η ∈ R.

Before stating Ohm’s law for the system under consideration we first need
some definitions.

3.1 Current Observables
For any pair x := (x(1), x(2)) ∈ L2, we define the paramagnetic and diamagnetic
current observables Ix = I∗x and IAx = (IAx )

∗ for A ∈ C∞
0 at time t ∈ R by

Ix := −2 Im(a∗x(2)ax(1)) = i(a∗x(2)ax(1) − a∗x(1)ax(2)) (19)
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and

IAx := −2 Im
((

e−i
∫ 1
0 [A(t,αx(2)+(1−α)x(1))](x(2)−x(1))dα − 1

)
a∗x(2)ax(1)

)
. (20)

These are seen as currents because, by (14)–(15), they satisfy the discrete conti-
nuity equation

∂tnx(t) = −τ (ω,λ,A)
t,t0

(∑
z∈L

1 [|z| = 1]
(
I(x,x+z) + IA(x,x+z)

))
(21)

for x ∈ L and t ≥ t0, where

nx(t) := τ
(ω,λ,A)
t,t0 (a∗xax) (22)

is the density observable at lattice site x ∈ L and time t ≥ t0. The notions of para-
magnetic and diamagnetic current observables come from the physics literature,
see, e.g., [GV, Eq. (A2.14)]. The paramagnetic current observable 1 [|z| = 1] I(x,x+z)

is intrinsic to the system whereas the diamagnetic one IAx is only non–vanishing
in presence of electromagnetic potentials.

Observe that the minus sign in the right hand side of (21) comes from the fact
that the particles are negatively charged, I(x,y) being the observable related to the
flow of particles from the lattice site x to the lattice site y or the current from y to
x without external electromagnetic potential. [Positively charged particles can of
course be treated in the same way.] As one can see from (21), current observables
on bonds of nearest neighbors are especially important. Thus, we define the subset

K :=
{
x := (x(1), x(2)) ∈ L2 : |x(1) − x(2)| = 1

}
(23)

of bonds of nearest neighbors.
In fact, by using the canonical orthonormal basis {ek}dk=1 of the Euclidian

space Rd, we define the current sums in the box Λl (18) for any l ∈ R+, A ∈ C∞
0 ,

t ∈ R and k ∈ {1, . . . , d} by

Ik,l :=
∑
x∈Λl

I(x+ek,x) − ϱ(β,ω,λ)
(
I(x+ek,x)

)
1 and IAk,l :=

∑
x∈Λl

IA(x+ek,x)
.

(24)
In particular, ϱ(β,ω,λ) (Ik,l) = 0, while IAk,l = 0 when A(t, ·) = 0.
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3.2 Adjacency Observables
Let Px, x = (x(1), x(2)), be the second–quantization of the adjacency matrix of
the oriented graph containing exactly the pairs (x(2), x(1)) and (x(1), x(2)), i.e.,

Px := a∗x(2)ax(1) + a∗x(1)ax(2) , x := (x(1), x(2)) ∈ L2 . (25)

The observable Px is related to the current observable Ix in the following way:
For any x := (x(1), x(2)) ∈ L2,

2a∗x(1)ax(2) = Px + iIx , [Px, Ix] = 2i
(
a∗x(1)ax(1) − a∗x(2)ax(2)

)
. (26)

The importance of the adjacency observable Px in the linear response regime re-
sults from the fact that

IηAx = ηPx

∫ 1

0

[A(t, αx(2) + (1− α)x(1))](x(2) − x(1))dα+O
(
η2
)
. (27)

Then, similar to the diamagnetic current sum IAk,l (24), we define the observables

Pk,l :=
∑
x∈Λl

P(x+ek,x) ∈ U , l ∈ R+ , k ∈ {1, . . . , d} . (28)

3.3 Microscopic Transport Coefficients
Now, for any β ∈ R+, ω ∈ Ω and λ ∈ R+

0 we define two important functions
associated with the observables Ix and Px:

(p) The paramagnetic transport coefficient σ(ω)
p ≡ σ

(β,ω,λ)
p is defined by

σ(ω)
p (x,y, t) :=

∫ t

0

ϱ(β,ω,λ)
(
i[Iy, τ

(ω,λ)
s (Ix)]

)
ds , x,y ∈ L2 , t ∈ R .

(29)

(d) The diamagnetic transport coefficient σ(ω)
d ≡ σ

(β,ω,λ)
d is defined by

σ
(ω)
d (x) := ϱ(β,ω,λ) (Px) , x ∈ L2 . (30)

At x ∈ L2, σ(ω)
d (x) is obviously the expectation value of the adjacency ob-

servable Px in the thermal state ϱ(β,ω,λ) of the fermion system. This coefficient is
diamagnetic because of (27). For any bond x ∈ K, it can be interpreted as being
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minus the kinetic energy in x: The total kinetic energy observable in the box Λl

equals

2d
∑
x∈Λl

a∗xax −
∑

x=(x(1),x(2))∈K∩Λ2
l

a∗
x(2)
ax(1) = 2d

∑
x∈Λl

a∗xax −
1

2

∑
x∈K∩Λ2

l

Px .

The particle number observables a∗xax, x ∈ Λl, are rather related to the (kinetic)
energy in the lattice sites.

The physical meaning of σ(ω)
p is less obvious. We motivate in the following

that it is a linear coupling between the diamagnetic current in the bond y and the
paramagnetic current in the bond x: Indeed, define by δ(ω,λ) the generator of the
group τ (ω,λ), see (7). Then, for any fixed β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , η ∈ R and
y ∈ K, let the symmetric derivation

δ̃
(η,y)

:= δ(ω,λ) + iη [Iy, · ] (31)

be the generator of the (perturbed) group {τ̃ (η,y)t }t∈R of automorphisms of the
C∗–algebra U . Note that this perturbation corresponds at leading order in η to an
electromagnetic potential ηA(y) of order η along the bond y. See, e.g., Lemma
5.11. This small electromagnetic potential yields a diamagnetic current observ-
able of the order ηPy on the same bond y, cf. (27). Since Iy ∈ U (cf. (19)), we
may use a Dyson–Phillips series to obtain for small |η| ≪ 1 that

τ̃
(η,y)
t (B) = τ

(ω,λ)
t (B) + η

∫ t

0

τ
(ω,λ)
t−s

(
i[Iy, τ

(ω,λ)
s (B)]

)
ds+O

(
η2
)

for any B ∈ U . If |η| ≪ 1, then the diamagnetic current behaves as

J(η,y)d := ϱ(β,ω,λ)(τ̃
(η,y)
t (IηA

(y)

y )) = ηϱ(β,ω,λ) (Py) +O
(
η2 |t|

)
with ϱ(β,ω,λ) (Py) = O (1), see (25) and (27). On the other hand, by (9) and (29),
the so–called paramagnetic current

J(η,y)p (x, t) := ϱ(β,ω,λ)(τ̃
(η,y)
t (Ix))− ϱ(β,ω,λ) (Ix)

satisfies
∂tJ(η,y)p (x, t) = J(η,y)d v(y) (x, t) +O

(
|J(η,y)d |2 |t|

)
for any x,y ∈ K and t ∈ R, where

v(y) (x, t) :=
1

ϱ(β,ω,λ) (Py)
ϱ(β,ω,λ)

(
i[Iy, τ

(ω,λ)
t (Ix)]

)
=
∂tσ

(ω)
p (x,y, t)

σ
(ω)
d (y)

. (32)
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In other words, v can be interpreted as a (time–dependent) quantum current vis-
cosity.

For any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 we define two further important

functions, the analogues of σ(ω)
p and σ(ω)

d , associated with the observables Ik,l and
Pk,l:

(p) The space–averaged paramagnetic transport coefficient

t 7→ Ξ
(ω)
p,l (t) ≡ Ξ

(β,ω,λ)
p,l (t) ∈ B(Rd)

is defined, w.r.t. the canonical orthonormal basis of Rd, by{
Ξ
(ω)
p,l (t)

}
k,q

:=
1

|Λl|

∫ t

0

ϱ(β,ω,λ)
(
i[Ik,l, τ (ω,λ)s (Iq,l)]

)
ds (33)

for any k, q ∈ {1, . . . , d} and t ∈ R.

(d) The space–averaged diamagnetic transport coefficient

Ξ
(ω)
d,l ≡ Ξ

(β,ω,λ)
d,l ∈ B(Rd)

corresponds to the diagonal matrix defined by{
Ξ
(ω)
d,l

}
k,q

:=
δk,q
|Λl|

ϱ(β,ω,λ) (Pk,l) , k, q ∈ {1, . . . , d} . (34)

Of course, by (24) and (29)–(30),{
Ξ
(ω)
p,l (t)

}
k,q

=
1

|Λl|
∑

x,y∈Λl

σ(ω)
p (x+ eq, x, y + ek, y, t) (35)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R, while{

Ξ
(ω)
d,l

}
k,k

=
1

|Λl|
∑
x∈Λl

σ
(ω)
d (x+ ek, x) . (36)

Both coefficients are typically the paramagnetic and diamagnetic conductivity one
experimentally measures for large samples, i.e., large enough boxes Λl. Indeed,
we show in [BPK2] that the limits l → ∞ of Ξ(ω)

p,l and Ξ
(ω)
d,l generally exist and de-

fine so–called macroscopic paramagnetic and diamagnetic conductivities. Before
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going further, we first discuss some important mathematical properties of Ξ(ω)
p,l and

Ξ
(ω)
d,l .

By using the scalar product ⟨·, ·⟩ in ℓ2(L), the canonical orthonormal basis
{ex}x∈L of ℓ2(L) and the symbol d(β,ω,λ)

fermi defined by (10), we observe from (36)
that {

Ξ
(ω)
d,l

}
k,k

=
2

|Λl|
∑
x∈Λl

Re
{
⟨ex+ek ,d

(β,ω,λ)
fermi ex⟩

}
∈ [−2, 2] (37)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and k ∈ {1, . . . , d}.

The main property of the paramagnetic transport coefficient Ξ(ω)
p,l is proven

in Section 5.1.2 and given in the next theorem. To present it, we introduce the
notation B+(Rd) ⊂ B(Rd) for the set of positive linear operators on Rd. For any
B(Rd)–valued measure µ on R, we additionally denote by ∥µ∥op the measure on
R taking values in R+

0 that is defined, for any Borel set X , by

∥µ∥op (X ) := sup

{∑
i∈I

∥µ (Xi) ∥op : {Xi}i∈I is a finite Borel partition of X

}
.

(38)
We, moreover, say that µ is symmetric if µ(X ) = µ(−X ) for any Borel set X ⊂
R. With these definitions we have the following assertion:

Theorem 3.1 (Microscopic paramagnetic conductivity measures)
For any l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 , there exists a non–zero symmetric
B+(Rd)–valued measure µ(ω)

p,l ≡ µ
(β,ω,λ)
p,l on R such that∫

R
(1 + |ν|) ∥µ(ω)

p,l ∥op(dν) <∞ , (39)

uniformly w.r.t. l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , and

Ξ
(ω)
p,l (t) =

∫
R
(cos (tν)− 1)µ

(ω)
p,l (dν) , t ∈ R .

Proof: The assertions follow from Theorems 5.4 and 5.5 combined with Corol-
lary 5.7 and Lemma 5.10.

20



Corollary 3.2 (Properties of the microscopic paramagnetic conductivity)
For l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 , Ξ(ω)
p,l has the following properties:

(i) Time–reversal symmetry: Ξ(ω)
p,l (0) = 0 and

Ξ
(ω)
p,l (−t) = Ξ

(ω)
p,l (t) , t ∈ R .

(ii) Negativity of Ξ(ω)
p,l :

Ξ
(ω)
p,l (t) ≤ 0 , t ∈ R .

(iii) Cesàro mean of Ξ(ω)
p,l :

lim
t→∞

1

t

∫ t

0

Ξ
(ω)
p,l (s) ds = −µ(ω)

p,l (R\ {0}) ≤ 0 .

(iv) Equicontinuity: The family {Ξ(β,ω,λ)
p,l }l,β∈R+,ω∈Ω,λ∈R+

0
of maps from R to B(Rd)

is equicontinuous.
(v) Macroscopic paramagnetic conductivity measures: The family {µ(ω)

p,l }l∈R+ has
weak∗–accumulation points.

Proof: (i)–(iii) are direct consequences of Theorem 3.1 and Lebesgue’s dom-
inated convergence theorem. To prove (iv), observe that the uniform bound (39)
implies that, for any ν0 ∈ R+

0 ,

µ
(ω)
p,l (R\ [−ν0, ν0]) = O

(
ν−1
0

)
uniformly w.r.t. l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 . (v) follows from Theorem 3.1 and
the weak∗–compactness of the unit ball in the set of measures on R taking values
in the set of positive elements of B(Rd).

The B+(Rd)–valued measures µ(ω)
p,l can be represented in terms of the spectral

measure of an explicit self–adjoint operator w.r.t. explicitly given vectors, see
Equation (109). From this representation, one concludes for instance that, if the
operator (∆d + λVω) has purely (absolutely) continuous spectrum (as for λ = 0)
then, for any k, q ∈ {1, . . . , d},{

µ
(ω)
p,l (R\ {0})

}
k,q

=
1

|Λl|
(Ik,l, Iq,l)(ω)∼ .

Here, (·, ·)(ω)∼ is the Duhamel two–point function (·, ·)(ω)∼ , which is studied in detail
in Section A. In fact, the constant µ(ω)

p,l (R\ {0}) is the so–called static admittance
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of linear response theory, see Theorem 5.8. Moreover, Theorem 5.9 explains how
µ
(ω)
p,l can also be constructed from the space–averaged quantum current viscosity

V
(ω)
l (t) :=

(
Ξ
(ω)
d,l

)−1

∂tΞ
(ω)
p,l (t) ∈ B(Rd) (40)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ∈ R. Compare with (32). More precisely,

it is the boundary value of the (imaginary part of the) Laplace–Fourier transform
of Ξ(ω)

d,l V
(ω)
l .

Recall that, as asserted in Theorem 3.1, the measure µ(ω)
p,l is never the zero–

measure. Nevertheless, it is a priori not clear whether the weak∗–accumulation
points of the family {µ(ω)

p,l }l∈R+ also have this property. We show in a compan-
ion paper that, as l → ∞, the measure µ(ω)

p,l converges to the zero–measure if
λ = 0 but, for λ ∈ R+, there is generally a unique weak∗–accumulation point of
{µ(ω)

p,l }l∈R+ , which is not the zero–measure.

3.4 Paramagnetic and Diamagnetic Currents
Recall that we assume in this section that the current results from a space–homogeneous
electric field ηEtw⃗ at time t ∈ R in the box Λl, where w⃗ := (w1, . . . , wd) ∈ Rd,
Et := −∂tAt for all t ∈ R, and A ∈ C∞

0 (R;R). This electric field corresponds to
the (rescaled) electromagnetic potential ηĀl. We also remind that {ek}dk=1 is the
canonical orthonormal basis of the Euclidian space Rd.

Generally, even in the absence of electromagnetic fields, i.e., if η = 0, there
exist (thermal) currents coming from the inhomogeneity of the fermion system for
λ ∈ R+. For any l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and k ∈ {1, . . . , d},

J(ω)k,l ≡ J(β,ω,λ)k,l := |Λl|−1
∑
x∈Λl

ϱ(β,ω,λ)(I(x+ek,x)) (41)

is the density of current along the direction ek in the box Λl. In the space–
homogeneous case, by symmetry, J(ω)k,l = 0 but in general, J(ω)k,l ̸= 0. We prove in
[BPK2] that

lim
l→∞

J(ω)k,l = 0

almost surely if ω ∈ Ω is the realization of some ergodic random potential.
Then, for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , η ∈ R, w⃗ ∈ Rd, A ∈ C∞
0 (R;R) and

t ≥ t0, the (increment of) current density resulting from the space–homogeneous
electric perturbation E in the box Λl is the sum of two current densities defined
from (24):
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(p) The paramagnetic current density

J(ω,ηĀl)
p (t) ≡ J(β,ω,λ,ηĀl)

p (t) ∈ Rd

is defined by the space average of the current increment vector inside the
box Λl, that is for any k ∈ {1, . . . , d},{

J(ω,ηĀl)
p (t)

}
k
:= |Λl|−1 ρ

(β,ω,λ,ηĀl)
t (Ik,l) . (42)

(d) The diamagnetic (or ballistic) current density

J(ω,ηĀl)
d (t) ≡ J(β,ω,λ,ηĀl)

d (t) ∈ Rd

is defined analogously, for any k ∈ {1, . . . , d}, by{
J(ω,ηĀl)
d (t)

}
k
:= |Λl|−1 ρ

(β,ω,λ,ηĀl)
t (IηĀl

k,l ) . (43)

The paramagnetic current density is only related to the change of internal state
ρ
(β,ω,λ,A)
t produced by the electromagnetic field. We will show below that these

currents carry the paramagnetic energy increment defined in Section 4.3. The dia-
magnetic current density corresponds to a raw ballistic flow of charged particles
caused by the electric field, at thermal equilibrium. It directly comes from the
change of the electromagnetic potential expressed in terms of the observable (57)
defined below. We will show that it yields the diamagnetic energy defined in Sec-
tion 4.3. With this, diamagnetic and paramagnetic currents are respectively “first
order” and “second order” with respect to changes of the electromagnetic poten-
tials and thus have different physical properties. See for instance Theorems 3.3
and 4.1.

