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Abstract

We study the asymptotics of large, simple, labeled graphs constrained by the den-
sities of k-star subgraphs for two or more k, including edges. We prove that for any
set of fixed constraints, such graphs are “multipodal”: asymptotically in the number
of vertices there is a partition of the vertices into M <∞ subsets V1, V2, . . . , VM , and
a set of well-defined probabilities qij of an edge between any vi ∈ Vi and vj ∈ Vj . We
also prove, in the 2-constraint case where the constraints are on edges and 2-stars, the
existence of inequivalent optima at certain parameter values. Finally, we give evidence
based on simulation, that throughout the space of the constraint parameters of the
2-star model the graphs are not just multipodal but bipodal (M=2), easily understood
as extensions of the known optimizers on the boundary of the parameter space, and
that the degenerate optima correspond to a non-analyticity in the entropy.

1 Introduction

We study the asymptotics of large, simple, labeled graphs constrained to have certain fixed
subgraph densities (see definition below). We consider the simplest cases, called star models,
with ` ≥ 2 constraints where the subgraphs are “k-stars”: k ≥ 1 edges with a common
vertex, always including edges (1-stars) as one of the constraints.

Using the graphon formalism of Lovász et al to frame the asymptotics, we prove that
all constrained graphons maximizing the entropy are “multipodal”: there is a partition of
the vertices into M < ∞ subsets V1, V2, . . . , VM , and a set of well-defined probabilities qij
of an edge between any vi ∈ Vi and vj ∈ Vj. In particular the optimizing graphons are
piecewise constant, attaining only finitely many values. We also prove, in the 2-constraint
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case where the constraints are on edges and 2-stars (the “2-star model”), the existence of
inequivalent optimizing graphons on a line segment of parameter space. In particular we
prove the existence of a phase transition in the sense that the maximizing graphons do not
vary continuously with the constraint parameters.

Finally, we give evidence based on simulation that, throughout the space of the constraint
parameters of the 2-star model, the optimizers are not just multipodal but bipodal (M=2),
easily understood as extensions of the known optimizers on the boundary of the parameter
space, and that the inequivalent optimizers correspond to a line of nonanalyticity in the
entropy function.

The existence of multipodal optimizers emerged in a series of three papers [RS1, RS2,
RRS] on a model with different contraints: edges and triangles, rather than edges and stars.
In the triangle model evidence, but not proof, was given that entropy optimizers were M -
podal throughout the whole of the parameter space, M growing without bound as edge
density approaches 1. Here we prove that all optimizers are multipodal, in all star models.

Models related to the above star and triangle models (so-called exponential random graph
models (ERGMs)) have been extensively studied and applied: see for instance [N, Lov] and
the many references therein. In physics terminology the models in [RS1, RS2, RRS] and this
paper are “microcanonical” whereas the ERGMs based on the same subgraph densities are
the corresponding “grand canonical” versions or ensembles. In distinction with statistical
mechanics with short range forces [Ru, TET], here the microcanonical and grand canonical
ensembles are inequivalent [RS1] and in the conclusion below we discuss the extent of the
loss of information in ERGMs as compared with microcanonical models. Continuing the
analogy with statistical mechanics we also describe the multipodal structure as embodying
the emergence of phases in all such parametric families of large graphs, as vertex number
grows.

2 Notation and background

Fix distinct positive integers k1, . . . , k`, ` ≥ 2, and consider simple (undirected, with no
multiple edges or loops) graphs G with vertex set V (G) of labeled vertices, and for each
k = ki, the k-star set Tk(G), the set of graph homomorphisms from a k-star into G. We
assume k1 = 1 so the k1-star is an edge. Let n = |V (G)|. The density of a subgraph H
refers to the relative fraction of maps from V (H) into V (G) which preserve edges: the k-star
density is

tk(G) ≡ |Tk(G)|
nk+1

. (1)

For α > 0 and τ = (τ1, · · · τ`) define Zn,α
τ to be the number of graphs with densities

tki(G) ∈ (τi − α, τi + α), 1 ≤ i ≤ `. (2)

We sometimes denote τ1 by ε and T1(G) by E(G).
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Define the entropy density sτ to be the exponential rate of growth of Zn,α
τ as a function

of n:

sτ = lim
α↓0

lim
n→∞

ln(Zn,α
τ )

n2
. (3)

The double limit defining the entropy density sτ is known to exist [RS1]. To analyze it
we make use of a variational characterization of sτ , and for this we need further notation
to analyze limits of graphs as n → ∞. (This work was recently developed in [LS1, LS2,
BCLSV, BCL, LS3]; see also the recent book [Lov].) The (symmetric) adjacency matrices
of graphs on n vertices are replaced, in this formalism, by symmetric, measurable functions
g : [0, 1]2 → [0, 1]; the former are recovered by using a partition of [0, 1] into n consecutive
subintervals. The functions g are called graphons.

For a graphon g define the degree function d(x) to be d(x) =
∫ 1

0
g(x, y)dy. The k-star

density of g, tk(g), can then be defined as

tk(g) =

∫ 1

0

dk(x) dx. (4)

Finally, the entropy density of g is

s(g) =
1

2

∫
[0,1]2

S[g(x, y)] dxdy, (5)

where S is the Shannon entropy function

S(w) = −w logw − (1− w) log(1− w). (6)

The following is a minor variant of a result in [RS1] (itself an adaption of a proof in
[CV]):

Theorem 2.1 (The Variational Principle.). For any feasible set τ of values of the densities
t(g) we have sτ = max[s(g)], where the maximum is over all graphons g with t(g) = τ .

(Some authors use instead the rate function I(g) ≡ −s(g), and then minimize I.) The
existence of a maximizing graphon g = gτ for any constraint t(g) = τ was proven in [RS1],
again adapting a proof in [CV]. We refer to this maximization problem as a star model.

We want to consider two graphs equivalent if they are obtained from one another by rela-
beling the vertices. For graphons, the analogous operation is applying a measure-preserving
map ψ of [0, 1] into itself, replacing g(x, y) with g(ψ(x), ψ(y)), see [Lov]. The equivalence
classes of graphons under relabeling are called reduced graphons, and on this space there is
a natural metric, the cut metric, with respect to which graphons are equivalent if and only
if they have the same subgraph densities for all possible finite subgraphs [Lov].

The graphons which maximize the constrained entropy tell us what ‘most’ or ‘typical’
large constrained graphs are like: if gτ is the only reduced graphon maximizing s(g) with
t(g) = τ , then as the number n of vertices diverges and αn → 0, exponentially most graphs
with densities ti(G) ∈ (τi − αn, τi + αn) will have reduced graphon close to gτ [RS1].
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3 Multipodal Structure

Our main results are the following theorem and the subsequent corollary.

Theorem 3.1. For any star model, any graphon g which maximizes the entropy s(g), and
is constrained by t(g) = τ , is M-podal for some M <∞.

Proof. The Euler-Lagrange equation for constrained maximization of s(g) is obtained by
embedding g(x, y) in a curve g(x, y) + w h(x, y) using an arbitrary h(x, y) = h(y, x), and
setting equal to 0 the derivative with respect to the real variable w:

d

dw

∣∣∣
w=0

s(g + wh) + β · t(g + wh) = 0, (7)

where β = (β1, . . . , β`) are Lagrange multipliers. The result, absorbing constants into β, is:

2β1 +
∑̀
i=2

βid
ki−1(x) +

∑̀
i=2

βid
ki−1(y) = ln

[
1

g(x, y)
− 1

]
. (8)

Solving for g(x, y) gives

g(x, y) =
1

1 + exp(2β1 +
∑
βidki−1(x) +

∑
βidki−1(y))

, (9)

and integrating with respect to y gives

d(x) =

∫ 1

0

dy

1 + exp(2β1 +
∑
βidki−1(x) +

∑
βidki−1(y))

. (10)

Let d(x) be any solution of (10), let z be a real variable, and consider the function

F (z) = z −
∫ 1

0

dy

1 + exp(2β1 +
∑
βizki−1 +

∑
βidki−1(y))

, (11)

where the function d(y) is treated as given. By equation (10), all actual values of d(x) are
roots of F (z).

The second term in (11) is an analytic function of z, as follows.