3.5 Current Linear Response
We are now in position to derive a microscopic version of Ohm’s law. We use the
space–averaged paramagnetic and diamagnetic transport coefficients Ξ(ω)

p,l (33) and
Ξ
(ω)
d,l (34) to define the Rd–valued functions

J
(ω,A)
p,l ≡ J

(β,ω,λ,w⃗,A)
p,l and J

(ω,A)
d,l ≡ J

(β,ω,λ,w⃗,A)
d,l
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by

J
(ω,A)
p,l (t) :=

∫ t

t0

(
Ξ
(ω)
p,l (t− s) w⃗

)
Esds , t ≥ t0 , (44)

J
(ω,A)
d,l (t) :=

(
Ξ
(ω)
d,l w⃗

)∫ t

t0

Esds , t ≥ t0 , (45)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , w⃗ ∈ Rd and A ∈ C∞

0 (R;R). They
are the linear responses of the paramagnetic and diamagnetic current densities,
respectively:

Theorem 3.3 (Microscopic Ohm’s law)
For any w⃗ ∈ Rd and A ∈ C∞

0 (R;R), there is η0 ∈ R+ such that, for |η| ∈ [0, η0],

J(ω,ηĀl)
p (t) = ηJ

(ω,A)
p,l (t)+O

(
η2
)

and J(ω,ηĀl)
d (t) = ηJ

(ω,A)
d,l (t)+O

(
η2
)
,

uniformly for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.

Proof: See Lemmata 5.14–5.15.

The fact that the asymptotics obtained are uniform w.r.t. l, β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and t ≥ t0 is a crucial property to get macroscopic Ohm’s law in [BPK2].
Note also that Theorem 3.3 can easily be extended to macroscopically space–
inhomogeneous electromagnetic fields, that is, for all space–rescaled vector po-
tentials Al (17) with A ∈ C∞

0 , by exactly the same methods as in the proof of
Theorem 4.1. We refrain from doing it at this point, for technical simplicity. The
result above can indeed be deduced from Theorem 4.1, see Equations (65)–(66).

As a consequence, Ξ(ω)
p,l and Ξ

(ω)
d,l can be interpreted as charge transport co-

efficients. Observe that Ξ(ω)
p,l (0) = 0, by Corollary 3.2 (i). Therefore, when the

electric field is switched on, it accelerates the charged particles and first induces
diamagnetic currents, cf. (45). This creates a kind of “wave front” that desta-
bilizes the whole system by changing its internal state. By the phenomenon of
current viscosity discussed in Section 3.3, the presence of such diamagnetic cur-
rents leads to the progressive appearance of paramagnetic currents. We prove in
Section 4 that these paramagnetic currents are responsible for heat production and
modify as well the electromagnetic potential energy of charge carriers. Indeed,
the positive measures of Theorem 3.1 are directly related to heat production (cf.
Section 4.4) and are the boundary values of the (imaginary part of the) Laplace–
Fourier transforms of the current viscosities as discussed in the previous section.
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Note that Theorem 3.3 also leads to (finite–volume) Green–Kubo relations, by
(33) and (44). Indeed, by (24), |Λl|−

1
2 Ik,l is a current fluctuation and (33) gives:{

Ξ
(ω)
p,l (t)

}
k,q

=

∫ t

0

ϱ(β,ω,λ)
(
i
[
|Λl|−

1
2 Ik,l, |Λl|−

1
2 τ (ω,λ)s (Iq,l)

])
ds (46)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and k, q ∈ {1, . . . , d}. In the limit

l → ∞ we show in [BPK2] that Ξ(ω)
p,l is related to a quasi–free dynamics on the

CCR algebra of (current) fluctuations.
Theorem 3.3 together with (44)–(45) gives a natural notion of linear conduc-

tivity of the fermion system in the box Λl: It is the map

t 7→ Σ
(ω)
l ≡ Σ

(β,ω,λ)
l (t) ∈ B(Rd)

defined by

Σ
(ω)
l (t) :=

{
0 , t ≤ 0 ,

Ξ
(ω)
d,l + Ξ

(ω)
p,l (t) , t ≥ 0 ,

(47)

for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 . The total current

J
(ω,A)
l (t) := J

(ω,A)
p,l (t) + J

(ω,A)
d,l (t) , t ≥ t0 ,

which as in [GV, Eq. (A2.14)] is the sum of paramagnetic and diamagnetic current
densities, has the following linear response:

J
(ω,A)
l (t) =

∫
R

(
Σ

(ω)
l (t− s) w⃗

)
Esds =

 {Σ(ω)
l w⃗}1∗E

...
{Σ(ω)

l w⃗}d∗E

 . (48)

In particular, if the electric field stays constant for sufficiently large times, i.e.,
Et = D for arbitrary large times t ∈ [T,∞) with T > t0, then in the situation
where t ≫ T , i.e., in the DC–regime, we deduce from Corollary 3.2 (iii) and
(47)–(48) that

|t|−1 J
(ω,A)
l (t) = D(Ξ

(ω)
d,l − µ

(ω)
p,l (R\ {0})) + o (1) . (49)

It is not a priori clear whether µ(ω)
p,l (R\ {0}) = Ξ

(ω)
d,l or not. We prove in [BPK2]

that this last equality actually holds in the limit l → ∞. [Recall that A ∈ C∞
0

is compactly supported in space and time, but it can be switched off at arbitrary
large times.]
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In order to express the in–phase current from (48), we define by Σ
(ω)
l,+ the

symmetrization of Σ(ω)
l , that is,

Σ
(ω)
l,+ (t) := Σ

(ω)
l (|t|) = Ξ

(ω)
d,l + Ξ

(ω)
p,l (t) , t ∈ R , (50)

see Corollary 3.2 (i). Similarly, the anti–symmetrization Σ
(ω)
l,− of Σ(ω)

l is given by

Σ
(ω)
l,− := sign(t)Σ

(ω)
l (|t|) , t ∈ R . (51)

With these definitions the current linear response (48) equals

J
(ω,A)
l (t) =

1

2

∫
R

(
Σ

(ω)
l,+ (t− s) w⃗

)
Esds+

1

2

∫
R

(
Σ

(ω)
l,− (t− s) w⃗

)
Esds . (52)

The first part in the right hand side of this equality is by definition the in–phase
current.

This last equation is directly related to Ohm’s law in Fourier space: Similar to
[KLM], it is indeed natural to define the conductivity measure µ(ω)

Λl
≡ µ

(β,ω,λ)
Λl

as
being the Fourier transform of Σ(ω)

l,+ (t). By Theorem 3.1 and (50),

µ
(ω)
Λl

(X ) = µ
(ω)
p,l (X ) + (Ξ

(ω)
d,l − µ

(ω)
p,l (R))1 [0 ∈ X ]

with X ⊂ R being any Borel set. Therefore, we can rewrite the current linear
response (52) as

J
(ω,A)
l (t) =

1

2

∫
R
Ê (t)
ν µ

(ω)
Λl

(dν) w⃗ +
i

2

∫
R
H(Ê (t)) (ν)µ

(ω)
Λl

(dν) w⃗ (53)

with Ê being the Fourier transform of E , Ê (t)
ν := eiνtÊν , and where H is the Hilbert

transform, i.e.,

H (f) (ν) := − 1

π
lim
ε→0+

∫
[−ε−1,−ε]∪[ε,ε−1]

f (ν − x)

x
dx , ν ∈ R .

Here, f : R → C belongs to the space Υ of functions which are the Fourier trans-
forms of compactly supported and piece–wise smooth functions R → R. Equa-
tion (53) corresponds to Ohm’s law in Fourier space at microscopic scales, in
accordance with experimental results of [F, W].

Moreover, by Corollary 3.2 (v) together with Equation (37), Theorem 3.1 and
the Bolzano–Weierstrass theorem, the family {µ(ω)

Λl
}l∈R+ has weak∗–accumulation
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points. As a consequence, the current linear response converges pointwise along
a subsequence to

J (ω,A)
∞ (t) =

1

2

∫
R
Ê (t)
ν µ

(ω)

Rd (dν) w⃗ +
i

2

∫
R
H(Ê (t)) (ν)µ

(ω)

Rd (dν) w⃗

with µ(ω)

Rd being some weak∗–accumulation point of {µ(ω)
Λl

}l∈R+ . µ(ω)

Rd can be in-
terpreted as a macroscopic conductivity measure and is under reasonable circum-
stances unique. In fact, we give in [BPK2] a detailed analysis of such limits by
considering random static external potentials.

Observe that iH (Υ) ⊂ Υ and H ◦H = −1 on Υ. In particular, the two
functionals

µ
∥
Λl

: Υ → R , µ
∥
Λl
(f) :=

1

2

∫
R
f(ν)µ

(ω)
Λl

(dν) ,

µ⊥
Λl

: Υ → R , µ⊥
Λl
(f) :=

1

2

∫
R
H (f) (ν)µ

(ω)
Λl

(dν) ,

satisfy Kramers–Kronig relations:

µ
∥
Λl
◦H =µ⊥

Λl
and µ⊥

Λl
◦H = −µ∥

Λl
. (54)

Note that, w.r.t. the usual topology of the space S (R;C) of Schwartz functions,
Υ ∩ S (R;C) is dense in S (R;C) and µ∥

Λl
, µ⊥

Λl
are continuous on Υ ∩ S (R;C).

Hence, each entry of µ∥
Λl
, µ⊥

Λl
w.r.t. the canonical orthonormal basis of Rd can be

seen as a tempered distribution. Moreover, (53) yields

J
(ω,A)
l (t) =

(
µ
∥
Λl
(Ê (t)) + iµ⊥

Λl
(Ê (t))

)
w⃗ . (55)

Therefore, the B(Rd)–valued distribution µ∥
Λl

is the linear response in–phase com-
ponent of the total conductivity in Fourier space. For this reason, µ∥

Λl
+ iµ⊥

Λl
is

named here the (microscopic, B(Rd)–valued) conductivity distribution of the box
Λl. Similarly, the limit J (ω,A)

∞ obeys (55) with µ(ω)

Rd replacing µ(ω)
Λl

.

4 Microscopic Joule’s Law
...the calorific effects of equal quantities of transmitted electricity are proportional
to the resistances opposed to its passage, whatever may be the length, thickness,
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shape, or kind of metal which closes the circuit : and also that, coeteris paribus,
these effects are in the duplicate ratio of the quantities of transmitted electricity ;
and consequently also in the duplicate ratio of the velocity of transmission.

[Joule, 1840]

In other words, as originally observed [J] by the physicist J. P. Joule, the heat (per
second) produced within an electric circuit is proportional to the electric resistance
and the square of the current.

The aim of this section is to prove such a phenomenology for the fermion
system under consideration. Before studying Joule’s effect we need to define
energy observables and increments:

4.1 Energy Observables
For any L ∈ R+, the internal energy observable in the box ΛL (18) is defined by

H
(ω,λ)
L :=

∑
x,y∈ΛL

⟨ex, (∆d + λVω)ey⟩a∗xay ∈ U . (56)

It is the second quantization of the one–particle operator ∆d + λVω restricted to
the subspace ℓ2(ΛL) ⊂ ℓ2(L). When the electromagnetic field is switched on, i.e.,
for t ≥ t0, the (time–dependent) total energy observable in the box ΛL is then
equal to H(ω,λ)

L +WA
t , where, for any A ∈ C∞

0 and t ∈ R,

WA
t :=

∑
x,y∈ΛL

⟨ex, (∆(A)
d −∆d)ey⟩a∗xay ∈ U (57)

is the electromagnetic potential energy observable.
We define below four types of energies because we have the two above energy

observables as well as two relevant states, the thermal equilibrium state ϱ(β,ω,λ)

and its time evolution ρ(β,ω,λ,A)
t .

4.2 Time–dependent Thermodynamic View Point
In [BPK1], we investigate the heat production of the (non–autonomous) C∗–
dynamical system (U , τ (ω,λ,A)

t,s ) for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞

0 .
We show in [BPK1, Theorem 3.2] that the fermion system under consideration
obeys the first law of thermodynamics. It means that the heat production due to
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the electromagnetic field is equal to an internal energy increment. The latter is di-
rectly related to the family {H(ω,λ)

L }L∈R+ of internal energy observables. We also
consider an electromagnetic potential energy defined from the observable WA

t .
Hence, we define the following energy increments:

(Q) The internal energy increment S(ω,A) ≡ S(β,ω,λ,A) is a map from R to R+
0

defined by

S(ω,A) (t) := lim
L→∞

{
ρ
(β,ω,λ,A)
t (H

(ω,λ)
L )− ϱ(β,ω,λ)(H

(ω,λ)
L )

}
. (58)

It takes positive finite values because of [BPK1, Theorem 3.2].

(P) The electromagnetic potential energy (increment) P(ω,A) ≡ P(β,ω,λ,A) is a
map from R to R defined by

P(ω,A) (t) := ρ
(β,ω,λ,A)
t (WA

t ) = ρ
(β,ω,λ,A)
t (WA

t )− ϱ(β,ω,λ)(WA
t0
) . (59)

In other words, S(ω,A) is the increase of internal energy of the fermion sys-
tem due to the change of its internal state, whereas P(ω,A) is the electromagnetic
potential energy of the fermion system in the state ρ(β,ω,λ,A)

t . By [BPK1, Theo-
rem 3.2], S(ω,A) equals the heat production of the fermion system. Moreover, by
[BPK1, Eq. (24)], the increase of total energy of the infinite system

lim
L→∞

{
ρ
(β,ω,λ,A)
t (H

(ω,λ)
L +WA

t )− ϱ(β,ω,λ)(H
(ω,λ)
L )

}
= S(ω,A) (t) +P(ω,A) (t)

(60)
is exactly the work performed by the electromagnetic field at time t ≥ t0:

S(ω,A) (t) +P(ω,A) (t) =

∫ t

t0

ρ(β,ω,λ,A)
s

(
∂sW

A
s

)
ds . (61)

4.3 Electromagnetic View Point
In the previous subsection the total energy increment is decomposed into two
components (60) that can be identified with heat production and potential energy.
This total energy increment can also be decomposed in two other components
which have interesting features in terms of currents. Indeed, for any β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and A ∈ C∞
0 , we define:
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(p) The paramagnetic energy increment J(ω,A)
p ≡ I

(β,ω,λ,A)
p is the map from R

to R defined by

I(ω,A)
p (t) := lim

L→∞

{
ρ
(β,ω,λ,A)
t (H

(ω,λ)
L +WA

t )− ϱ(β,ω,λ)(H
(ω,λ)
L +WA

t )
}
.

(62)

(d) The diamagnetic energy (increment) I(ω,A)
d ≡ I

(β,ω,λ,A)
d is the map from R

to R defined by

I
(ω,A)
d (t) := ϱ(β,ω,λ)(WA

t ) = ϱ(β,ω,λ)(WA
t )− ϱ(β,ω,λ)(WA

t0
) . (63)

Note that the limit (62) exists at all times because of (60)–(61). In particular,

I(ω,A)
p (t) + I

(ω,A)
d (t) =

∫ t

t0

ρ(β,ω,λ,A)
s

(
∂sW

A
s

)
ds (64)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and times t ≥ t0.
The term J

(ω,A)
p is the part of electromagnetic work implying a change of the

internal state of the system, whereas the diamagnetic energy is the raw electro-
magnetic energy given to the system at thermal equilibrium. Indeed, because of
the second law of thermodynamics, in presence of non–zero electromagnetic fields
the system constantly tends to minimize the (instantaneous) free–energy associ-
ated with H(ω,λ)

L +WA
t and it is thus forced to change its state as time evolves.

We show below that J(ω,A)
p and I

(ω,A)
d cannot be identified with either P(ω,A)

or S(ω,A) but are directly related to paramagnetic and diamagnetic currents, re-
spectively.

4.4 Joule’s Effect and Energy Increments
By Theorem 3.3, for each l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and any electromagnetic
potential A ∈ C∞

0 , the electric field in its integrated form EηAl
t (cf. (11)–(12)

and (17)) implies paramagnetic and diamagnetic currents with linear coefficients
being respectively equal to

J
(ω,A)
p,l (t,x) :=

1

2

∫ t

t0

∑
y∈K

σ(ω)
p (x,y,t− s)EAl

s (y)ds , (65)

J
(ω,A)
d,l (t,x) :=

∫ t

t0

σ
(ω)
d (x)EAl

s (x)ds , (66)
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at any bond x ∈ K (see (23)) and time t ≥ t0. Recall that σ(ω)
p and σ(ω)

d are the
microscopic charge transport coefficients defined by (29)–(30).

Provided |η| ≪ 1, the electric work produced at any time t ≥ t0 by paramag-
netic currents is then equal to

η2

2

∫ t

t0

∑
x∈K

J
(ω,A)
p,l (s,x)EAl

s (x)ds , (67)

whereas the diamagnetic work equals

η2

2

∫ t

t0

∑
x∈K

J
(ω,A)
d,l (s,x)EAl

s (x)ds =
η2

4

∑
x∈K

J
(ω,A)
d,l (t,x)

∫ t

t0

EAl
s (x)ds . (68)

Remark that the factor η2/2 (instead of η2) in (67)–(68) is due to the fact that K is
a set of oriented bonds and thus each bond is counted twice.

As explained in Section 3.4, there exist also thermal currents

ϱ(β,ω,λ)(Ix) , x ∈ K , (69)

coming from the inhomogeneity of the fermion system for λ ∈ R+. Thermal
currents imply an additional raw electromagnetic work

η

2

∑
x∈K

ϱ(β,ω,λ)(Ix)

∫ t

t0

EAl
s (x)ds (70)

at any time t ≥ t0.
Since A is by assumption compactly supported in time, the corresponding

electric field satisfies the AC–condition∫ t

t0

EA(s, x)ds = 0 , x ∈ Rd , (71)

for times t ≥ t1 ≥ t0. Here,

t1 := min

{
t ≥ t0 :

∫ t′

t0

EA(s, x)ds = 0 for all x ∈ Rd and t′ ≥ t

}
is the time at which the electric field is definitively turned off. In this case, the
electric works (68) and (70) vanish for t ≥ t1 and (67) stays constant. Following
Joule’s effect, for t ≥ t1, this energy should correspond to a heat production as
defined in [BPK1, Definition 3.1]. The latter equals the energy increment S(ω,ηAl),
by [BPK1, Theorem 3.2].

We prove this heuristics in Section 5.2.1 and obtain the following theorem:
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Theorem 4.1 (Microscopic Joule’s law – I)
For any A ∈ C∞

0 , there is η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and t ≥ t0, the following assertions hold true:
(p) Paramagnetic energy increment:

I(ω,ηAl)
p (t) =

η2

2

∫ t

t0

∑
x∈K

J
(ω,A)
p,l (s,x)EAl

s (x)ds+O(η3ld) .

(d) Diamagnetic energy:

I
(ω,ηAl)
d (t) =

η

2

∑
x∈K

ϱ(β,ω,λ)(Ix)

(∫ t

t0

EAl
s (x)ds

)
+
η2

4

∑
x∈K

J
(ω,A)
d,l (t,x)

∫ t

t0

EAl
s (x)ds+O(η3ld) .

(Q) Heat production – Internal energy increment:

S(ω,ηAl) (t) = −η
2

2

∑
x∈K

J
(ω,A)
p,l (t,x)

(∫ t

t0

EAl
s (x)ds

)
+I(ω,ηAl)

p (t) +O(η3ld)

(P) Electromagnetic potential energy:

P(ω,ηAl) (t) =
η2

2

∑
x∈K

J
(ω,A)
p,l (t,x)

(∫ t

t0

EAl
s (x)ds

)
+I

(ω,ηAl)
d (t) +O(η3ld) .

The correction terms of order O(η3ld) in assertions (p), (d), (Q) and (P) are uni-
formly bounded in β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0.

Proof: The first two assertions are Theorem 5.12, whereas (Q) and (P) are direct
consequences of (58)–(59), (62)–(63), Theorem 5.12 and Lemma 5.13.

We emphasize the fact that the asymptotics obtained are uniform w.r.t. l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and t ≥ t0. This is a crucial property to get macroscopic Joule’s
law when l → ∞. See [BPK2].
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Remark 4.2 (Total energy)
One can easily deduce from Lemma 5.11 the asymptotics of the total work per-
formed by the electric field, which is equal to∫ t

t0

ρ(β,ω,λ,A)
s

(
∂sW

A
s

)
ds ,

similar to what is done in Theorem 4.1.

Theorem 4.1 describes, among other things, how resistance in the fermion
system converts electric energy into heat. Indeed, by [BPK1, Theorem 3.2], for
any A ∈ C∞

0 , there is η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and t ≥ t0,

η2

2

∫ t

t0

∑
x∈K

J
(ω,A)
p,l (s,x)EAl

s (x)ds−η
2

2

∑
x∈K

J
(ω,A)
p,l (t,x)

(∫ t

t0

EAl
s (x)ds

)
≥ O(η3ld) .

The latter is the positivity of the heat production, i.e., S(ω,ηAl) (t) ∈ R+
0 , which

for times t ≥ t1 ≥ t0 equals, at leading order, the work of paramagnetic currents
(67), that is,

η2

4

∫ t

t0

ds1

∫ s1

t0

ds2
∑
x,y∈K

σ(ω)
p (x,y,s1 − s2)E

Al
s2
(x)EAl

s1
(y) ≥ O(η3ld) . (72)

This is nothing but Joule’s law expressed w.r.t. electric fields and conductivity
(instead of currents and resistance).

In fact, for any space–homogeneous electric field E ∈ C∞
0 (R;R) in the box

Λl for l ∈ R+ (as described at the beginning of Section 3), the left hand side of
Equation (72) can be rewritten by using (35) and Theorem 3.1 as

η2 |Λl|
∫ t

t0

ds1

∫ s1

t0

ds2⟨w⃗,Ξ(ω)
p,l (s1 − s2)w⃗⟩Es2Es1

=
η2 |Λl|

2

∫
R
|Êν |2 ⟨w⃗, µ(ω)

p,l (dν)w⃗⟩ ≥ 0 (73)

for all t ≥ t1, with Êν being the Fourier transform of Et. In particular,

η2

2
|Êν |2 ⟨w⃗, µ(ω)

p,l (dν)w⃗⟩
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is, at leading order, the heat production per unit volume due to the component of
frequency ν of the electric field, in accordance with Joule’s law in the AC–regime.

In presence of electromagnetic fields, i.e., at times t ∈ [t0, t1] for which the
AC–condition (71) does not hold, the situation is more complex. Indeed, at these
times, J(ω,A)

p and I
(ω,A)
d cannot be identified with either P(ω,A) or S(ω,A). From

Theorem 4.1 (p), the energy J
(ω,A)
p is generated by paramagnetic currents, see

(65). By contrast, the raw electromagnetic energy I
(ω,A)
d is carried by diamagnetic

and thermal currents, see (66) and (69) and compare Theorem 4.1 (d) with (68) and
(70). These currents are physically different: Diamagnetic currents correspond
to the raw ballistic flow of charged particles due to the electric field, whereas
only paramagnetic currents partially participates to the heat production S(ω,A), a
portion of paramagnetic currents being also responsible for the modification of
the electromagnetic potential energy:

• Part of the electric work performed by paramagnetic currents participates to
the electromagnetic potential energy as explained in Theorem 4.1 (P). The
same phenomenon appears for thermal currents defined by (69). Indeed, ob-
serve that any current J(t,x) on the bound x at time t yields a contribution

J(t,x)

(∫ t

t0

EAl
s (x)ds

)
to the electromagnetic potential energy. Compare (70) and P(ω,ηAl)−I

(ω,ηAl)
d

via Theorem 4.1 (P) . This potential energy disappears as soon as the elec-
tromagnetic potential is switched off.

• Then, the remaining energy coming from the whole paramagnetic energy
I
(ω,ηAl)
p is a heat energy or quantity of heat, by Theorem 4.1 (Q) and [BPK1,

Theorem 3.2]. It survives even after turning off the electromagnetic poten-
tial.

4.5 Resistivity and Joule’s Law
Joule’s observation in [J] associates heat production in electric circuits with cur-
rents and resistance, rather than electric fields and conductivity. We thus explain
in this subsection how to get such a relation between heat production and currents
from (72)–(73), which express the total heat production as a function of electric
fields and conductivity. For the sake of simplicity, we restrict our analysis to
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space–homogeneous electric fields Etw⃗ in the box Λl for l ∈ R+, as described at
the beginning of Section 3. Here, E ∈ C∞

0 (R;R) and w⃗ := (w1, . . . , wd) ∈ Rd.
In this subsection, we fix l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 .
By Corollary 3.2 (i), observe that, for times t ≥ t1 ≥ t0,∫ t

t0

ds1

∫ s1

t0

ds2⟨w⃗,Ξ(ω)
p,l (s1 − s2)w⃗⟩Es2Es1

=
1

2

∫
R
ds1

∫
R
ds2⟨w⃗,Ξ(ω)

p,l (s1 − s2)w⃗⟩Es2Es1ds2ds1 .

Therefore, we define the subspace

S0 :=

{
E ∈ S (R;R) :

∫
R
Esds = 0

}
of R–valued Schwartz functions satisfying the AC–condition as well as the func-
tional QΛl

≡ Q
(β,ω,λ)
Λl

on S0, the total heat production per unit of volume, by

QΛl
(E) := 1

2

∫
R
ds1

∫
R
ds2⟨w⃗,Ξ(ω)

p,l (s1 − s2)w⃗⟩Es2Es1ds2ds1 , E ∈ S0 . (74)

It is a finite, positive quadratic form on S0. Indeed, by Theorem 3.1,

QΛl
(E) = 1

2

∫
R
|Êν |2 ⟨w⃗, µ(ω)

p,l (dν)w⃗⟩ ∈ R+
0 , E ∈ S0 , (75)

and ⟨w⃗, µ(ω)
p,l w⃗⟩ is a positive measure. It thus defines a semi–norm ∥·∥Λl

≡ ∥·∥(β,ω,λ)Λl

on S0 by

∥E∥Λl
:=
√

QΛl
(E) , E ∈ S0 . (76)

Note that S0 is a closed subspace of the locally convex (Fréchet) space S (R;R).
Let S∗

0 be the dual space of S0, i.e., the set of all continuous linear functionals on
S0. S∗

0 is equipped with the weak∗–topology. By the Hahn–Banach theorem, the
elements of the dual S∗

0 are restrictions to S0 of tempered distributions. S∗
0 is in

fact a space of in–phase AC–currents.
Let ∂QΛl

(E) ⊂ S∗
0 be the subdifferential of QΛl

at the point E ∈ S0. The
multifunction σΛl

≡ σ
(β,ω,λ)
Λl

from S0 to S∗
0 (i.e., the set–valued map from S0 to

2S
∗
0 ) is defined by

E 7→ σΛl
(E) = 1

2
∂QΛl

(E) .

It is single–valued with domain Dom(σΛl
) = S0:
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Lemma 4.3 (Properties of the AC–conductivity)
The multifunction σΛl

has domain

Dom(σΛl
) := {E ∈ S0 : ∂QΛl

(E) ̸= ∅} = S0

and, for all E ∈ S0, σΛl
(E) = {JE} with⟨

JE , Ẽ
⟩
=

1

2

∫
R

∫
R
⟨w⃗,Ξ(ω)

p,l (s1 − s2)w⃗⟩Ẽs1Es2ds2ds1 , Ẽ ∈ S0 . (77)

[We use the standard notation for distributions: ⟨JE , Ẽ⟩ ≡ JE(Ẽ).]

Proof: We prove that, for all E ∈ S0, 2JE is the unique tangent functional of
QΛl

at the point E . Indeed,

QΛl
(E + E1)−QΛl

(E) = 2 ⟨JE , E1⟩+QΛl
(E1) (78)

for all E1 ∈ S0. Since QΛl
(E1) ≥ 0, the functional 2JE is tangent to QΛl

at
E ∈ S0. In particular, Dom(σΛl

) = S0. The uniqueness of the tangent functional
follows from the fact that 2JE is the Gâteaux derivative of QΛl

at E ∈ S0. To see
this, replace E1 with ϵE1 in (78) and take the limit ϵ→ 0.

Equation (77) is directly related to Ohm’s law in Fourier space. For this reason,
σΛl

is named here the AC–conductivity of the region Λl.
By Ohm and Joule’s laws, a more resistive system produces less heat at fixed

electric field. We thus define a AC–resistivity order from the total heat production
QΛl

≡ Q
(β,ω,λ)
Λl

(per unit of volume) on the space S0 of electric fields:

Definition 4.4 (AC–Resistivity order)
For all l ∈ R+, we define the partial order relation ≺ for the system parameters
(β, ω, λ) ∈ R+ × Ω× R+

0 by

(β1, ω1, λ1) ≺ (β2, ω2, λ2) iff Q
(β1,ω1,λ1)
Λl

≥ Q
(β2,ω2,λ2)
Λl

.

This definition is reminiscent of the approach of [LY] to the entropy. Observe also
that

(β1, ω1, λ1) ≺ (β2, ω2, λ2) iff µ
(β1,ω1,λ1)
p,l |R\{0} ≥ µ

(β2,ω2,λ2)
p,l |R\{0} .

Furthermore, this partial order can be rewritten in terms of a quadratic function of
currents, in accordance with Joule’s law in its original form.
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To see this, observe that (S0,S∗
0 ) is a dual pair, by [R, Theorem 3.10]. There-

fore, QΛl
: S0 → [0,∞) has a well–defined Legendre–Fenchel transform Q∗

Λl
≡

(Q
(β,ω,λ)
Λl

)∗ which is the convex lower semi–continuous functional from S∗
0 to

(−∞,∞] defined in our setting by

Q∗
Λl
(J ) := 2sup

E∈S0

{
⟨J , E⟩ − 1

2
QΛl

(E)
}
, J ∈ S∗

0 . (79)

The square root of Q∗
Λl
(J ) can be seen as the norm of the linear map J :

(S0, ∥·∥Λl
) → R:

Lemma 4.5 (Q∗
Λl

as a semi–norm on S∗
0 )

Assume that QΛl
is not identically zero. Then,

Q∗
Λl
(J ) =

(
sup

{
|⟨J , E⟩| : E ∈ S0, ∥E∥Λl

= 1
})2

.

If QΛl
is identically zero, Q∗

Λl
(J ) = ∞ for all J ∈ S∗

0\{0} and Q∗
Λl
(0) = 0.

Proof: The assertion for QΛl
≡ 0 is a direct consequence of (79). Assume that

QΛl
is not identically zero. For any J ∈ S∗

0 , define the map

x 7→ fJ (x) := sup
E∈S0:∥E∥Λl

=x

{
|⟨J , E⟩| − x2

2

}
from R+

0 to R. By rescaling, observe that, for any x ∈ R+,

fJ (x) = sup
E∈S0:∥E∥Λl

=1

{
x |⟨J , E⟩| − x2

2

}
. (80)

In particular, for any J ∈ S∗
0 , fJ is clearly continuous. Therefore, we infer from

(79) that
Q∗

Λl
(J ) = 2 sup

x∈R+
0

fJ (x) = 2 sup
x∈R+

fJ (x) , (81)

which, combined with (80) and straightforward computations, leads to the asser-
tion.

The above lemma implies that the domain

Dom
(
Q∗

Λl

)
=
{
J ∈ S∗

0 : Q∗
Λl
(J ) <∞

}
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of the functional Q∗
Λl

is a subspace of S∗
0 . Similar to (76), we define the semi–

norm ∥·∥(∗)Λl
≡ ∥·∥(∗,β,ω,λ)Λl

by

∥J ∥(∗)Λl
:=
√

Q∗
Λl
(J ) = sup

{
|⟨J , E⟩| : E ∈ S0, ∥E∥Λl

= 1
}

(82)

for any J ∈ S∗
0 .

Let ∂Q∗
Λl
(J ) ⊂ S0 be the subdifferential of Q∗

Λl
at the point J ∈ S∗

0 . The
multifunction ρΛl

≡ ρ
(β,ω,λ)
Λl

from S∗
0 to S0 (i.e., the set–valued map from S0 to

2S
∗
0 ) is defined by

J 7→ ρΛl
(J ) =

1

2
∂Q∗

Λl
(J ) .

It is named here the AC–resistivity of the region Λl because it is a sort of inverse
of the AC–conductivity:

Lemma 4.6 (Properties of the AC–resistivity)
The multifunction ρΛl

has non–empty domain equal to

Dom(ρΛl
) :=

{
J ∈ S∗

0 : ∂Q∗
Λl
(J ) ̸= ∅

}
=
∪
E∈S0

σΛl
(E) .

Furthermore, for all J ∈ Dom(ρΛl
) and E ∈ Dom(σΛl

) = S0,

σΛl

(
ρΛl

(J )
)
= {J } and ρΛl

(σΛl
(E)) ⊃ {E} . (83)

Proof: Young’s inequality asserts that

1

2
Q∗

Λl
(J ) +

1

2
QΛl

(E) ≥ ⟨J , E⟩

with equality iff 2J ∈ ∂QΛl
(E). As QΛl

= Q∗∗
Λl

,

1

2
Q∗

Λl
(J ) +

1

2
QΛl

(E) = ⟨J , E⟩

iff 2E ∈ ∂Q∗
Λl
(J ). In other words,

E ∈ ρΛl
(J ) ⇐⇒ J ∈ σΛl

(E) . (84)

As a consequence, JE ∈ σΛl
(E) (cf. Lemma 4.3) yields E ∈ ρΛl

(JE). It follows
that ∪

E∈S0

σΛl
(E) ⊂ Dom(ρΛl

)
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and
ρΛl

(σΛl
(E)) ⊃ {E} .

Now, let J ∈ Dom(ρΛl
) and E ∈ ρΛl

(J ). Then, by (84), J ∈ σΛl
(E) and we

infer from the uniqueness of the tangent functional (Lemma 4.3) that J = JE .
Therefore,

σΛl

(
ρΛl

(J )
)
= {J }

and
Dom(ρΛl

) ⊂
∪
E∈S0

σΛl
(E) .

Note that QΛl
: S0 → [0,∞) is a convex continuous functional, by positivity

of the conductivity measure, see Theorem 3.1 and (75). In particular,

QΛl
(E) := 2 sup

J∈S∗
0

{
⟨J , E⟩ − 1

2
Q∗

Λl
(J )

}
. (85)

Therefore, we deduce from (79) and (85) that

(β1, ω1, λ1) ≺ (β2, ω2, λ2) iff (Q
(β1,ω1,λ1)
Λl

)∗ ≤ (Q
(β2,ω2,λ2)
Λl

)∗ .

Furthermore, by using (76) and similar arguments as in Lemma 4.5, if QΛl
is not

identically zero, then:

∥E∥Λl
= sup

{
|⟨J , E⟩| : J ∈ S∗

0 , ∥J ∥(∗)Λl
= 1
}
.

We are now in position to obtain Joule’s law in its original form. To this end,
we say that a multifunction ρ from S∗

0 to S0 is linear if:

(a) Its domain Dom(ρ) is a subspace of S∗
0 .

(b) For α ∈ R\{0} and J ∈ Dom(ρ), ρ (αJ ) = αρ (J ) and 0 ∈ ρ (0).

(c) For J1,J2 ∈ Dom(ρ), ρ (J1 + J2) = ρ (J1) + ρ (J2).

Then, one gets that the heat produced by currents is proportional to the resistivity
and the square of currents:
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Theorem 4.7 (Microscopic Joule’s law – II)
(i) ρΛl

is a linear multifunction and σΛl

(
ρΛl

(J )
)
= {J } for all J ∈ Dom(ρΛl

).
(ii) For any J ∈ Dom(ρΛl

),

{Q∗
Λl
(J )} =

⟨
J ,ρΛl

(J )
⟩
= QΛl

(
ρΛl

(J )
)
.

(iii) There is a bilinear symmetric positive map (·, ·)(∗)Λl
on Dom(ρΛl

) such that

Q∗
Λl
(J1) = (J1,J1)

(∗)
Λl

and
⟨
J1,ρΛl

(J2)
⟩
= {(J1,J2)

(∗)
Λl
}

for all J1,J2 ∈ Dom(ρΛl
).

Proof: (i.a) The fact that Dom(ρΛl
) is a subspace of S∗

0 is a direct consequence
of Lemmata 4.3 and 4.6.
(i.b) Let α ∈ R and J ∈ Dom(ρΛl

). Take any EJ ∈ ρΛl
(J ) and observe that

J = JEJ , by using Lemmata 4.3 and 4.6. Then,

αJ = JαEJ ∈ σΛl
(αEJ ) .