Write W =
∑`

i=2 βiz
ki−1 and Y =

∑`
i=2 βid(y)ki−1 then the integral is∫

dµ(Y )

1 + exp(2β1 +W + Y )
, (12)

the convolution of an analytic function of W with an integrable measure µ(Y ). Since the
Fourier transform of an analytic function decays exponentially at infinity and the Fourier
transform of an integrable measure is bounded, the Fourier transform of the convolution
decays exponentially at infinity, so the convolution itself is an analytic function of W . Since
W is an analytic function of z, F (z) is an analytic function of z.
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Note that F (z) is strictly negative for z ≤ 0 and strictly positive for z ≥ 1. Being
analytic and not identically zero, F (z) can only have finitely many roots in any compact
interval. (By Rolle’s Theorem any accumulation point of the roots would have to be an
accumulation point of the roots of F ′(z), F ′′(z), etc. So all derivatives of F would have
to vanish at the point, making the Taylor series around it identically zero.) In particular
F (z) can only have finitely many roots between 0 and 1, implying there are only finitely
many values of d(x). Since d(x) and d(y) determine g(x, y) by equation (9), the graphon g
is M -podal, where M is the number of distinct values, d1, · · · , dM , of d(x); concretely, we
can take the partition of the vertex set to be Vj = d−1(dj). Note that the roots of F (z) are
not necessarily values of d(x), so this construction only gives an upper bound to the actual
value of M .

Let cj be the measure of the set {x ∈ [0, 1] | d(x) = dj}. We can apply a measure-
preserving transformation so that d(x) = d1 on [0, c1], d(x) = d2 on [c1, c1 + c2], etc. If x is
in the j-th interval and y is in the m-th interval, then

g(x, y) =
1

1 + exp(2β1 +
∑`

i=2 βi(d
ki−1
j + dki−1m ))

. (13)

Thus g is piecewise constant. A graph with N vertices corresponding to this graphon will
have approximately Ncj vertices with degree close to Ndj for each j ∈ {1, 2, . . . ,M}. There
will be approximately N2cjcm/(1 + exp(2β1 +

∑
βi(d

ki−1
j + dki−1m ))) edges between vertices

in cluster j and vertices in cluster m (if j 6= m, half that if j = m), and these edges will be
statistically independent of one another.

Corollary 3.2. The entropy function s(τ) is piecewise analytic.

Proof. For fixed M , the entropy and k-star densities of M -podal graphons are analytic
functions of the parameters ci and gij. We then have an M +

(
M+1
2

)
dimensional variational

problem involving analytic functions. The Euler-Lagrange equations for stationary points
of the entropy are then finite systems of analytic equatoins, whose solutions must be ana-
lytic functions of the parameter τ . Consequently, wherever the maximizing graphon varies
continuously with τ , it must vary analytically, as must the entropy. The only places where
s(τ) is not real-analytic is along codimension-1 “phase transition” surfaces where the max-
imization problem has two (or more) solutions, either with different values of M or within
the space of M -podal graphons.

4 Phase space

We now simplify to the case ` = 2, and only restrict the number of edges and the number
of 2-stars. The phase space (see Fig. 1) is then the set of those (ε, τ2) ⊂ [0, 1]2 which are
accumulation points of the values of pairs (edge density, 2-star density) for finite graphs.
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The lower boundary (minimum of τ2 given ε) is easily seen to be the Erdös-Rényi curve:
τ2 = ε2. We now consider the upper boundary, which was determined in [AK].

We call a graphon a g-clique if it is bipodal of the form

g(x, y) =

{
1 x < c and y < c

0 otherwise
(14)

and a g-anticlique if it is of the form

g(x, y) =

{
0 x > c and y > c

1 otherwise.
(15)

Theorem 4.1. [AK]. For fixed e(g) ≡ t1(g) = ε, any graphon that maximizes the 2-star
density t2(g) is either a g-clique or g-anticlique.

G-cliques always have c =
√
ε and 2-star density ε3/2. G-anticliques have c = 1−

√
1− ε

and 2-star density
c+ c2 − c3 = 2ε+ [1− ε]3/2 − 1. (16)

For ε small, the g-anticlique has 2-star density ε
2

+ O(ε2), which is greater than ε3/2. For ε
close to 1, however, the g-clique has a higher 2-star density than the g-anticlique.

Corollary 4.2. The upper boundary of the phase space is

τ2 =

{
2ε+ [1− ε]3/2 − 1 ε ≤ 1/2

ε3/2 ε ≥ 1/2.
(17)

The boundary of the phase space is shown in Fig. 1.
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Figure 1: Boundary of the phase space for the 2-star case. Left: true phase boundary; Right:
Plot of ε versus σ2 = τ2 − ε2; in this case the lower boundary becomes the x-axis.
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5 Phase Transition for 2-Stars

Theorem 5.1. For the 2-star model there are inequivalent graphons maximizing the con-
strained entropy on the line segment {(1/2, τ2) | τ ∗ < τ2 ≤ 2−3/2} for some τ ∗ < 2−3/2.
Moreover, near (1/2, 23/2), the maximizing graphons do not vary continuously with the con-
straint parameters.

Proof. For any graphon g, consider the graphon g′(x, y) = 1− g(x, y). The degree functions
for g′ and g are related by d′(x) = 1− d(x). If g has edge and 2-star densities ε and τ2, then

g′ has edge density 1 − ε and 2-star density
∫ 1

0
(1 − d(x))2dx = 1 − 2ε + τ2. Furthermore,

s(g′) = s(g). This implies that g′ maximizes the entropy at (1 − ε, 1 − 2ε + τ2) if and only
if g maximizes the entropy at (ε, τ2). In particular, if g maximizes the entropy at (1/2, τ2),
then so does g′. To show that s(g) has a non-unique maximizer along the upper part of
the ε = 1/2 line, we must only show that a maximizer g is not related to its mirror g′ by a
measure-preserving transformation of [0, 1].

As noted in Section 4, up to such a transformation there are exactly two graphons
corresponding to (ε, τ2) = (1/2, 1/(2

√
2)), namely a g-anticlique ga and a g-clique gc. These

are not related by reordering, since the values of the degree function for the g-clique are√
2/2 and 0, while those for the g-anticlique are 1 and 1−

√
2/2. Let D be smallest of the

following distances in the cut metric: (1) from ga to gc, (2) from ga to the set of symmetric
graphons, and (3) from gc to the set of symmetric graphons.

Lemma 5.2. There exists δ > 0 such that every graphon with (ε, τ2) within δ of (1/2, 2−3/2)
is within D/3 of either ga or gc.

Proof. Suppose otherwise. Then we could find a sequence of graphons with (ε, τ2) converging
to (1/2, 2−3/2) that have neither ga nor gc as an accumulation point. However, the space of
reduced graphons is known to be compact [Lov], so there must be some accumulation point
g∞ that is neither ga nor gc. Since convergence in the cut metric implies convergence of the
density of all subgraphs, t1(g∞) = 1/2 and t2(g∞) = 2−3/2. But this contradicts the fact
that only ga and gc have edge and 2-star densities (1/2, 2−3/2).

By the lemma, no graphon with ε = 1/2 and τ2 > 1/2
√

2−δ is invariant (up to reordering)
under g → 1− g. In particular, the entropy maximizers cannot be symmetric, so there must
be two (or more) entropy maximizers, one close to ga and one close to gc.

Moreover, on a path in the parameter space from the anticlique on the upper boundary
at ε = 1

2
− δ to the clique on the upper boundary at ε = 1/2 + δ, there is a discontinuity in

the graphon, where it jumps from being close to ga to being close to gc. There must be an
odd number of such jumps, and if the path is chosen to be symmetric with respect to the
transformation ε→ 1− ε, τ2 → τ2 +1−2ε, the jump points must be arranged symmetrically
on the path. In particular, one of the jumps must be at exactly ε = 1/2. This shows that
the ε = 1/2 line forms the boundary between a region where the optimal graphon is close
to ga and another region where the optimal graphon is close to gc.

7



6 Simulations

We now show some numerical simulations in the 2-star model (` = 2, k1 = 1, k2 = 2). Our
main aim here is to present numerical evidence that the maximizing graphons in this case
are in fact bipodal, and to clarify the significance of the degeneracy of Theorem 5.1.