From (84) it follows that αρΛl
(J ) ⊂ ρΛl

(αJ ). If α ̸= 0 then, by replacing
(J , α) with (αJ , α−1), one gets that ρΛl

(αJ ) ⊂ αρΛl
(J ).

(i.c) Let J1,J2 ∈ Dom(ρΛl
) and take any EJ1 ∈ ρΛl

(J1) and EJ2 ∈ ρΛl
(J2). As

above, J1 = JEJ1
and J2 = JEJ2

. Then,

J1 + J2 = JEJ1
+EJ2

∈ σΛl
(EJ1 + EJ2) .

Hence, using again (84), we arrive at

ρΛl
(J1) + ρΛl

(J2) ⊂ ρΛl
(J1 + J2) .

Now, let J1,J2 ∈ Dom(ρΛl
) and take any EJ1+J2 ∈ ρΛl

(J1 + J2). Then,
JEJ1+J2

= J1 + J2. Similarly, choose also EJ1 ∈ ρΛl
(J1) and EJ2 ∈ ρΛl

(J2)
with J1 = JEJ1

and J2 = JEJ2
. Obviously, by Equation (77),

J2 = JEJ2
= JEJ1+J2

− JEJ1
= JEJ1+J2

−EJ1
,

which together with (84) yields the converse inclusion

ρΛl
(J1 + J2) ⊂ ρΛl

(J1) + ρΛl
(J2) .
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(ii) Take any J ∈ Dom(ρΛl
) and EJ ∈ ρΛl

(J ). We infer from (74) and Lemma
4.3 that

⟨J , EJ ⟩ =
⟨
JEJ , EJ

⟩
= QΛl

(EJ ) .
Since

1

2
Q∗

Λl
(J ) +

1

2
QΛl

(EJ ) = ⟨J , EJ ⟩ ,

we also deduce that Q∗
Λl
(J ) = QΛl

(EJ ).
(iii) For all J1,J2 ∈ Dom(Q∗

Λl
), define

(J1,J2)
(∗)
Λl

:=
1

4

(
Q∗

Λl
(J1 + J2)−Q∗

Λl
(J1 − J2)

)
. (86)

This quantity is clearly symmetric w.r.t. J1,J2 and

(J ,J )
(∗)
Λl

= Q∗
Λl
(J ) ≥ 0 , J ∈ Dom(Q∗

Λl
) ,

by Lemma 4.5. Using the linearity of ρΛl
and the fact that ⟨J ,ρΛl

(J )⟩ ⊂ R+
0

contains exactly one element for all J ∈ Dom(ρΛl
), we compute that, for any

J1,J2 ∈ Dom(ρΛl
),

1

2
{Q∗

Λl
(J1 + J2)−Q∗

Λl
(J1 − J2)} =

⟨
J2,ρΛl

(J1)
⟩
+
⟨
J1,ρΛl

(J2)
⟩
.

Again by linearity of ρΛl
, this implies that (86) defines a bilinear form on Dom(ρΛl

).
We also infer from the above equation that the set ⟨J2,ρΛl

(J1)⟩ ⊂ R contains ex-
actly one element. Let EJ1 ∈ ρΛl

(J1) and EJ2 ∈ ρΛl
(J2) with J1 = JEJ1

and
J2 = JEJ2

. Then, by Lemma 4.3,⟨
J2,ρΛl

(J1)
⟩
=
{⟨

JEJ2
, EJ1

⟩}
=
{⟨

JEJ1
, EJ2

⟩}
=
⟨
J1,ρΛl

(J2)
⟩
.

5 Technical Proofs
This section is divided in two parts: Section 5.1 gives a detailed proof of Theorem
3.1 as well as additional properties of paramagnetic transport coefficients defined
in Section 3.3. In Section 5.2 we prove Theorems 3.3 and 4.1. Note that we start
in this second subsection with the proof of Theorem 4.1 because the other one is
simpler and uses similar arguments.
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5.1 Paramagnetic Transport Coefficients
5.1.1 Microscopic Paramagnetic Transport Coefficients

We study in this subsection the microscopic paramagnetic transport coefficient
σ
(ω)
p which is defined by (29), that is,

σ(ω)
p (x,y, t) :=

∫ t

0

ϱ(β,ω,λ)
(
i[Iy, τ

(ω,λ)
s (Ix)]

)
ds , x,y ∈ L2 , t ∈ R .

Recall that Ix is the paramagnetic current observable defined by (19), that is,

Ix := i(a∗x(2)ax(1) − a∗x(1)ax(2)) , x := (x(1), x(2)) ∈ L2 . (87)

The coefficient σ(ω)
p can explicitly be written in terms of a scalar product in-

volving current observables. To show this, we introduce the Duhamel two–point
function (·, ·)(ω)∼ defined by

(B1, B2)∼ ≡ (B1, B2)
(β,ω,λ)
∼ :=

∫ β

0

ϱ(β,ω,λ)
(
B∗

1τ
(ω,λ)
iα (B2)

)
dα (88)

for any B1, B2 ∈ U . The properties of this sesquilinear form are described in
detail in Appendix A. In particular, by Theorem A.1 for X = U , τ = τ (ω,λ) and
ϱ = ϱ(β,ω,λ), (B1, B2) 7→ (B1, B2)∼ is a positive sesquilinear form on U . We then
infer from Lemma A.14 that

σ(ω)
p (x,y, t) = (Iy, τ

(ω,λ)
t (Ix))∼ − (Iy, Ix)∼ , (89)

for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , x,y ∈ L2 and t ∈ R. By Theorem A.16, it

follows that σ(ω)
p is symmetric w.r.t. time–reversal and permutation of bonds.

Indeed, by using the time–reversal operation Θ : U → U defined in Section
2.1.4, one proves:

Lemma 5.1 (Time–reversal symmetry of the fermion system)
Let β ∈ R+, ω ∈ Ω and λ ∈ R+

0 . Then,

Θ ◦ τ (ω,λ)t = τ
(ω,λ)
−t ◦Θ , t ∈ R , (90)

and
ϱ(β,ω,λ) (B) = ϱ(β,ω,λ) ◦Θ(B) , B ∈ U . (91)
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Proof: By continuity of the maps Θ and τ (ω,λ)t as well as the density of polyno-
mials in the creation and annihilation operators in U , it suffices to prove the first
assertion for monomials in ax, a∗x, x ∈ L. Now, since Θ(H

(ω,λ)
L ) = H

(ω,λ)
L (see

(56)), by [BPK1, Theorem A.3 (i)],

Θ ◦ τ (ω,λ)t (B) = τ
(ω,λ)
−t ◦Θ(B) , B ∈ U0, t ∈ R ,

which implies (90). The second assertion is a consequence of the uniqueness of
the (τ (ω,λ), β)–KMS state ϱ(β,ω,λ) together with Lemma A.12.

Since Θ(Ix) = −Ix for any x ∈ L2, we deduce from Lemma 5.1 and Theorem
A.16 for X = U , τ = τ (ω,λ) and ϱ = ϱ(β,ω,λ) that the function σ(ω)

p from L4 × R
to R is symmetric w.r.t. time–reversal and permutation of bonds:

σ(ω)
p (x,y, t) = σ(ω)

p (x,y,−t) = σ(ω)
p (y,x, t) , x,y ∈ L2 , t ∈ R .

Thermal equilibrium states ϱ(β,ω,λ) are by construction quasi–free and gauge–
invariant. This fact implies that σ(ω)

p can be expressed in terms of complex–time
two–point correlation functions C(ω)

t+iα ≡ C
(β,ω,λ)
t+iα defined by

C
(ω)
t+iα(x) := ϱ(β,ω,λ)(a∗x(1)τ

(ω,λ)
t+iα (ax(2))) , x := (x(1), x(2)) ∈ L2 , (92)

for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β]. This is shown in the

following assertion:

Lemma 5.2 (σ(ω)
p in terms of two–point correlation functions)

Let β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Then, for all x,y ∈ L2 and t ∈ R,

σ(ω)
p (x,y, t) =

∫ β

0

(
C
(ω)
t+iα(x,y)− C

(ω)
iα (x,y)

)
dα ∈ R ,

where C
(ω)
t+iα ≡ C

(β,ω,λ)
t+iα is the map from L4 to C defined by

C
(ω)
t+iα(x,y) :=

∑
π,π′∈S2

επεπ′C
(ω)
t+iα(y

π′(1), xπ(1))C
(ω)
−t+i(β−α)(x

π(2), yπ
′(2)) (93)

for any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2. Here, π, π′ ∈ S2 are by
definition permutations of {1, 2} with signatures επ, επ′ ∈ {−1, 1}.
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Proof: Fix β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β], x := (x(1), x(2)) ∈ L2

and y := (y(1), y(2)) ∈ L2. From Equation (89) together with (164),

σ(ω)
p (x,y, t) =

∫ β

0

(
ϱ(β,ω,λ)

(
Iyτ

(ω,λ)
t+iα (Ix)

)
− ϱ(β,ω,λ)

(
Iyτ

(ω,λ)
iα (Ix)

))
dα .

(94)
Direct computations using (8) and (19) yield

Iyτ
(ω,λ)
t+iα (Ix) = −

(
a∗y(1)ay(2) − a∗y(2)ay(1)

)
τ
(ω,λ)
t+iα (a

∗
x(1))τ

(ω,λ)
t+iα (ax(2)) (95)

+
(
a∗y(1)ay(2) − a∗y(2)ay(1)

)
τ
(ω,λ)
t+iα (a

∗
x(2))τ

(ω,λ)
t+iα (ax(1)) .

Note that, for all x ∈ L2 and x ∈ L, the maps

z 7→ τ (ω,λ)z (Ix) , z 7→ τ (ω,λ)z (a∗x) , z 7→ τ (ω,λ)z (ax) , (96)

defined on R have unique analytic continuations for z ∈ C and (95) makes sense.
Recall that ex(y) ≡ δx,y is the canonical orthonormal basis of ℓ2(L) and, as

usual,
{B1, B2} := B1B2 +B2B1 , B1, B2 ∈ U .

Therefore, using the anti–commutator relation

{ay(2) , τ
(ω,λ)
t+iα (a

∗
x(1))} = ⟨ey(2) , (U

(ω,λ)
t+iα )

∗ex(1)⟩1 ,

see (4) and (7), we get the equality

ϱ(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a

∗
x(1))τ

(ω,λ)
t+iα (ax(2))

)
= −ϱ(β,ω,λ)

(
a∗y(1)τ

(ω,λ)
t+iα (a

∗
x(1))ay(2)τ

(ω,λ)
t+iα (ax(2))

)
+ϱ(β,ω,λ)

(
{ay(2) , τ

(ω,λ)
t+iα (a

∗
x(1))}

)
ϱ(β,ω,λ)

(
a∗y(1)τ

(ω,λ)
t+iα (ax(2))

)
. (97)

Since ϱ(β,ω,λ) is by construction a quasi–free state, we use [BR2, p. 48], that is
here,

ϱ(β,ω,λ)(a∗ (f1) a
∗ (f2) a (g1) a (g2))

= ϱ(β,ω,λ)(a∗ (f1) a (g2))ϱ
(β,ω,λ)(a∗ (f2) a (g1))

−ϱ(β,ω,λ)(a∗ (f1) a (g1))ϱ(β,ω,λ)(a∗ (f2) a (g2)) ,
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to infer from Equation (97) that

ϱ(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a

∗
x(1))τ

(ω,λ)
t+iα (ax(2))

)
= ϱ(β,ω,λ)(a∗y(1)ay(2))ϱ

(β,ω,λ)(τ
(ω,λ)
t+iα (a

∗
x(1))τ

(ω,λ)
t+iα (ax(2)))

+ϱ(β,ω,λ)
(
a∗y(1)τ

(ω,λ)
t+iα (ax(2))

)
ϱ(β,ω,λ)

(
ay(2)τ

(ω,λ)
t+iα (a

∗
x(1))

)
. (98)

Remark that the KMS property (162) together with (9) and the Phragmén–Lindelöf
theorem [BR2, Proposition 5.3.5] yields

ϱ(β,ω,λ)(τ
(ω,λ)
t+iα (B)) = ϱ(β,ω,λ)(B) , B ∈ U . (99)

See also [BR2, Proposition 5.3.7]. We thus combine (99) and (162) with Equation
(8) and the analyticity of the maps (96) to deduce from (92) that

C
(ω)
−t+i(β−α)(x) = ϱ(β,ω,λ)(ax(2)τ

(ω,λ)
t+iα (a

∗
x(1))) .

Using this together with (92), (99) and again the analyticity of the maps (96), we
get from Equation (98) that

ϱ(β,ω,λ)
(
a∗y(1)ay(2)τ

(ω,λ)
t+iα (a

∗
x(1))τ

(ω,λ)
t+iα (ax(2))

)
= C

(ω)
0 (y(1), y(2))C

(ω)
0 (x(1), x(2)) + C

(ω)
t+iα(y

(1), x(2))C
(ω)
−t+i(β−α)(x

(1), y(2)) .

Then we use this last equality together with (95) to get

ϱ(β,ω,λ)
(
Iyτ

(ω,λ)
t+iα (Ix)

)
= −

∑
π,π′∈S2

επεπ′

(
C

(ω)
t+iα(y

π′(1), xπ(2))C
(ω)
−t+i(β−α)(x

π(1), yπ
′(2))

+C
(ω)
0 (yπ

′(1), yπ
′(2))C

(ω)
0 (xπ(1), xπ(2))

)
. (100)

Therefore, the assertion follows by combining (94) with (100) for any β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 , t ∈ R, α ∈ [0, β], x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈
L2.

Lemma 5.2 is a useful technical result because the complex–time two–point
correlation functions C(ω)

t+iα can be expressed in terms of the one–particle bounded
self–adjoint operator (∆d + λVω) ∈ B(ℓ2(L)) to which the spectral theorem can
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be applied. Indeed, for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β], one

gets from (7), (10) and (92) that

C
(ω)
t+iα(x) = ⟨ex(2) , e−it(∆d+λVω)F β

α (∆d + λVω) ex(1)⟩ , (101)

where F β
α is the real function defined, for every β ∈ R+ and α ∈ R, by

F β
α (κ) :=

eακ

1 + eβκ
, κ ∈ R .

Equation (101) provides useful estimates like space–decay properties of complex–
time two–point correlation functions C(ω)

t+iα, see [BPK2]. An important conse-
quence of (101) is the fact that the coefficient C(ω)

t+iα defined by (93) can be seen
as the kernel (w.r.t. the canonical basis {ex ⊗ ex′}x,x′∈L) of a bounded operator on
ℓ2(L)⊗ ℓ2(L). This operator is again denoted by C

(ω)
t+iα:

Lemma 5.3 (C(ω)
t+iα as a bounded operator)

Let β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β]. Then, there is a unique

bounded operator C(ω)
t+iα on ℓ2(L)⊗ ℓ2(L) with

⟨ex(1) ⊗ ex(2) ,C
(ω)
t+iα(ey(1) ⊗ ey(2))⟩ℓ2(L)⊗ℓ2(L) = C

(ω)
t+iα((x

(1), x(2)), (y(1), y(2)))

for all (x(1), x(2)), (y(1), y(2)) ∈ L2, and

∥C(ω)
t+iα∥op ≤ 4 and lim

α→0+
∥C(ω)

iα − C
(ω)
0 ∥op = 0 ,

where ∥ · ∥op is the operator norm.

Proof: By (93) and (101), the bounded operator C(ω)
t+iα exists, is unique, and one

directly gets

1

4
∥C(ω)

t+iα∥op ≤
∥∥∥∥e(−it+α)(∆d+λVω)

1 + eβ(∆d+λVω)

∥∥∥∥
op

∥∥∥∥e(it+β−α)(∆d+λVω)

1 + eβ(∆d+λVω)

∥∥∥∥
op

≤ 1

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β]. Moreover, in the same

way, (93) and (101) also lead to
1

4
∥C(ω)

iα − C
(ω)
0 ∥op ≤

∥∥eα(∆d+λVω) − 1
∥∥
op

+
∥∥e−α(∆d+λVω) − 1

∥∥
op

(102)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , and α ∈ [0, β]. Recall that the self–adjoint

operator ∆d + λVω is bounded, i.e., ∆d + λVω ∈ B(ℓ2(L)). It follows that the
one–parameter group {eα(∆d+λVω)}α∈R is uniformly continuous (norm continu-
ous). Therefore, the second assertion is deduced from (102) in the limit α → 0+.
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5.1.2 Space–Averaged Paramagnetic Transport Coefficients

Equation (33) and Lemma A.14 for X = U , τ = τ (ω,λ) and ϱ = ϱ(β,ω,λ) yield{
Ξ
(ω)
p,l (t)

}
k,q

=
1

|Λl|

[
(Ik,l, τ (ω,λ)t (Iq,l))∼ − (Ik,l, Iq,l)∼

]
(103)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R. Since Θ(Ix) =

−Ix for any x ∈ L2, by Theorem A.16, the operator Ξ
(ω)
p,l (t) is symmetric at

any fixed time t ∈ R while the B(Rd)–valued function Ξ
(ω)
p,l is symmetric w.r.t.

time–reversal. In other words,{
Ξ
(ω)
p,l (t)

}
k,q

=
{
Ξ
(ω)
p,l (−t)

}
k,q

=
{
Ξ
(ω)
p,l (t)

}
q,k

∈ R (104)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R.

Because of (103) it is convenient to use the Duhamel GNS representation

(H̃, π̃, Ψ̃) ≡ (H̃(β,ω,λ), π̃(β,ω,λ), Ψ̃(β,ω,λ))

of the (τ (ω,λ), β)–KMS state ϱ(β,ω,λ) for any β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . See

Definition A.8 with X = U and ϱ = ϱ(β,ω,λ). Note that we identify here the
Duhamel two–point function defined by (88) on the CAR algebra U with the scalar
product (·, ·)∼ of the Hilbert space H̃, see Remark A.11.