To find maximizing K-podal graphons, we partition the interval [0, 1] into K subintervals
{Ii}i=1,...,k with lengths c1, c2, · · · , cK , that is, Ii = [c0 + · · ·+ ci−1, c0 + · · ·+ ci] (with c0 = 0).
We form a partition of the square [0, 1]2 using the product of this partition with itself. We
are interested in functions g that are piecewise constant on the partition:

g(x, y) = gij, (x, y) ∈ Ii × Ij, 1 ≤ i, j ≤ K, (18)

with gij = gji. We can then verify that the entropy density s(g), the edge density t1(g) and
the 2-star density t2(g) become respectively

s(g) = −1

2

∑
1≤i,j≤K

[gij log gij + (1− gij) log(1− gij)]cicj, (19)

t1(g) =
∑

1≤i,j≤K

gijcicj, t2(g) =
∑

1≤i,j,k≤K

gikgkjcicj. (20)

Our objective is to solve the following maximization problem:

max
{cj}1≤j≤K ,{gi,j}1≤i,j≤K

s(g), subject to: t1(g) = ε, t2(g) = τ2,
∑

1≤j≤K

cj = 1, gij = gji.

(21)

We developed in [RRS] computational algorithms for solving this maximization problem
and have benchmarked the algorithms with theoretically known results. For a fixed τ ≡
(ε, τ2), our strategy is to first maximize for a fixed number K, and then maximize over the
number K. Let sK(ε,τ2) be the maximum achieved by the graphon g

K
, then the maximum

of the original problem is s(ε,τ2) = maxK{sK(ε,τ2)}. Our computational resources allow us to

go up to K = 16 at this time. See [RRS] for more details on the algorithms and their
benchmark with existing results.

The most important numerical finding in this work is that, for every pair (ε, τ2) in the
interior of the phase space, the graphons that maximize s(g) are bipodal. We need only four
parameters (c1, g11, g12 and g22) to describe bipodal graphons (due to the fact that c2 = 1−c1
and g12 = g21). For maximizing bipodal graphons, we need only three parameters, since (9)
implies that (

1

g11
− 1

)(
1

g22
− 1

)
=

(
1

g12
− 1

)2

, (22)

which was used in our numerical algorithms to simplify the calculations.

We show in Fig. 2 maximizing graphons at some typical points in the phase space. The
(ε, τ2) pairs for the plots are respectively: (0.3, 0.16844286) and (0.3, 0.10339268) for the first
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Figure 2: Maximizing graphons at ε = 0.3 (left column), ε = 0.5 (middle column) and
ε = 0.7 (right column). For each column τ2 values decrease from top to bottom.

column (top to bottom), (0.5, 0.32455844) and (0.5, 0.27485281) for the second column, and
(0.7, 0.56270313) and (0.7, 0.50339268) for the third column.

The values of s corresponding to the maximizing graphons are shown in the left plot of
Fig. 3 for a fine grid of (ε, σ2) (with σ2 = τ2 − ε2 as defined in Fig. 1) pairs in the phase
space. We first observe that the plot is symmetric with respect to ε = 1/2. The symmetry
comes from the fact (see the proof of Theorem 5.1) that the map g → 1− g takes ε→ 1− ε,
τ2 → 1−2ε+τ2 and thus σ2 → σ2. To visualize the landscape of s better in the phase space,
we also show the cross-sections of s(ε,τ2)(ε, σ

2) along the lines εk = 0.05k, k = 7, · · · , 13, in
the right plots of Fig. 3.

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

0 0.05 0.1
0

0.1

0.2

0.3

0.4

σ2

ε

Figure 3: Left: values of s(ε,τ2) at different (ε, σ2) pairs; Right: cross-sections of s(ε,τ2)(ε, σ
2)

along lines ε = εk = 0.05k (k = 7, · · · , 13) (from top left to bottom right).

We show in the left plot of Fig. 4 the values of c1 of the maximizing graphons as a
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function of the pair (ε, σ2). Here we associate c1 with the set of vertices among V1 and
V2 that has the larger probability of an interior edge. This is done to avoid the ambiguity
caused by the fact that one can relabel V1, V2 and exchange c1 and c2 to get an equivalent
graph with the same ε, τ2 and s values. We again observe the symmetry with respect to
ε = 1/2. The cross-sections of c1(ε, σ

2) along the lines of εk = 0.05k (k = 7, · · · , 13) are
shown in the right plots of Fig. 4.
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Figure 4: Left: c1 of the maximizing bipodal graphons as a function of (ε, σ2); Right: cross-
sections of c1(ε, σ

2) along lines of εk = 0.05k (k = 7, · · · , 13).