The CAR C∗–algebra U is the inductive limit of (finite dimensional) simple
C∗–algebras {UΛ}Λ∈Pf (L), see [Si, Lemma IV.1.2]. By [BR1, Corollary 2.6.19.],
U is thus simple. This property has some important consequences: The (τ (ω,λ), β)–
KMS state ϱ(β,ω,λ) is faithful. In particular, π̃ is injective. Remark that Ψ̃ ≡ 1 ∈ U
and U is a dense set of H̃, but π̃ (B) Ψ̃ is generally not equal to B ∈ U , in contrast
to the usual GNS representation. For this reason, we do not identify π̃ (U) with
U . Moreover, by Theorem A.9 for X = U and ϱ = ϱ(β,ω,λ), the ∗–automorphism
group τ = τ (ω,λ) can be extended to a unitary group on the whole Hilbert space
H̃:

τ
(ω,λ)
t (B) = eitL̃B , t ∈ R , B ∈ U ⊂ H̃ , (105)

with L̃ ≡ L̃(β,ω,λ) being a self–adjoint operator acting on H̃. The domain of L̃
includes the domain of the generator δ(ω,λ) of the one–parameter group τ (ω,λ), i.e.,
Dom(L̃) ⊃ Dom(δ(ω,λ)), while

L̃ (B) = −iδ(ω,λ) (B) , B ∈ Dom(δ(ω,λ)) ⊂ U ⊂ H̃ . (106)
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Equation (105) is an important representation of the dynamics because we can
deduce from (103) the existence of the paramagnetic conductivity measure from
the spectral theorem.

To present this result, recall that B+(Rd) ⊂ B(Rd) denotes the set of positive
linear operators on Rd and any B(Rd)–valued measure µ on R is symmetric iff
µ(X ) = µ(−X ) for any Borel set X ⊂ R. Then, we derive the paramagnetic
conductivity measure:

Theorem 5.4 (Conductivity measures as spectral measures)
For any l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 , there exists a finite symmetric B+(Rd)–
valued measure µ(ω)

p,l ≡ µ
(β,ω,λ)
p,l on R such that

Ξ
(ω)
p,l (t) =

∫
R
(cos (tν)− 1)µ

(ω)
p,l (dν) , t ∈ R . (107)

Proof: Fix l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Let Ẽ ≡ Ẽ(β,ω,λ) be the (projection–

valued) spectral measure of the self–adjoint operator L̃. Then, by combining
(103)–(104) with (105), we directly arrive at the equality{

Ξ
(ω)
p,l (t)

}
k,q

=
1

4 |Λl|

∫
R

(
eitν − 1

)
(Ik,l, Ẽ(dν)Iq,l)∼

+
1

4 |Λl|

∫
R

(
eitν − 1

)
(Iq,l, Ẽ(dν)Ik,l)∼

+
1

4 |Λl|

∫
R

(
e−itν − 1

)
(Ik,l, Ẽ(dν)Iq,l)∼

+
1

4 |Λl|

∫
R

(
e−itν − 1

)
(Iq,l, Ẽ(dν)Ik,l)∼ (108)

for any k, q ∈ {1, . . . , d} and t ∈ R. Note that, for any Borel set X ⊂ R and all
k, q ∈ {1, . . . , d},

(Ik,l, Ẽ (X ) Iq,l)∼ + (Iq,l, Ẽ (X ) Ik,l)∼ ∈ R .
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Thus, define the B(Rd)–valued measure µ(ω)
p,l by⟨

u⃗, µ
(ω)
p,l (X ) w⃗

⟩
=

1

4 |Λl|
∑

k,q∈{1,...,d}

ukwq(Ik,l, Ẽ (X ) Iq,l)∼

+
1

4 |Λl|
∑

k,q∈{1,...,d}

ukwq(Iq,l, Ẽ (X ) Ik,l)∼

+
1

4 |Λl|
∑

k,q∈{1,...,d}

ukwq(Ik,l, Ẽ (−X ) Iq,l)∼

+
1

4 |Λl|
∑

k,q∈{1,...,d}

ukwq(Iq,l, Ẽ (−X ) Ik,l)∼ (109)

for any u⃗ := (u1, . . . , ud) ∈ Rd, w⃗ := (w1, . . . , wd) ∈ Rd and all Borel sets X ⊂
R. Here, ⟨·, ·⟩ denotes the usual scalar product of Rd. Obviously, by construction,⟨

u⃗, µ
(ω)
p,l (X ) w⃗

⟩
=
⟨
w⃗, µ

(ω)
p,l (X ) u⃗

⟩
and

⟨
w⃗, µ

(ω)
p,l (X ) w⃗

⟩
≥ 0 ,

for any u⃗, w⃗ ∈ Rd and all Borel sets X ⊂ R. Moreover, µ(ω)
p,l is a symmetric

measure and, by (108), we obtain Equation (107).

For any β ∈ R+, ω ∈ Ω and λ ∈ R+
0 , it is useful at this point to also consider

any GNS representation

(H, π,Ψ) ≡ (H(β,ω,λ), π(β,ω,λ),Ψ(β,ω,λ))

of the (τ (ω,λ), β)–KMS state ϱ(β,ω,λ) and to describe its relation to the Duhamel
GNS representation. To this end, we denote by L ≡ L(β,ω,λ) the standard Liouvil-
lean of the system under consideration, i.e., the self–adjoint operator acting on H
which implements the dynamics as

π (τ t (B)) = eitLπ (B) e−itL , t ∈ R, B ∈ U , (110)

with LΨ = Ψ. Let E ≡ E(β,ω,λ) be the (projection–valued) spectral measure of
L. We also use the (Tomita–Takesaki) modular objects

∆ ≡ ∆(β,ω,λ) := e−βL , J ≡ J (β,ω,λ) ,

of the pair (π (U)′′ ,Ψ).

49



Theorem A.1 says that

(B1, B2)∼ = ⟨Tπ (B1)Ψ,Tπ (B2)Ψ⟩H , B1, B2 ∈ U , (111)

where T ≡ T(β,ω,λ) is the operator defined by (158) for τ = τ (ω,λ) and ϱ = ϱ(β,ω,λ),
that is,

T := β1/2

(
1− e−βL

βL

)1/2

. (112)

Note that T is unbounded, but

π (U)Ψ ⊂ Dom(∆1/2) ⊂ Dom(T) . (113)

The B+(Rd)–valued measure µ(ω)
p,l of Theorem 5.4, which is defined by (109), can

also be studied via (111). Indeed, (111) and (113) together with Theorem A.7 and
(161) imply that

(Ik,l, Ẽ (X ) Iq,l)∼ = ⟨TE (X )π (Ik,l)Ψ,TE (X ) π (Iq,l)Ψ⟩H (114)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and any Borel set X ⊂ R.

The existence of the first moment of µ(ω)
p,l is a direct consequence of the above

equation.
To see this, recall that ∥µ(ω)

p,l ∥op is the measure on R taking values in R+
0 that

is defined, for any Borel set X ⊂ R and µ = µ
(ω)
p,l , by (38). Then, one gets the

following assertions:

Theorem 5.5 (Existence of the first moment of µ(ω)
p,l )

For any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 , the B+(Rd)–valued measure µ(ω)

p,l of
Theorem 5.4 satisfies the following bounds:∫

R
∥µ(ω)

p,l ∥op(dν) ≤ 1

|Λl|

d∑
k=1

ϱ(β,ω,λ)
(
I2k,l
)
,

∫
R
|ν| ∥µ(ω)

p,l ∥op(dν) ≤ 2

|Λl|

d∑
k=1

ϱ(β,ω,λ)
(
I2k,l
)
,

∫
R
|ν| ∥µ(ω)

p,l ∥op(dν) ≤ 2

|Λl|

d∑
k=1

√
ϱ(β,ω,λ)

(
I2k,l
)√

ϱ(β,ω,λ)
((

δ(ω,λ) (Ik,l)
)2)

.
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Proof: Fix l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . By positivity of the measure µ(ω)

p,l

and linearity of the trace,

∥µ(ω)
p,l ∥op (X ) ≤ TraceB(Rd)

(
µ
(ω)
p,l (X )

)
for any Borel set X ⊂ R. This implies that∫

R
∥µ(ω)

p,l ∥op(dν) ≤ TraceB(Rd)

(∫
R
µ
(ω)
p,l (dν)

)
and ∫

R
|ν| ∥µ(ω)

p,l ∥op(dν) ≤ TraceB(Rd)

(∫
R
|ν|µ(ω)

p,l (dν)

)
.

Hence, by (109), it suffices to prove that∫
R
(Ik,l, Ẽ(dν)Ik,l)∼ ≤ ϱ(β,ω,λ)

(
I2k,l
)
, (115)∫

R
|ν| (Ik,l, Ẽ(dν)Ik,l)∼ ≤ 2ϱ(β,ω,λ)

(
I2k,l
)
, (116)∫

R
|ν| (Ik,l, Ẽ(dν)Ik,l)∼ ≤ 2

√
ϱ(β,ω,λ)

(
I2k,l
)
ϱ(β,ω,λ)

((
δ(ω,λ) (Ik,l)

)2)
,

(117)

for any k ∈ {1, . . . , d}.
Inequality (115) is a direct consequence of Theorem A.4. The second upper

bound is derived as follows: Fix k ∈ {1, . . . , d}. We infer from (112) and (114)
that ∫

R
|ν| (Ik,l, Ẽ(dν)Ik,l)∼ =

∥∥∥(1− e−βL)1/2E (R+
0

)
π (Ik,l)Ψ

∥∥∥2
H

(118)

+
∥∥∥(e−βL − 1

)1/2
E
(
R−) π (Ik,l)Ψ∥∥∥2

H
.

Clearly, one has the upper bound∥∥∥(1− e−βL)1/2E (R+
0

)
π (Ik,l)Ψ

∥∥∥2
H
≤ ϱ(β,ω,λ)

(
I2k,l
)
, (119)

while ∥∥∥(e−βL − 1
)1/2

E
(
R−) π (Ik,l)Ψ∥∥∥2

H
≤
∥∥∆1/2π (Ik,l)Ψ

∥∥2
H , (120)
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with ∆ := e−βL being the modular operator. Using now the anti–unitarity of J ,
J2 = 1 and

J∆1/2π (Ik,l)Ψ = π (Ik,l)∗ Ψ = π (Ik,l)Ψ ,

one gets that ∥∥∆1/2π (Ik,l)Ψ
∥∥2
H = ∥π (Ik,l)Ψ∥2H = ϱ(β,ω,λ)

(
I2k,l
)
. (121)

Therefore, by combining Equation (118) with (119)–(121) we arrive at Inequality
(116).

Finally, to prove (117), observe that∫
R
|ν| (Ik,l, Ẽ(dν)Ik,l)∼ =

⟨
Tπ (Ik,l)Ψ, E

(
R+

0

)
TLπ (Ik,l)Ψ

⟩
H (122)

−
⟨
Tπ (Ik,l)Ψ, E

(
R−)TLπ (Ik,l)Ψ⟩H .

Since Ik,l ∈ U0 ⊂ Dom(δ(ω,λ)),

Lπ (Ik,l)Ψ = −iπ
(
δ(ω,λ) (Ik,l)

)
Ψ , (123)

see (110). Therefore, by additionally using the Cauchy–Schwarz inequality of
(·, ·)∼ and Theorem A.4, one gets (117) similarly as above.

Equation (114) also leads to a characterization of the non–triviality of the con-
ductivity measure at non–zero frequencies via a geometric condition:

Theorem 5.6 (Geometric interpretation of the AC–conductivity measure)
Let l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 . Then,

lin {π (Ik,l)Ψ : k ∈ {1, . . . , d}} ⊂ ker (L) iff µ
(ω)
p,l (R\{0}) = 0 .

Here, lin stands for the linear hull of some set.

Proof: Fix l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . If

lin {π (Ik,l)Ψ : k ∈ {1, . . . , d}} ⊂ ker (L) ,

then we infer from (109) and (114) that µ(ω)
p,l (R\{0}) = 0. Observe that T acts as

the identity on the kernel of L. Assume now that µ(ω)
p,l (R\{0}) = 0. Then,

µ
(ω)
p,l (R\{0}) = 0 ,
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which, by (109) for X = R\{0}, implies that

(Ik,l, Ẽ (R\{0}) Ik,l)∼ = 0 , k ∈ {1, . . . , d} .

As a consequence, any linear combination of elements {Ik,l}k∈{1,...,d} ∈ U ⊂ H̃
belongs to the kernel of L̃, i.e.,

lin {Ik,l : k ∈ {1, . . . , d}} ⊂ ker(L̃) .

By Theorem A.7 and (161), this property in turn yields

lin {π (Ik,l)Ψ : k ∈ {1, . . . , d}} ⊂ ker (L) .

Corollary 5.7 (Non–triviality of the measure µ(ω)
p,l )

For any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 , the B+(Rd)–valued measure µ(ω)

p,l of

Theorem 5.4 satisfies µ(ω)
p,l (R\{0}) > 0.

Proof: By explicit computations, for any k ∈ {1, . . . , d},

δ(ω,λ) (Ik,l) = λA(ω)
k,l + Bk,l , (124)

where A(ω)
k,l ,Bk,l ∈ U are defined, for ω ∈ Ω and l ∈ R+, by

A(ω)
k,l :=

∑
x∈Λl

(Vω (x+ ek)− Vω (x))P(x,x+ek)

and

Bk,l :=
∑

x,z∈L,|z|=1,z ̸=±ek

(1 [x ∈ (Λl + z) \Λl]− 1 [x ∈ Λl\ (Λl + z)])P(x,x+ek+z)

+
∑
x∈L

(1 [x ∈ (Λl + ek) \Λl]− 1 [x ∈ Λl\ (Λl + ek)])
(
2a∗xax − P(x+ek,x−ek)

)
with P(x,y) being defined by (25) for any x, y ∈ L. In particular, δ(ω,λ) (Ik,l) is not
zero and hence π (Ik,l)Ψ /∈ ker (L), because π is injective and the cyclic vector Ψ
is separating for π (U)′′, see [BR2, Corollary 5.3.9.]. Therefore, the assertion is a
direct consequence of Theorem 5.6.
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We now give another construction of the (AC–conductivity) measure µ
(ω)
p,l

on R\{0} from the diamagnetic transport coefficient Ξ(ω)
d,l (34) and the space–

averaged quantum current viscosity

t 7→ V
(ω)
l (t) ≡ V

(β,ω,λ)
l (t) ∈ B(Rd) ,

see (40). W.r.t. the canonical orthonormal basis of Rd,{
V

(ω)
l (t)

}
k,q

=
1

ϱ(β,ω,λ) (Pk,l)
ϱ(β,ω,λ)

(
i[Ik,l, τ (ω,λ)t (Iq,l)]

)
(125)

for any k, q ∈ {1, . . . , d} and t ∈ R. Compare (125) with (32). Its Laplace
transform

L[V
(ω)
l ](ϵ) :=

∫ ∞

0

e−ϵsV
(ω)
l (s) ds

exists for all ϵ ∈ R+, by the boundedness of V(ω)
l . In fact, one has:

Theorem 5.8 (Static admittance)
Let l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 . Then the limit of L[V(ω)
l ](ϵ) exists as ϵ ↓ 0

and satisfies:

Ξ
(ω)
d,l lim

ϵ↓0
L[V

(ω)
l ](ϵ) = µ

(ω)
p,l (R\{0}) =

1

|Λl|

{
(Ik,l, Ẽ (R\{0}) Iq,l)(ω)∼

}
k,q∈{1,...,d}

Note that Ẽ (R\{0}) is not the identity because L̃1 = 0.

Proof: Fix l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . By [NVW, Theorems III.3-III.4],

observe that

Ξ
(ω)
d,l lim

ϵ↓0
L[V

(ω)
l ](ϵ) =

1

|Λl|

{
(Ik,l, Ẽ (R\{0}) Iq,l)∼

}
k,q∈{1,...,d}

.

On the other hand, by (103) and (105),

1

t

∫ t

0

{
Ξ
(ω)
p,l (s)

}
k,q

ds =
1

t |Λl|

∫ t

0

(Ik,l, eitL̃Iq,l)∼ds−
1

|Λl|
(Ik,l, Iq,l)∼ (126)

for any t ∈ R+ and k, q ∈ {1, . . . , d}. The von Neumann or mean ergodic theorem
(see, e.g., [P, Theorem 3.13]) implies that

lim
t→∞

1

t

∫ t

0

(Ik,l, eitL̃Iq,l)∼ds = (Ik,l, Ẽ ({0}) Iq,l)∼ , (127)
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where Ẽ ({0}) is the orthogonal projection on the kernel of L̃. By combining
(126)–(127) we obviously get

lim
t→∞

1

t

∫ t

0

{
Ξ
(ω)
p,l (s)

}
k,q

ds = − 1

|Λl|
(Ik,l, Ẽ (R\{0}) Iq,l)∼ ,

which, by Corollary 3.2 (iii), implies that

µ
(ω)
p,l (R\{0}) =

1

|Λl|

{
(Ik,l, Ẽ (R\{0}) Iq,l)∼

}
k,q∈{1,...,d}

.

Note that the quantity

Ξ
(ω)
d,l lim

ϵ↓0
L[V

(ω)
l ](ϵ) ∈ B(Rd)

is the so–called static admittance of linear response theory, which equals, in our
case, the measure of R\{0} w.r.t. the AC–conductivity measure. In fact, the
quantum current viscosity uniquely defines the AC–conductivity measure:

Theorem 5.9 (Reconstruction of µ(ω)
p,l from the quantum current viscosity)

Let l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Then, for all w⃗ := (w1, . . . , wd) ∈ Rd and any

continuous and compactly supported real–valued function Ê with Ê0 = 0,∫
R
Êν
⟨
w⃗, µ

(ω)
p,l (dν)w⃗

⟩
= lim

ϵ↓0

1

π

∫
R
dν

∫ ∞

0

ds
(ϵ cos (νs)− ν sin (νs)) e−ϵs

ν2 + ϵ2

× Êν
⟨
w⃗,Ξ

(ω)
d,l V

(ω)
l (s) w⃗

⟩
.

Proof: Fix l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . For any w⃗ ∈ Rd, define the

complex–valued function

Fw⃗ (z) :=

∫
R

1

ν − z

⟨
w⃗, µ

(ω)
p,l (dν)w⃗

⟩
, z ∈ C+ ,

where C+ is the set of complex numbers with strictly positive imaginary part.
F

(ω)
p,l is the so–called Borel transform of the positive measure⟨

w⃗, µ
(ω)
p,l (dν)w⃗

⟩
. (128)
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By (109), observe that

Fw⃗ (z) =
1

4 |Λl|
∑

k,q∈{1,...,d}

wkwq

(
Ik,l, ((L̃ − z)−1 + (−L̃ − z)−1)Iq,l

)
∼

+
1

4 |Λl|
∑

k,q∈{1,...,d}

wkwq

(
Iq,l, ((L̃ − z)−1 + (−L̃ − z)−1)Ik,l

)
∼

for any z ∈ C+ and w⃗ := (w1, . . . , wd) ∈ Rd. Using

(±L̃ − z)−1 = i

∫ ∞

0

eizse∓isL̃ds , z ∈ C+ ,

as well as Theorem A.16 for X = U , τ = τ (ω,λ) and ϱ = ϱ(β,ω,λ), we obtain

Fw⃗ (z) =
i

|Λl|
∑

k,q∈{1,...,d}

wkwq

∫ ∞

0

eizs(Ik,l, τ (ω,λ)t (Iq,l))∼ds

for every z ∈ C+ and w⃗ := (w1, . . . , wd) ∈ Rd. Using (33) and (103), we now
integrate by parts the r.h.s of the above equation to get

Fw⃗ (z) = − 1

|Λl|
∑

k,q∈{1,...,d}

wkwqz
−1

∫ ∞

0

eizsϱ(β,ω,λ)
(
i[Ik,l, τ (ω,λ)s (Iq,l)]

)
ds

− 1

|Λl|
∑

k,q∈{1,...,d}

wkwqz
−1(Ik,l, Iq,l)∼ (129)

for any z ∈ C+ and w⃗ := (w1, . . . , wd) ∈ Rd. The function ImFw⃗ is the Poisson
transform of the positive measure (128). Hence, we invoke [Jak, Theorem 3.7]
to conclude that, for any real–valued continuous compactly supported function
Ê : R → R,

lim
ϵ↓0

∫
R
Êν ImFw⃗ (ν + iϵ) dν =

∫
R
Êν
⟨
w⃗, µ

(ω)
p,l (dν)w⃗

⟩
.

In particular, by (129) and under the condition that Ê0 = 0, we arrive at the asser-
tion.

To conclude, we show the uniformity of the upper bounds of Theorem 5.5
w.r.t. to the parameters l, β ∈ R+, ω ∈ Ω and λ ∈ R+

0 . These upper bounds all
depend on the observable |Λl|−

1
2 Ik,l, which is a current fluctuation, by (24).
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With this aim we define the linear subspace

I := lin
{
Im(a∗ (ψ1) a (ψ2)) : ψ1, ψ2 ∈ ℓ1(L) ⊂ ℓ2(L)

}
⊂ U , (130)

which is the linear hull (lin) of short range bond currents. It is an invariant sub-
space of the one–parameter group τ (ω,λ) = {τ (ω,λ)t }t∈R for any ω ∈ Ω and λ ∈ R+

0 .
Indeed, the unitary group {(U(ω,λ)

t )∗}t∈R (see (6) and (7)) defines a strongly con-
tinuous group on (ℓ1(L) ⊂ ℓ2(L), ∥ · ∥1).

Let the positive sesquilinear form ⟨·, ·⟩(ω)I,l ≡ ⟨·, ·⟩(β,ω,λ)I,l in I be defined by

⟨I, I ′⟩(ω)I,l := ϱ(β,ω,λ)
(
F(l) (I)∗ F(l) (I ′)

)
, I, I ′ ∈ I , (131)

for any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Here, F(l) is the fluctuation observable

defined by

F(l) (I) =
1

|Λl|1/2
∑
x∈Λl

{
χx (I)− ϱ(β,ω,λ) (I)1

}
, I ∈ I , (132)

for each l ∈ R+, where χx, x ∈ L, are the (space) translation automorphisms.
Compare (24) with (132). For instance, the first upper bound of Theorem 5.5 can
be rewritten as ∫

R
∥µ(ω)

p,l ∥op(dν) ≤
d∑

k=1

⟨I(ek,0), I(ek,0)⟩
(ω)
I,l .

Therefore, we show that the fermion system has uniformly bounded fluctuations,
i.e., the quantity ⟨I, I ′⟩(ω)I,l , I, I ′ ∈ I, is uniformly bounded w.r.t. l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 :

Lemma 5.10 (Uniform boundedness of ⟨·, ·⟩(ω)I,l )
There is a constant D ∈ R+ such that, for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and all
ψ1, ψ2, ψ

′
1, ψ

′
2 ∈ ℓ1(L),∣∣∣⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′

1) a (ψ
′
2))⟩

(ω)
I,l

∣∣∣ ≤ D ∥ψ1∥1 ∥ψ2∥1 ∥ψ
′
1∥1 ∥ψ

′
2∥1 .

Proof: Let ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ ℓ1(L) ⊂ ℓ2(L) and without loss of generality
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assume that the functions ψ1, ψ2, ψ
′
1, ψ

′
2 are real–valued. Then, by definition,

⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′
1) a (ψ

′
2))⟩

(ω)
I,l

=
∑

x:=(x(1),x(2)),y:=(y(1),y(2))∈L2

ψ1(y
(1))ψ2(y

(2))ψ′
1(x

(1))ψ′
2(x

(2))

×

[
1

4 |Λl|
∑

z1,z2∈Λl

ϱ(β,ω,λ)
(
Ifly+(z2,z2)

Iflx+(z1,z1)

)]
,

where
Iflx := Ix − ϱ(β,ω,λ) (Ix)1 , x ∈ L2 .

Recall that Ix is the paramagnetic current observable defined by (19). Hence, it
suffices to prove the existence of a finite constant D ∈ R+ such that, for any
l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and all x,y ∈ L2,∣∣∣∣∣ 1

4 |Λl|
∑

z1,z2∈Λl

ϱ(β,ω,λ)
(
Ifly+(z2,z2)

Iflx+(z1,z1)

)∣∣∣∣∣ ≤ D . (133)

This can be shown by using Lemma 5.3.
Indeed, we infer from (100) at t = α = 0 that, for any l, β ∈ R+, ω ∈ Ω,

λ ∈ R+
0 , x,y ∈ L2 and all z1, z2 ∈ Λl,

ϱ(β,ω,λ)
(
Ifly+(z2,z2)

Iflx+(z1,z1)

)
= ϱ(β,ω,λ)

(
Iy+(z2,z2)Ix+(z1,z1)

)
−ϱ(β,ω,λ)

(
Iy+(z2,z2)

)
ϱ(β,ω,λ)

(
Ix+(z1,z1)

)
= C

(ω)
0 (x+ (z1, z1) ,y + (z2, z2)) , (134)

where C
(ω)
t+iα is the map from L4 to C defined at t ∈ R and α ∈ [0, β] by (93).

Now, take the canonical orthonormal basis {ex}x∈L2 of ℓ2(L)⊗ ℓ2(L) defined by

ex := ex(1) ⊗ ex(2) , x := (x(1), x(2)) ∈ L2 .

Recall that ex(y) ≡ δx,y ∈ ℓ2(L). Then, the coefficient C(ω)
t+iα can be seen as a

kernel – w.r.t. the canonical basis {ex}x∈L2 – of an operator on ℓ2(L) ⊗ ℓ2(L),
again denoted by C

(ω)
t+iα. Then, we observe from (134) that

1

4 |Λl|
∑

z1,z2∈Λl

ϱ(β,ω,λ)
(
Ifly+(z2,z2)

Iflx+(z1,z1)

)
=

1

4 |Λl|
∑

z1,z2∈Λl

⟨
ex+(z1,z1),C

(ω)
0 (ey+(z2,z2))

⟩
(135)
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for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and x,y ∈ L2.

By Lemma 5.3, the operator C(ω)
t+iα always satisfies ∥C(ω)

t+iα∥op ≤ 4 and hence,∣∣∣∣∣ 1

4 |Λl|
∑

z1,z2∈Λl

⟨
ex+(z1,z1),C

(ω)
0 ey+(z2,z2)

⟩∣∣∣∣∣ ≤ 1 (136)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and x,y ∈ L2. By (135), it follows that∣∣∣∣∣ 1

4 |Λl|
∑

z1,z2∈Λl

ϱ(β,ω,λ)
(
Ifly+(z2,z2)

Iflx+(z1,z1)

)∣∣∣∣∣ ≤ 1

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and all x,y ∈ L2.

5.2 Tree–Decay Bounds and Uniformity of Responses
5.2.1 Uniformity of Energy Increment Responses

For the reader’s convenience we start by reminding a few definitions and some
standard mathematical facts used in our proofs. First of all, we recall that in
[BPK1, Section 5.2] we give an explicit expression of the automorphisms τ (ω,λ,A)

t,s

of U in terms of series involving multi–commutators, see [BPK1, Eqs. (3.14)-
(3.15)]. Indeed, in [BPK1, Eq. (5.15)] we represent the automorphisms τ (ω,λ,A)

t,s

as the following Dyson–Phillips series

τ
(ω,λ,A)
t,s (B)− τ

(ω,λ)
t−s (B) (137)

=
∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk[W
A
sk−s,sk

, . . . ,WA
s1−s,s1

, τ
(ω,λ)
t−s (B)](k+1)

for any B ∈ U and t ≥ s. Here, for any t, s ∈ R,

WA
t,s := τ

(ω,λ)
t (WA

s ) ∈ U (138)

is the time–evolution of the electromagnetic potential energy observable WA
s de-

fined by (57), that is,

WA
s :=

∑
x,y∈L

[
exp

(
−i
∫ 1

0

[A(s, αy + (1− α)x)] (y − x)dα

)
− 1

]
×⟨ex,∆dey⟩a∗xay , (139)
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for any A ∈ C∞
0 and s ∈ R.

The expression (137) is useful because we can apply tree–decay bounds on
multi–commutators. These bounds, derived in [BPK1, Section 4], are useful to
analyze multi–commutators of products of annihilation and creation operators.
Using them, we show for instance in [BPK1, Lemma 5.10] that, for any A ∈ C∞

0 ,
there is η0 ∈ R+ such that, for l, ε ∈ R+, there is a ball

B(0, R) := {x ∈ L : |x| ≤ R}

of radius R ∈ R+ centered at 0 such that, for all |η| ∈ (0, η0], β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 , and t0 ≤ s1, . . . , sk ≤ t,

∑
x∈ΛL\BR

∑
z∈L,|z|≤1

∑
k∈N

(t− t0)
k

k!∣∣∣ϱ(β,ω,λ) ([W ηAl
sk−t0,sk

, . . . ,W ηAl
s1−t0,s1 , τ

(ω,λ)
t−t0 (a

∗
xax+z)]

(k+1)
)∣∣∣ ≤ ε .

This property together with (58) and (137) implies that, for all |η| ∈ (0, η0], l, β ∈
R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0,

S(ω,ηAl) (t) =
∑
k∈N

∑
x,z∈L,|z|≤1

⟨ex, (∆d + λVω) ex+z⟩ik
∫ t

t0

ds1 · · ·
∫ sk−1

t0

dsk

ϱ(β,ω,λ)
(
[W ηAl

sk−t0,sk
, . . . ,W ηAl

s1−t0,s1 , τ
(ω,λ)
t−t0 (a

∗
xax+z)]

(k+1)
)
.

(140)

See [BPK1, Section 5.5] for more details.
These assertions are important to get uniform bounds as explained in Theo-

rems 3.3 and 4.1. Indeed, it is relatively straightforward to get the asymptotics
of the elements W ηAl

t and ∂tWA
t when (η, l−1) → (0, 0) by using the integrated

electric field

EA
t (x) :=

∫ 1

0

[
EA(t, αx

(2) + (1− α)x(1))
]
(x(2) − x(1))dα (141)

between x(2) ∈ L and x(1) ∈ L at time t ∈ R (cf. (12)) and the subset

K :=
{
x := (x(1), x(2)) ∈ L2 : |x(1) − x(2)| = 1

}
(142)

of bonds of nearest neighbors (cf. (23)).
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Lemma 5.11 (Asymptotics of the potential energy observable)
For any η, l ∈ R+, A ∈ C∞

0 and t ≥ t0, there are complex numbers{
D̃ηAl

x,y (t)
}

x,y∈L
⊂ C

and a (η, t)–independent subset Λ̃l ∈ Pf (L) of diameter of order O(l) such that

W ηAl
t =

1

2

∑
x∈K

{
η

(∫ t

t0

EAl
s (x)ds

)
Ix +

η2

2

(∫ t

t0

EAl
s (x)ds

)2

Px

}
+η3

∑
x∈Λ̃l

∑
z∈L,|z|≤1

D̃ηAl
x,x+z(t)a

∗
xax+z

with D̃ηAl
x,x+z(t) and ∂tD̃

ηAl
x,x+z(t) being uniformly bounded for all η in compact sets,

all x, z ∈ L such that |z| ≤ 1, and all ω ∈ Ω, λ ∈ R+
0 and l ∈ R+.

Proof: Note that (141) yields

EA
t (x) ≡ EA

t (x
(1), x(2)) = −EA

t (x
(2), x(1)) , x := (x(1), x(2)) ∈ L2 , t ∈ R .

Therefore, the statement is a straightforward consequence of Equations (5), (139)
and (141) together with [BPK1, Eqs. (5.37)–(5.39), (5.41)].

By combining this lemma with (140) one can obtain Theorem 4.1 (S). How-
ever, by using (64), it is easier to start with the paramagnetic and diamagnetic
energies J(ω,A)

p and I
(ω,A)
d respectively defined by (62) and (63):

Theorem 5.12 (Microscopic paramagnetic and diamagnetic energies)
For any A ∈ C∞

0 , there is η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and t ≥ t0, one has:
(p) Paramagnetic energy increment:

I(ω,ηAl)
p (t) =

η2

4

∫ t

t0

ds1

∫ s1

t0

ds2
∑
x,y∈K

σ(ω)
p (x,y,s1 − s2)E

Al
s2
(y)EAl

s1
(x)+O(η3ld) .

(d) Diamagnetic energy:

I
(ω,ηAl)
d (t) =

η

2

∑
x∈K

ϱ(β,ω,λ)(Ix)

∫ t

t0

EAl
s (x)ds

+
η2

2

∫ t

t0

ds1

∫ s1

t0

ds2
∑
x∈K

σ
(ω)
d (x)EAl

s2
(x)EAl

s1
(x) +O(η3ld) .
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The correction terms of order O(ldη3) in assertions (p) and (d) are uniformly
bounded in β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0.

Proof: (p) Using WA
t = 0 for any t ≤ t0 and (9) we note that, for any t ≥ t0,

ϱ(β,ω,λ)(W ηAl
t ) =

∫ t

t0

ϱ(β,ω,λ)
(
∂sW

ηAl
s

)
ds =

∫ t

t0

ϱ(β,ω,λ) ◦ τ (ω,λ)s−t0

(
∂sW

ηAl
s

)
ds .

For all s ∈ R,
W ηAl

s , ∂sW
ηAl
s ∈ UΛ̃l

for some finite subset Λ̃l ∈ Pf (L) of diameter of order O(l), see, e.g., [BPK1,
Eqs. (5.41)]. As a consequence, by (62)–(64), the paramagnetic energy increment
equals

I(ω,ηAl)
p (t) =

∫ t

t0

ϱ(β,ω,λ) ◦
(
τ
(ω,λ,ηAl)
s,t0 − τ

(ω,λ)
s−t0

) (
∂sW

ηAl
s

)
ds (143)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and t ≥ t0.
Similar to the proof of [BPK1, Lemma 5.10], one uses Dyson–Phillips expan-

sions (137) and tree–decay bounds on multi–commutators [BPK1, Corollary 4.3]
to infer from Lemma 5.11 and Equation (143) that, for any A ∈ C∞

0 , there is
η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0,

I(ω,ηAl)
p (t) =

∫ t

t0

ds1

∫ s1

t0

ds2 ϱ
(β,ω,λ)

(
i
[
τ
(ω,λ)
s2−t0

(
W ηAl

s2

)
, τ

(ω,λ)
s1−t0

(
∂s1W

ηAl
s1

)])
+O(η3ld) . (144)

This last correction term of order O(ldη3) is uniformly bounded in β ∈ R+, ω ∈
Ω, λ ∈ R+

0 and t ≥ t0.
Note that (8)–(9) combined with the group property of the family {τ (ω,λ)t }t∈R

imply that

ϱ(β,ω,λ)
(
[τ

(ω,λ)
s2−t0(B2), τ

(ω,λ)
s1−t0 (B1)]

)
= ϱ(β,ω,λ)

(
[τ (ω,λ)s2

(B2) , τ
(ω,λ)
s1

(B1)]
)

for any B1, B2 ∈ U and all s1, s1 ∈ R. Therefore, we insert this equality and the
asymptotics given by Lemma 5.11 in Equation (144) to arrive at the equality

I(ω,ηAl)
p (t) =

η2

4

∑
x,y∈K

∫ t

t0

ds1

∫ s1

t0

ds2

∫ s2

t0

ds3

×EAl
s1
(x)EAl

s3
(y)ϱ(β,ω,λ)

(
i[τ (ω,λ)s2

(Iy), τ
(ω,λ)
s1

(Ix)]
)

+O(η3ld) , (145)
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uniformly for β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.