The last set of numerical simulations were devoted to the study of a phase transition
in the 2-star model. The existence of this phase transition is suggested by the degeneracy
in Theorem 5.1. Our numerical simulations indicate that the functions differ to first order
in ε − 1/2, and that the actual entropy s(ε,τ2) = max{sL(ε,τ2), sR(ε,τ2)} has a discontinuity in

∂εs(ε,τ2) at ε = 1/2 above a critical value τ c2 . Below τ c2 , there is a single maximizer, of the
form

g(x, y) =


1
2

+ ν x, y < 1
2

1
2
− ν x, y > 1

2
1
2

otherwise

(23)

Here ν is a parameter related to τ2 by τ2 = 1/4 + ν2/4. Applying the symmetry g → 1− g
and reordering the interval [0, 1] by x→ 1− x sends g to itself.

The critical point τ c2 is located on the boundary of the region in which the maximizer (23)
is stable. The value of τ c2 can be found by computing the second variation of s(g) within the
space of bipodal graphons with fixed values of (ε = 1

2
, τ2), evaluated at the maximizer (23).

This second variation is positive-definite for ν small (i.e. for τ2 close to 1/4) and becomes
indefinite for larger values of ν. At the critical value of τ c2 , ν = 2

√
τ c2 − 1/4 satisfies(

2S(
1

2
− ν)− 2S(

1

2
) + 3νS ′(

1

2
− ν)

)
(2− 1

2
S ′′(

1

2
− ν)) + 8ν2S ′′(

1

2
− ν) = 0 (24)

where S ′ and S ′′ are respectively the first and second order derivatives of S(g) (defined
in (6)) with respect to g. This equation is transcendental, and so cannot be solved in closed
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form. Solving it numerically for ν leads to the value τ c2 ≈ 0.287, or σ2 ≈ 0.037. This agrees
precisely with what we previously observed in our simulations of optimizing graphons, and
corresponds to the point in the left plot Fig. 4 where the c1 = 1/2 region stops.
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Figure 5: Left: the derivative
∂s(ε,τ2)
∂ε

at τ2 = 0.28 (top), τ2 = 0.30 (middle) and τ2 = 0.32

(bottom) in the neighborhood of ε = 0.5; Right: the derivatives
∂s(ε,τ2)
∂ε

(top),
∂2s(ε,τ2)
∂ε2

(middle)

and
∂3s(ε,τ2)
∂ε3

(bottom) in the neighborhood of ε = 0.5 for τ2 = 0.28.

In the left plot of Fig. 5, we show numerically computed derivatives of s(ε,τ2) with respect
to ε in the neighborhood of ε = 0.5 for three different values of τ2: one below the critical
point and two above it. It is clear that discontinuities in the first order derivative of s
appears at ε = 0.5 for τ2 > τ c2 . When τ2 < τ c2 , we do not observe any discontinuity in the
first three derivatives of s.

7 Conclusion

We first compare our results with exponential random graph models (ERGMs) based on the
same subgraph densities; see [CD, RY, LZ, Y, YRF, AZ]. For this we focus on the basic
optimization problems underlying the two, as follows.

Intuitively the randomness in all such random graph models arises, in modeling large
networks, by starting with an assumption that a certain set of subgraphs H = (H1, . . . , Hm)
are ‘significant’ for the networks; one can then try to understand a large network as a ‘typical’
one for certain values tH(g) = (tH1 , . . . , tHm) of the densities tHj of those subgraphs. Large
deviations theory can then give probabilistic descriptions of such typical graphs through a
variational principle for the constrained entropy, sτ = supg|tH(g)=τ s(g). See [CV].

In this paper, as in [RS1, RS2, RRS], we use such constrained optimization of entropy,
and by analogy with statistical mechanics we call such models ‘microcanonical’. In contrast,
ERGMs are analogues of ‘grand canonical’ models of statistical mechanics. As noted in Sec-
tion 2, the microcanonical version consists of maximizing s(g) over graphons g with fixed val-
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ues tH(g) = τ . This leads to a constrained-maximum entropy sτ = supg|tH(g)=τ s(g). The op-
timizing graphons satisfy the Euler-Lagrange variational equation, δ[s(g)+β ·tH(g)] = 0, to-
gether with the constraints tH(g) = τ , for some set of Lagrange multipliers β = (β1, . . . , βm).