For any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , x,y ∈ L2 and s1, s2 ∈ R, let

ζ(ω)x,y (s1, s2) :=

∫ s2

s1

ϱ(β,ω,λ)
(
i[τ (ω,λ)s1

(Iy) , τ
(ω,λ)
s (Ix)]

)
ds . (146)

Note that the function ζ(ω)x,y is a map from R2 to R. By combining (146) with
(8)–(9) and (29), we observe that

ζ(ω)x,y (s1, s2) = σ(ω)
p (x,y,s2 − s1) = σ(ω)

p (y,x,s1 − s2) (147)

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , x,y ∈ L2 and s1, s2 ∈ R, while

∂s2ζ
(ω)
y,x (s1, s2) = ϱ(β,ω,λ)

(
i[τ (ω,λ)s1

(Ix) , τ
(ω,λ)
s2

(Iy)]
)
. (148)

As a consequence, the assertion follows from (145) and an integration by parts.
(d) is a direct consequence of (30), (63) and Lemma 5.11.

It remains to study the entropic energy increment S(ω,ηAl) and the electromag-
netic energy P(ω,ηAl) defined by (58) and (59), respectively. To this end, it suffices
to study the potential energy difference

P(ω,ηAl) (t)− I
(ω,ηAl)
d (t) = ρ

(β,ω,λ,ηAl)
t (W ηAl

t )− ϱ(β,ω,λ)(W ηAl
t )

for all times t ≥ t0. This is done in the following lemma:

Lemma 5.13 (Potential energy difference)
For any A ∈ C∞

0 , there is η0 ∈ R+ such that, for all |η| ∈ (0, η0] and l ∈ R+,

P(ω,ηAl) (t)− I
(ω,ηAl)
d (t)

=
η2

4

∑
x,y∈K

(∫ t

t0

EAl
s (x)ds

)(∫ t

t0

σ(ω)
p (x,y, t− s)EAl

s (y)ds

)
+O(η3ld) ,

uniformly for β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.

Proof: The proof is very similar to the one of Theorem 5.12. In particular, to
get the asymptotics, it suffices to observe that, for any A ∈ C∞

0 , there is η0 ∈ R+

such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0,

ρ
(β,ω,λ,ηAl)
t (W ηAl

t )− ϱ(β,ω,λ)(W ηAl
t )

=

∫ t

t0

ϱ(β,ω,λ)
(
i[τ (ω,λ)s (W ηAl

s ), τ
(ω,λ)
t (W ηAl

t )]
)
ds+O(η3ld) , (149)
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by (8)–(9), the Dyson–Phillips expansions (137), Lemma 5.11 and tree–decay
bounds on multi–commutators [BPK1, Corollary 4.3]. Note that the correction
term of order O(η3ld) in (149) is again uniformly bounded in β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and t ≥ t0.
Then, we use Lemma 5.11 in (149) to obtain

ρ
(β,ω,λ,ηAl)
t (W ηAl

t )− ϱ(β,ω,λ)(W ηAl
t )

=
η2

4

∑
x,y∈K

(∫ t

t0

EAl
s (x)ds

)∫ t

t0

ds1

(∫ s1

t0

EAl
s2
(y)ds2

)
×ϱ(β,ω,λ)

(
i[τ (ω,λ)s1

(Iy) , τ
(ω,λ)
t (Ix)]

)
+O(η3ld) ,

uniformly for β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0. We then obtain

ρ
(β,ω,λ,ηAl)
t (W ηAl

t )− ϱ(β,ω,λ)(W ηAl
t ) (150)

=
η2

4

∑
x,y∈K

(∫ t

t0

EAl
s (x)ds

)(∫ t

t0

ζ(ω)y,x (t, s)E
Al
s (y)ds

)
+O(η3ld) ,

by using (146), (148) and an integration by parts. We now invoke Equation (147)
in (150) to arrive at the assertion.

Therefore, Theorem 4.1 (Q) and (P) are direct consequences of (58)–(59),
(62)–(63), Theorem 5.12 and Lemma 5.13.

5.2.2 Uniformity of Current Linear Response

Following Section 3 we take w⃗ := (w1, . . . , wd) ∈ Rd, A ∈ C∞
0 (R;R) and

Et := −∂tAt for any t ∈ R, with Etw⃗ being the space–homogeneous electric field.
Then, Ā ∈ C∞

0 is defined to be the electromagnetic potential such that the value
of the electric field equals Etw⃗ at time t ∈ R for all x ∈ [−1, 1]d and (0, 0, . . . , 0)
for t ∈ R and x /∈ [−1, 1]d. This choice yields rescaled electromagnetic potentials
ηĀl as defined by (17) for l ∈ R+ and η ∈ R. Recall that A(t, x) := 0 for all
t ≤ t0, where t0 ∈ R is any fixed starting time. We also recall that {ek}dk=1 is the
canonical orthonormal basis of the Euclidian space Rd.

In this case, the electromagnetic potential energy observable defined by (57)
equals

W ηĀl
t = −

∑
x∈Λl

∑
q∈{1,...,d}

2Re

[(
exp

(
iηwq

∫ t

t0

Es ds
)
− 1

)
a∗xax+eq

]
∈ U

(151)
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for any l ∈ R+, η ∈ R, w⃗ := (w1, . . . , wd) ∈ Rd, A ∈ C∞
0 (R;R) and t ∈ R.

The full current density is the sum of the paramagnetic and diamagnetic cur-
rents J(ω,ηĀl)

p and J(ω,ηĀl)
d that are respectively defined by (42) and (43). These

currents are directly related to the transport coefficients Ξ
(ω)
p,l and Ξ

(ω)
d,l (cf. (33)–

(34)). We show this in two lemmata that yield Theorem 3.3:

Lemma 5.14 (Linear response of paramagnetic currents)
For any w⃗ := (w1, . . . , wd) ∈ Rd and A ∈ C∞

0 (R;R), there is η0 ∈ R+ such
that, for |η| ∈ [0, η0],

J(ω,ηĀl)
p (t) = η

∫ t

t0

(
Ξ
(ω)
p,l (t− s) w⃗

)
Esds+O

(
η2
)
,

uniformly for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.

Proof: The first assertion is proven by essentially the same arguments as in
Section 5.2.1. Indeed, one uses the stationarity (9) of the (τ (ω,λ), β)–KMS state
ϱ(β,ω,λ), Dyson–Phillips expansions (137) for the non–autonomous dynamics, Lem-
ma 5.11, and tree–decay bounds on multi–commutators [BPK1, Corollary 4.3] as
in [BPK1, Lemma 5.10] in order to deduce from (42) the existence of η0 ∈ R+

such that, for |η| ∈ [0, η0],{
J(ω,ηĀl)
p (t)

}
k
=

1

|Λl|

∫ t

t0

ϱ(β,ω,λ)
(
i[τ (ω,λ)s (W ηĀl

s ), τ
(ω,λ)
t (Ik,l)]

)
ds+O

(
η2
)
,

uniformly for all l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k ∈ {1, . . . , d} and t ∈ R. Then, for

|η| ∈ [0, η0], we employ (151) and derive an assertion similar to Lemma 5.11 in
order to get{

J(ω,ηĀl)
p (t)

}
k

=
η

|Λl|
∑

q∈{1,...,d}

∫ t

t0

ds1

∫ s1

t0

ds2 Es2wq ϱ
(β,ω,λ)

(
i[τ (ω,λ)s1

(Iq,l), τ (ω,λ)t (Ik,l)]
)

+O
(
η2
)
,

uniformly for all l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k ∈ {1, . . . , d} and t ∈ R. It follows
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from an integration by parts that{
J(ω,ηĀl)
p (t)

}
k

=
η

|Λl|

∫ t

t0

∑
q∈{1,...,d}

(∫ s1

t

ϱ(β,ω,λ)
(
i[Ik,l, τ (ω,λ)s2−t (Iq,l)]

)
ds2

)
wqEs1 ds1

+O
(
η2
)
,

which, combined with (33) and (104), yields the assertion.

Lemma 5.15 (Linear response of diamagnetic currents)
For any w⃗ := (w1, . . . , wd) ∈ Rd and A ∈ C∞

0 (R;R), there is η0 ∈ R+ such
that, for |η| ∈ [0, η0],

J(ω,ηĀl)
d (t) = η

(
Ξ
(ω)
d,l w⃗

)∫ t

t0

Esds+O
(
η2
)
,

uniformly for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.

Proof: By (9), for any k ∈ {1, . . . , d}, note that{
J(ω,ηĀl)
d (t)

}
k

=
1

|Λl|
ϱ(β,ω,λ)

(
(τ

(ω,λ,ηĀl)
t,t0 − τ

(ω,λ)
t−t0 )(I

ηAl

k,l )
)

+
1

|Λl|
ϱ(β,ω,λ)(IηAl

k,l ) , (152)

while

IηAl

k,l = ηwk

(∫ t

t0

Esds
)∑

x∈Λl

(
a∗x+ek

ax + a∗xax+ek

)
+O(η2ld) , (153)

uniformly for all β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k ∈ {1, . . . , d} and t ∈ R. Therefore,

using again Dyson–Phillips expansions (137) for the non–autonomous dynamics,
Lemma 5.11, and tree–decay bounds on multi–commutators [BPK1, Corollary
4.3] one deduces the existence of η0 ∈ R+ such that, for |η| ∈ [0, η0], the first
term in the right hand side of (152) is of order O (η2), uniformly for l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 , k ∈ {1, . . . , d} and t ≥ t0. Then the assertion follows by
combining this property with (34) and (152)–(153).
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A Duhamel Two–Point Functions

A.1 Duhamel Two–Point Function on the CAR Algebra
The Duhamel two–point function (·, ·)(ω)∼ is defined by (88), that is,

(B1, B2)
(ω)
∼ ≡ (B1, B2)

(β,ω,λ)
∼ :=

∫ β

0

ϱ(β,ω,λ)
(
B∗

1τ
(ω,λ)
iα (B2)

)
dα (154)

for any B1, B2 ∈ U . Its name comes from the clear relation to Duhamel’s for-
mula, see [Si, Section IV.4] for more details. This sesquilinear form appears in
different contexts. For instance, it has been used by Bogoliubov [B1] for finite
volume quantum systems in quantum statistical mechanics. It is an useful tool in
the first mathematical justification – by Ginibre [G] in 1968 – of the Bogoliubov
approximation for the Bose gas. This sesquilinear form is also used in the context
of linear response theory, see for instance [BR2, Discussion after Lemma 5.3.16
and Section 5.4]. In fact, it is also named in the literature Bogoliubov or Kubo–
Mori scalar product as well as the canonical correlation. A detailed analysis of
this sesquilinear form for KMS states has been performed by Naudts, Verbeure
and Weder in the paper [NVW]. Their aim was to extend to infinite systems some
results of linear response theory initiated by Kubo [K] and Mori [M].

Note that our definition of (·, ·)∼ is slightly different from the usual one be-
cause of the missing normalization factor β−1 in front of the integral in (154).
Discussions on Duhamel two–point functions and examples of applications can
also be found in [MW, H, FB, NV, R, DLS].

A first way to study this sesquilinear form is to use finite volume systems. In-
deed, using the Phragmén–Lindelöf theorem [BR2, Proposition 5.3.5] and [BPK1,
Theorem A.3] one checks that the formal expression

ϱ(β,ω,λ)
(
B∗τ

(ω,λ)
iα (B)

)
= ϱ(β,ω,λ)

(
(τ

(ω,λ)
iα/2 (B))∗τ

(ω,λ)
iα/2 (B)

)
≥ 0

is correct for anyB ∈ U and all α ∈ [0, β]. So (B1, B2) 7→ (B1, B2)∼ is a positive
semi–definite sesquilinear form on U . It is however important for the study of the
conductivity measure to know that this form defines a scalar product. To this end,
we invoke the modular theory to have access to functional calculus as it is done in
the paper [NVW].
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A.2 Duhamel Two–Point Functions on von Neumann Algebras

We consider in all the following subsections an arbitrary strongly continuous one–
parameter group τ := {τ t}t∈R of automorphisms of a C∗–algebra X as well as
an arbitrary (τ , β)–KMS state ϱ ∈ X ∗ for some β > 0. Similar to (154), the
Duhamel two–point function (·, ·)∼ on the C∗–algebra X is defined by

(B1, B2)∼ :=

∫ β

0

ϱ (B∗
1τ iα(B2)) dα , B1, B2 ∈ X . (155)

We have in mind the example X = U , τ = τ (ω,λ) and ϱ = ϱ(β,ω,λ) for β ∈ R+,
ω ∈ Ω and λ ∈ R+

0 , of course.
Any GNS representation of ϱ is denoted by (H, π,Ψ). There is a unique nor-

mal state of the von Neumann algebra M := π (X )′′, also denoted by ϱ ∈ M∗

to simplify notation, with ρ = ρ ◦ π on X . By [BR2, Corollary 5.3.4], there is
a unique σ–weakly continuous ∗–automorphism group on M, which is again de-
noted by τ = {τ t}t∈R, such that τ t ◦ π = π ◦ τ t, t ∈ R, on X . Moreover, the
normal state ϱ ∈ M∗ is a (τ , β)–KMS state on M and it thus satisfies the KMS
(or modular) condition, that is, for any b1, b2 ∈ M, the map

t 7→ mb1,b2 (t) := ϱ(b1τ t(b2)) = ⟨Ψ, b1τ t(b2)Ψ⟩H

from R to C extends uniquely to a continuous map mb1,b2 on R× [0, β] ⊂ C which
is holomorphic on R× (0, β) whereas

mb1,b2 (iβ) = ϱ(b2b1) , b1, b2 ∈ M .

Here, ⟨·, ·⟩H denotes the scalar product of the Hilbert space H. See, e.g., [BR2,
Proposition 5.3.7].

Because ϱ is invariant with respect to τ , the ∗–automorphism group τ has a
unique representation by conjugation with unitaries {Ut}t∈R ⊂ M, i.e.,

τ t (b) = UtbU
∗
t , t ∈ R , b ∈ M ,

such that UtΨ = Ψ. As t 7→ τ t is σ–weakly continuous, the map t 7→ Ut

is strongly continuous. Therefore, the unitary group {Ut}t∈R has an anti–self–
adjoint operator iL as generator, i.e., Ut = eitL. In particular, Ψ ∈ Dom(L) and
L annihilates Ψ, i.e., LΨ = 0. The operator L is known in the literature as the
standard Liouvillean of τ associated with ϱ. The spectral theorem applied to the
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self–adjoint operator L ensures the existence of a projection–valued measure E
on the real line R such that

L =

∫
R
ν dE(ν) .

We now use the (Tomita–Takesaki) modular objects ∆, J of the pair (M,Ψ).
In particular,

J∆1/2 (bΨ) = b∗Ψ , b ∈ M . (156)

By [P, Proposition 5.11], the modular operator ∆ is equal to

∆ = exp (−βL) =
∫
R
e−βνdE(ν) (157)

and Ut = ∆−itβ−1
.

Now, let the (unbounded) positive operator T acting on H be defined by

T := β1/2

∫
R

(
1− e−βν

βν

)1/2

dE(ν) . (158)

Here,
1− e−β·0

β · 0
:= 1 .

The Duhamel two–point function (·, ·)∼ is directly related to this operator:

Theorem A.1 (Duhamel two–point function in the GNS representation)
For any B1, B2 ∈ X ,

(B1, B2)∼ = ⟨Tπ (B1)Ψ,Tπ (B2)Ψ⟩H .

In particular, (B1, B1)∼ ≥ 0.

Proof: The proof can be found in [NVW, Theorem II.4]. Since it is short, we
give it here for completeness. Note first that, for any b1, b2 ∈ M,⟨

Ψ, b1∆
1/2b2Ψ

⟩
H =

⟨
∆1/2b∗1Ψ, b2Ψ

⟩
H = ⟨Jb2Ψ, b1Ψ⟩H

=
⟨
∆1/2J∆1/2b2Ψ, b1Ψ

⟩
H =

⟨
Ψ, b2∆

1/2b1Ψ
⟩
H ,

where we have used ∆ = ∆∗, the anti–unitarity of J , J2 = 1, and J∆1/2J =
∆−1/2. Using this fact and properties of the map mb1,b2 from R × [0, β] ⊂ C
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to C together with the Phragmén–Lindelöf theorem [BR2, Proposition 5.3.5] one
shows that, for any b1, b2 ∈ M,

mb1,b2 (iβα) =

{
⟨Ψ, b1∆αb2Ψ⟩H , α ∈ [0, 1/2] ,
⟨Ψ, b2∆1−αb1Ψ⟩H , α ∈ [1/2, 1] .

By (155) and (156), it follows that

(B1, B2)∼ = β

∫ 1/2

0

⟨π (B1)Ψ,∆
απ (B2)Ψ⟩H dα (159)

+β

∫ 1/2

0

⟨
J∆1/2π (B2)Ψ,∆

αJ∆1/2π (B1)Ψ
⟩
H dα .

Because J2 = 1, J∆αJ = ∆−α and J is anti–unitary, note that⟨
J∆1/2π (B2)Ψ,∆

αJ∆1/2π (B1)Ψ
⟩
H

=
⟨
J∆αJ∆1/2π (B1)Ψ,∆

1/2π (B2)Ψ
⟩
H

=
⟨
∆−α∆1/2π (B1)Ψ,∆

1/2π (B2)Ψ
⟩
H

for all α ∈ [0, 1/2]. Therefore, we deduce from (158) and (159) that

(B1, B2)∼ = β

⟨
π (B1)Ψ,

∆− 1

ln∆
π (B2)Ψ

⟩
H
= ⟨Tπ (B1)Ψ,Tπ (B2)Ψ⟩H ,

using that∫ 1/2

0

∆αbΨ dα =
∆1/2 − 1

ln∆
bΨ and

∫ 1/2

0

∆−αbΨ dα =
1−∆−1/2

ln∆
bΨ

for any b ∈ M.

By (158), one checks that Dom(∆1/2) ⊂ Dom(T) and thus, MΨ ⊂ Dom(T).
It is therefore natural to define the Duhamel two–point function, again denoted by
(·, ·)∼, on the von Neumann algebra M := π (X )′′ by

(b1, b2)∼ := ⟨Tb1Ψ,Tb2Ψ⟩H , b1, b2 ∈ M . (160)

This sesquilinear form is a scalar product:

Theorem A.2 (Duhamel two–point function as a scalar product)
The sesquilinear form (·, ·)∼ is a scalar product of the pre–Hilbert space M.
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Proof: The positivity of the sesquilinear form (·, ·)∼ is clear. Therefore, it only
remains to verify that it is non–degenerated. This is proven in [NVW, Lemma
II.2.] as follows: First note that 0 is not an eigenvalue of T. This follows from
(158). Indeed, for all ν ∈ R, (

1− e−βν

βν

)1/2

> 0 .

Since ϱ is a (τ , β)–KMS state, the cyclic vector Ψ is also separating for M, by
[BR2, Corollary 5.3.9.]. Therefore, (b, b)∼ = 0 yields TbΨ = 0 which in turn
implies that bΨ = 0 and b = 0.

Note that the kernel of π is a closed two–sided ideal. If the C∗–algebra X is
simple (like U), i.e., when {0} and X are the only closed two–sided ideals, it then
follows that

ker (π) = {0}.
Using this and Theorem A.2 we deduce that the Duhamel two–point function
(155) for B1 = B2 ∈ X\{0} is never zero:

Theorem A.3 (Duhamel two–point function – Strict positivity)
If the C∗–algebra X is simple then (B,B)∼ > 0 for all non–zero B ∈ X\{0}.

Finally, we observe that it is a priori not clear that the scalar products (·, ·)∼
and ⟨·, ·⟩H are related to each other via some upper or lower bounds. In fact, a
combination of Roepstorff’s results [R, Eq. (10)] for finite dimensional systems
with those of Naudts and Verbeure on von Neumann Algebras yields the so–called
auto–correlation upper bounds [NV, Theorem III.1], also called Roepstorff’s in-
equality. For self–adjoint observables, these upper bounds read:

Theorem A.4 (Auto–correlation upper bounds for observables)
For any self–adjoint element b = b∗ ∈ M, (b, b)∼ ≤ ⟨bΨ, bΨ⟩H. In particular, for
all B = B∗ ∈ X ,

(B,B)∼ ≤ ϱ(B2) ≤ ∥B∥2X .

Proof: This theorem is a particular case of [NV, Theorem III.1], by observing
in its proof that (u − v) log(u/v) should be replaced by u when u = v. See also
[BR2, Theorem 5.3.17].

Note that the authors derive in [R, NV] further upper and lower bounds related
the scalar products (·, ·)∼ and ⟨·, ·⟩H. These are however not used in the sequel.
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For more details, we refer to [NV] or [BR2, Section 5.3.1]. We only conclude this
subsection by an important equality for the Duhamel two–point function (·, ·)∼
which was widely used for finite volume systems. See, e.g., [G, Eq. (2.4)].

This equality does not seem to be proven before for general KMS states. It
is a straighforward consequence of Theorem A.1. To this end, denote by δ the
generator of the strongly continuous one–parameter group τ := {τ t}t∈R of auto-
morphisms of the C∗–algebra X .

Theorem A.5 (Commutators and Duhamel two–point function)
For all B1 ∈ X and B2 ∈ Dom(δ),

−i(B1, δ (B2))∼ = ϱ ([B∗
1 , B2]) .

Proof: It is a direct consequence of (156)–(158) and (160): For any B1 ∈ X
and B2 ∈ Dom(δ),

−i(B1, δ (B2))∼ = ⟨Tπ (B1)Ψ,Tπ (δ (B2))Ψ⟩H
= ⟨π (B1)Ψ, π (B2)Ψ⟩H −

⟨
∆1/2π (B1)Ψ,∆

1/2π (B2)Ψ
⟩
H

= ⟨π (B1)Ψ, π (B2)Ψ⟩H − ⟨π (B∗
2)Ψ, π (B

∗
1)Ψ⟩H

= ϱ ([B∗
1 , B2]) .

See also Theorem A.1.

Corollary A.6 (Duhamel two–point function and generator of dynamics)
For any self–adjoint element B = B∗ ∈ Dom(δ) ⊂ X ,

(B, δ (B))∼ = 0 and − iϱ ([δ (B) , B]) = (δ (B) , δ (B))∼ ≥ 0 .

A.3 Duhamel GNS Representation
In view of Theorem A.2, we denote by H̃ the completion of M w.r.t. the scalar
product (·, ·)∼. This Hilbert space is related to any GNS Hilbert space of ϱ by a
unitary transformation:

Theorem A.7 (Unitary equivalence of H and H̃)
U∼H̃ = H with U∼ being the unitary operator defined by U∼b = TbΨ for b ∈ M.
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Proof: Since ∥U∼b∥H = ∥b∥∼, the operator U∼ defined by U∼b = TbΨ for
b ∈ M has a continuous isometric extension on H̃. Then, one checks that the
range of T is dense in H and is included in the range of U∼. For more details, see
[NVW, Theorem II.3.].

A simple consequence of Theorem A.7 is a GNS representation based on the
Duhamel two–point function:

Definition A.8 (Duhamel GNS representation)
The Duhamel GNS representation of the (τ , β)–KMS state ϱ ∈ X ∗ is defined by
the triplet (H̃, π̃, Ψ̃) where

Ψ̃ := U∗
∼Ψ = U∗

∼TΨ ∈ H̃ and π̃ (B) = U∗
∼π (B)U∼ , B ∈ X .

If X has an identity 1, then Ψ̃ = π(1) ∈ M ⊂ H̃.

This GNS representation of KMS states does not seem – at least to our knowl-
edge – to have been previously used, even if it is a direct consequence of [NVW,
Theorem II.3.]. In particular, the name Duhamel GNS representation is not stan-
dard and it could also be called Bogoliubov or Kubo–Mori GNS representation in
reference to the scalar product (·, ·)∼.

As explained in Section A.2, there is a unique σ–weakly continuous ∗–automor-
phism group τ̃ = {τ̃ t}t∈R on the von Neumann algebra M̃ := π̃ (X )′′, such that
τ t = τ̃ t ◦ π, t ∈ R. It has a representation by conjugation with unitaries

{eitL̃}t∈R ⊂ M,

the self–adjoint operator L̃ being equal to

L̃ = U∗
∼LU∼ . (161)

Clearly, Ψ̃ ∈ Dom(L̃) and L̃Ψ̃ = 0. The normal state ϱ̃ ∈ M̃∗ is a (τ̃ , β)–KMS
state.

At the end of the previous subsection we explain that if the C∗–algebra X is
simple, like the CAR algebra U , then π : X → M is injective and one can see the
C∗–algebra X as a subspace of H̃. In particular, if X has an identity 1, then

Ψ̃ = 1 ∈ X ⊂ M ⊂ H̃ .

Note additionally that, in this case, for any element B ∈ X and time t ∈ R, one
has τ t(B) ∈ X ⊂ H̃ and it is straightforward to check (cf. [NVW, Section III])
that iL̃ is the generator of a unitary group extending τ to the whole Hilbert space
H̃:
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Theorem A.9 (Duhamel GNS representation and dynamics)
Assume X is simple. Then, for B ∈ X ⊂ H̃ and t ∈ R, τ t(B) = eitL̃B with
(B, L̃B)∼ = 0 if B ∈ Dom(L̃).

Proof: See [NVW, Section III]: By Theorem A.7, for any B ∈ X ⊂ M ⊂ H̃
and t ∈ R,

τ t(B) = U∗
∼Tπ (τ t(B))Ψ = U∗

∼Te
itLπ (B)Ψ

= U∗
∼e

itLTπ (B)Ψ = U∗
∼e

itLU∼B = eitU
∗
∼LU∼B .

Recall that (H, π,Ψ) is any GNS representation of the (τ , β)–KMS state ϱ and L
is the associated standard Liouvillean. See also (161). The equality (B, L̃B)∼ = 0
results from Corollary A.6.

Note that Theorem A.9 directly yields the invariance of the norm of B ∈ X ⊂
H̃ w.r.t. to the group τ acting on the subspace X ⊂ H̃.

Corollary A.10 (Stationarity of the Duhamel norm)
Assume X is simple. Then, for B ∈ X ⊂ H̃ and t ∈ R, ∥τ t(B)∥∼ = ∥B∥∼
with ∥ · ∥∼ denoting the (Duhamel) norm of H̃ associated with the scalar product
(·, ·)∼.

Therefore, by Theorem A.9, we can invoke the spectral theorem in order to
analyze the dynamics in relation with the scalar product (·, ·)∼. This is exploited
for instance in Theorem 5.4 to extract the conductivity measure from a spectral
measure.

Remark A.11 (U as a pre–Hilbert space)
We identify in all the paper the Duhamel two–point function (·, ·)∼ defined by
(154) on the CAR C∗–algebra U with the scalar product (·, ·)∼ defined by (160)
for ϱ = ϱ(β,ω,λ) and τ = τ (ω,λ) on M := π (U)′′ ⊂ H̃. Note that U ≡ π(U) ⊂ M
is a pre–Hilbert space w.r.t. (·, ·)∼.

A.4 Duhamel Two–Point Function and Time–Reversal Sym-
metry

Let X be a C∗–algebra with unity 1 and assume the existence of a map Θ : X →
X with the following properties:
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• Θ is antilinear and continuous.

• Θ(1) = 1 and Θ ◦Θ = IdX .

• Θ(B1B2) = Θ (B1)Θ (B2) for all B1, B2 ∈ X .

• Θ(B∗) = Θ (B)∗ for all B ∈ X .

Such a map is called a time–reversal operation of the C∗–algebra X .
Observe that, for any strongly continuous one–parameter group τ := {τ t}t∈R

of automorphisms of X , the family τΘ := {τΘt }t∈R defined by

τΘt := Θ ◦ τ t ◦Θ , t ∈ R ,

is again a strongly continuous one–parameter group of automorphisms. Similarly,
for any state ρ ∈ X ∗, the linear functional ρΘ defined by

ρΘ (B) = ρ ◦Θ(B) , B ∈ X ,

is again a state. We say that τ and ρ are time–reversal invariant if they satisfy
τΘt = τ−t for all t ∈ R and ρΘ = ρ.

If τ is time–reversal invariant then, for all β > 0, there is at least one time–
reversal invariant (τ , β)–KMS state ϱ ∈ X ∗, provided the set of (τ , β)–KMS
states is not empty. This follows from the convexity of the set of KMS states:

Lemma A.12 (Existence of time–reversal invariant (τ , β)–KMS states)
Assume that τ is time–reversal invariant and ϱ is a (τ , β)–KMS state. Then, ρΘ is
a (τ , β)–KMS state. In particular, 1

2
ρ + 1

2
ρΘ is a time–reversal invariant (τ , β)–

KMS state.

Proof: For any t ∈ R and B1, B2 ∈ X ,

ρΘ (B1τ t (B2)) = ρ (Θ (B1) τ−t (Θ (B2))) = ρ (Θ (B∗
2) τ t (Θ (B∗

1))) ,

using the stationarity of KMS–states and hermiticity of states. Since ρ is by as-
sumption a (τ , β)–KMS state, the continuous function

t 7→ mB1,B2 (t) := ρ (Θ (B∗
2) τ t (Θ (B∗

1)))
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from R to C extends uniquely to a continuous map mB1,B2 on R × [0, β] ⊂ C
which is holomorphic on R × (0, β) while, again by stationarity and hermiticity
of ρ,

mB1,B2 (t+ iβ) = ρ (τ t (Θ (B∗
1))Θ (B∗

2))

= ρ (Θ (B∗
1)Θ (τ t (B

∗
2))) = ρΘ (τ t (B2)B1)

for any t ∈ R and B1, B2 ∈ X . As a consequence, ρΘ is a (τ , β)–KMS state, see
[BR2, Proposition 5.3.7].

This lemma implies that, if ϱ is the unique (τ , β)–KMS state with τ being time–
reversal invariant, then ϱ is time–reversal invariant.

Let

X+ := {B = B∗ ∈ X : Θ (B) = B} , X− := {B = B∗ ∈ X : Θ (B) = −B} .

These spaces are closed real subspaces of X . Furthermore, they are real pre–
Hilbert spaces w.r.t. the Duhamel two–point function (·, ·)∼ defined by (155).

Lemma A.13 (X± as real pre–Hilbert spaces)
Assume that τ is time–reversal invariant and ϱ is a time–reversal invariant (τ , β)–
KMS state defining the Duhamel two–point function (·, ·)∼. Then, for allB1, B2 ∈
X− and all B3, B4 ∈ X+,

(B1, B2)∼ = (B2, B1)∼ ∈ R and (B3, B4)∼ = (B4, B3)∼ ∈ R .

Proof: For any B1, B2 ∈ X−, one clearly has

(B1, B2)∼ = (Θ (B1) ,Θ(B2))∼ .

Thus, we have to prove that

(Θ (B1) ,Θ(B2))∼ = (B2, B1)∼ , B1, B2 ∈ X− .

By the Phragmén–Lindelöf theorem [BR2, Proposition 5.3.5], the stationarity of
KMS states and Definition (155), it suffices to show that

ϱ (Θ (B1) τ t(Θ (B2))) = ϱ (B2τ t(B1))

for all t ∈ R and every B1, B2 ∈ X−. In fact, by the time–reversal invariance of
ϱ, the stationarity of KMS states and the hermiticity of states,

ϱ (Θ (B1) τ t(Θ (B2))) = ϱ (B1τ−t(B2)) = ϱ (τ t (B1)B2) = ϱ (B2τ t (B1)) .
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As (·, ·)∼ is a sesquilinear form, we thus have

(B1, B2)∼ = (B2, B1)∼ = (B2, B1)∼ ∈ R , B1, B2 ∈ X− .

The assertion for X+ is proven in the same way.

This lemma can be generalized for time–dependent Duhamel correlation func-
tions. To this end, we show the following assertions:

Lemma A.14 (Commutators and Duhamel correlation functions)
Let ϱ be a (τ , β)–KMS state defining the Duhamel two–point function (·, ·)∼.
Then, for any B1, B2 ∈ X and all t ∈ R,∫ t

0

ϱ (i[B1, τ s(B2)]) ds = (B1, τ t(B2))∼ − (B1, B2)∼ .

Proof: It is an obvious consequence of Theorem A.5. The assertion can also be
deduced from [NVW, Theorem II.5]. We give here another proof because some
of its arguments are used elsewhere in the paper.

By assumption, for any B1, B2 ∈ X , the map from R to C defined by

t 7→ ϱ (B1τ t(B2))

uniquely extends to a continuous map

z 7→ ϱ (B1τ z(B2))

on the strip R+i[0, β], which is holomorphic on R+i(0, β). The KMS property of
ϱ, that is,

ϱ(B1τ t+iβ(B2)) = ϱ(τ t(B2)B1) , B1, B2 ∈ X , t ∈ R , (162)

implies that, for any B1, B2 ∈ X and t ∈ R,

ϱ ([B1, τ t(B2)]) = ϱ (B1τ t(B2))− ϱ (B1τ t+iβ(B2)) .

As a consequence, by the Cauchy theorem for analytic functions, we obtain that∫ t

0

ϱ (i[B1, τ s(B2)]) ds =

∫ β

0

ϱ (B1τ t+iα(B2)) dα− (B1, B2)∼
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for any B1, B2 ∈ X and t ∈ R. The group property of τ obviously yields

ϱ (B1τ t+z(B2)) = ϱ (B1τ z(τ t(B2))) (163)

for all z, t ∈ R. On the other hand, the KMS property (162) of ϱ leads to Equation
(163) for all z ∈ R+iβ. Therefore, we infer from the Phragmén–Lindelöf theorem
[BR2, Proposition 5.3.5] that, for any B1, B2 ∈ X , (163) holds true for all z ∈
R+ i[0, β]. In particular,∫ β

0

ϱ (B1τ t+iα(B2)) dα = (B1, τ t(B2))∼ . (164)

Lemma A.15 (Time–reversal symmetry of commutators)
Assume that τ is time–reversal invariant and ϱ is a time–reversal invariant state.
Then, for any B1, B2 ∈ X− (or X+) and all t ∈ R,∫ t

0

ϱ (i[B1, τ s(B2)]) ds =

∫ −t

0

ϱ (i[B1, τ s(B2)]) ds =

∫ t

0

ϱ (i[B2, τ s(B1)]) ds .

Proof: The first equality follows from the following assertions: For anyB1, B2 ∈
X− (or X+) and t ∈ R,∫ −t

0

ϱ (i[B1, τ s(B2)]) ds =

∫ −t

0

ϱ ◦Θ(i[B1, τ s(B2)])ds

= −
∫ −t

0

ϱ (i[B1, τ−s(B2)]) ds

=

∫ t

0

ϱ (i[B1, τ s(B2)]) ds .

Furthermore, by stationarity of KMS states,∫ t

0

ϱ (i[B2, τ s(B1)]) ds = −
∫ t

0

ϱ (i[B1, τ−s(B2)]) ds =

∫ −t

0

ϱ (i[B1, τ s(B2)]) ds

for any B1, B2 ∈ X− (or X+) and t ∈ R.

We are now in position to prove a generalization of Lemma A.13:

78



Theorem A.16 (Symmetries of Duhamel correlation functions)
Assume that τ is time–reversal invariant and ϱ is a time–reversal invariant (τ , β)–
KMS state defining the Duhamel two–point function (·, ·)∼. Then, for allB1, B2 ∈
X− (or X+) and t ∈ R,

(B1, τ t (B2))∼ = (B1, τ−t (B2))∼ = (B2, τ t (B1))∼ ∈ R .

Proof: By Lemma A.14,

(B1, τ t(B2))∼ =

∫ t

0

ϱ (i[B1, τ s(B2)]) ds+ (B1, B2)∼

for all B1, B2 ∈ X− (or X+) and t ∈ R. Observe that

ϱ (i[B1, τ s(B2)]) ∈ R ,

for all B1, B2 ∈ X− (or X+) and s ∈ R, because B1, B2 are self–adjoint elements
of X . From Lemma A.13, it follows that, for anyB1, B2 ∈ X− (or X+) and t ∈ R,

(B1, τ t(B2))∼ ∈ R .

Moreover, by Lemmata A.13 and A.15,

(B1, τ t(B2))∼ = (B1, τ−t(B2))∼ = (B2, τ t(B1))∼

for any B1, B2 ∈ X− (or X+) and t ∈ R.
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