For the ERGM (grand canonical) approach, instead of fixing tH(g) one maximizes F (g) =
s(g) + β · tH(g) for fixed β, obtaining

Fβ = sup
g
s(g) + β · tH(g). (25)

However it is typical for there to be a loss of information in the grand canonical modelling
of large graphs. One way to see the loss is by comparing the parameter (“phase”) space
Σmc = {τ} of the microcanonical model with that for the grand canonical model, Σgc = {β}.
For each point β of Σgc there are optimizing graphons g̃

β
such that F (g̃

β
) = Fβ, and for

each point τ of Σmc there are optimizing graphons g̃τ such that tH(g̃τ ) = τ and s(g̃τ ) = sτ .
Defining τ ′ as tH(g̃

β
) it follows that g̃

β
maximizes s(g) under some constraint τ , namely

s(g̃
β
) = sτ ′ . But the converse fails: there are some τ for which no optimizing g̃

β
satisfies

tH(g̃
β
) = τ [CD, RS1].

This asymmetry is particularly acute for star models with ` = 2: it follows from [CD]
that all of Σgc is represented only on the lower boundary curve of Σmc, τk = εk: see Fig. 1.
If one is interested in the influence of certain subgraph densities in a large network it is
therefore preferable to use constrained optimization of entropy rather than to use the ERGM
approach.

Next we consider the role of multipodal states in modelling large graphs. In [RS1, RS2,
RRS] evidence, but not proof, of multipodal entropy optimizers were found throughout the
phase space of the microcanonical triangle model, and here we have proven this to hold in
all star models. Consider more general microcanonical graph models with constraints on
edge density, e(g), and the densities tH(g) of a finite number of other subgraphs, H. We
make the following conjecture.

Conjecture. The graphons maximizing constrained entropy in such a microcanonical model
are always multipodal.

The multipodal structure seems to be an indicator of the emergence of the phases in
these networks, as vertex number diverges. Let us explore this suggestion.

In any microcanonical model with constraints on the density of edges and one other
subgraph, H, let k ≥ 2 be the number of edges in H and consider the Erdös-Rényi curve,
τk = εk, in the microcanonical phase space, where the parameter ε represents the constraint
on edges and τk represents the constraint on tH(g), in the entropy optimization. On this
curve there is a general proof [CD] that the optimizing graphons are constant functions on
[0, 1], with value ε for constraints (ε, τk). Consider the region in the phase space above the
curve, that is, with τk > εk. There are general proofs [RY, CD] that in the corresponding
ERGM models there is a phase transition when the parameter conjugate to the density tH(g)
is positive, adding weight to tH(g). Theorem 5.1 and the simulations of Section 6 show a
transition in the microcanonical 2-star model; it is unclear what, if any, connection it has
to that in the corresponding ERGM model.
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Question. Is there always a phase transition in a microcanonical model with 2 constraints,
above the Erdös-Rényi curve? And if so, does it have any relation to the one in the corre-
sponding ERGM?

By analogy with physics the region above the Erdös-Rényi curve seems to represent a
single ‘fluid-like’ phase, and the question asks if there is always a gas/liquid-like transition
in microcanonical models, and if so what is its relation if any to that known in the ERGM.

In the k-star models, i.e. star models with two constraints, the Erdös-Rényi curve is
the lower boundary of the (microcanonical) phase space, but in the triangle model there
is strong evidence of ‘solid-like’ phases and ‘solid/solid transitions’ below the curve. Mul-
tipodal structure could be a useful tool in understanding the various phases. For instance
in the triangle model [RS1, RS2, RRS] even a cursory inspection of the largest values of
such a graphon concentrates attention on the conditions under which edges tend to clump
together (fluid-like behavior) or push apart into segregated patterns (solid-like behavior).
In equilibrium statistical mechanics [Ru] one can rarely understand directly the equilibrium
distribution in a useful way, at least away from extreme values of energy or pressure, so
one determines the basic characteristics of a model by estimating order parameters or other
secondary quantities. In random graph models multipodal structure of the optimizing state
gives the hope of more direct understanding of the emergent properties of a model. This
would be a significant shift of viewpoint.
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