ON THE SPECTRUM OF NARROW NEUMANN WAVEGUIDE WITH
PERIODICALLY DISTRIBUTED 6" TRAPS

PAVEL EXNER !* AND ANDRII KHRABUSTOVSKY] 2

ABsTRACT. We analyze a family of singular Schrédinger operators describing a
Neumann waveguide with a periodic array of singular traps of a ¢’ type. We
show that in the limit when perpendicular size of the guide tends to zero and
the ¢’ interactions are appropriately scaled, the first spectral gap is determined
exclusively by geometric properties of the traps.

1. INTRODUCTION

The problem addressed in this paper concerns the limiting behaviour of a partic-
ular class of Schrodinger operators with singular coefficients. They can be charac-
terized as Neumann Laplacians on a cylindrical region in R" perturbed by a array
a singular “traps” consisting of a ¢’ interaction [[1]] supported by the boundary of
fixed subsets of the cylinder. We will be interested in the situation when the cylin-
der shrinks in the perpendicular direction and the parameter of the ¢’ interaction
simultaneously changes making the latter weaker. We are going to show that the
limiting behaviour of the first spectral gap is determined exclusively by geometric
properties of the traps, namely their volume and surface area.

The motivation to study such an asymptotic behaviour is twofold. On one
hand it is an interesting spectral problem falling within one of the traditional
mathematical-physics categories, asking about relations between the geometric
and spectral properties. On the other hand, it is of some practical interest, espe-
cially in the light of the recently growing interest to metamaterials and engineering
of spectral properties. True, the ¢’ interactions with their peculiar scattering prop-
erties are rather a mathematical construct, however, they can be be approximated
by regular or singular potentials following a seminal idea put forward in [5] and
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made mathematically rigorous in [2,/7]. Hence at least in the principal sense the
result of this paper provides a way to achieve a prescribed spectral filtering.

2. SETTING OF THE PROBLEM AND MAIN RESULT

In what follows & > 0 will be a small parameter. For a fixed n € N\ {1} we denote
by x’ = (xq,...,x,-1) and x = (¥, x,,) the Cartesian coordinates in R* ! and R",
correspondingly. Let w be an open domain in R”~! with a Lipschitz boundary. By
Q? we denote a straight cylinder in R” with a cross-section ew, i.e.

QF = {x =, x,)eR": &lx € w}.
Furthermore, we introduce the set
Y={x=,x)eR": |x,| <1/2, X € w},

which will play role of the period cell of the problem before scaling. Let B be an
arbitrary domain with a Lipschitz boundary S = dB and such that B C Y. For any
i € Z we denote

S®=&(S +ie,), B =eB+iey), Y =e(Y +iey),

where e, = (0,0,...,0,1) is the unit vector along the cylinder axis.
Next we describe the family of operators A® which will the main object of our
interest in this paper. We denote
re=| Js¢

i€Z

and introduce the sesquilinear form in the Hilbert space L,(€2°) by

n°lu,v] = f Vu - Vvdx + a® Z (uy —u)vy —v_)ds, a®*>0, (2.1)
i€Z
S¢

i

Qe\r*

here and in the following we denote by u, (respectively, u_) the traces of the
function u taken from the exterior (respectively, interior) side of S7. The form
domain is supposed to be

dom(y) = H'(Q°\ T*)

= {u € Ly(Q°%): ue H(Q\ UB_;?), ue H' (B forallieZ, Z VUl ey < oo}.
i€Z i€Z
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The definition of °[u, v] makes sense: the second sum in (2.1 is finite because of
the standard trace inequalities, namely

Zf|u+—u_lzdSSZZf(|u+|2+|u_|2) ds

i€Z se i€Z ge

< CE) Y (IR, g, + 10 ) = COIM ey
i€Z L

where the constant C(¢g) is independent of u. Furthermore, it is straightforward
to check that the form 7°[u, v] is densely defined, closed and positive. Then (see,
e.g., [10, Chapter 6, Theorem 2.1]) there exists the unique self-adjoint and positive
operator A® associated with the form 7%, i.e.

(Au, V)00 = 1°[u,vl, Yu € dom(A°), Yv € dom(n®). (2.2)

If u € dom(A°) and u € C*(Q°\I'?) then via the integration by parts one can show
easily that (A®u)(x) = —Au(x) for x € Q° \ I'* and on the boundary §¢ one has

ou ou u ou .
(8_") - (67) T ow gn s (2.3)

where n is the outward-pointing unit normal to S¢. This makes it clear that the
operators A® have the meaning of Hamiltonians describing a waveguide with the
Neumann outer boundary and an array of periodically spaced obstacles or traps
given by a ¢’ interaction supported by S ¢. Note that analogous Schrodinger opera-
tors in R” with a ¢’ interaction supported by surfaces have been discussed recently
in [3]].

By o(A?) we denote the spectrum of ‘A®. Our goal in this paper is to describe
its behavior as € — 0 under the assumption that the coupling constant a® satisfies

a€
lim— =a>0. 2.4)
-0 &
Remark 2.1. A comment is due at this point to explain why we spoke in the intro-
duction about a weak ¢’ interaction. Comparing (2.3)) with the standard definition
of such an interaction [ 1, Sec. [.4] we should regard rather the inverse (a®)~! as the
coupling parameter. On the other hand, due to peculiar properties of the interac-
tion [1, Theorem [.4.3] the ¢’ coupling is weak if this quantity is large satisfying,
for instance, the asymptotic relation (2.4)).

To state the result we shall use the notation |- | both for the volume of domain in
R" and for the area of (n — 1)-dimensional surface in R”. Furthermore, we denote

o W _ast 1y
B’ B Y] - |B|’
it is clear that @ < 8. Now we are in position to formulate the main result of this
work.
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Theorem 2.1. Let L > 0 be an arbitrary number. Then the spectrum of the oper-
ator A? in [0, L] has under the assumptions stated above the following structure
for & small enough:

o(A°) N[0, L] = [0, L]\ (o, %), (2.5)
where the endpoints of the interval (af, 3°) satisfy the relations
limae® =a, limp°=4. (2.6)
-0 &—0

The theorem will be proven in the next section. We postpone the outline of the
proof to the remark preceding Lemma 3.1|because we need to introduce first some
more notations.

3. Proor oF THEOREM 2,11

In what follows C, Cy, ... will be generic constants that do not depend on ¢.
Let D be an open domain in R"; by (u)p we denote the normalized mean value of
the function u(x) in the domain D,

{(uyp = ﬁfu(x) dx.
D

Furthermore, if ' ¢ R" is an (n — 1)-dimensional surface then the Euclidean
metrics in R” induces on I' the Riemannian metrics and measure. We denote by
ds the density of this measure. Again by (u)r we denote the normalized mean
value of the function u over I, i.e

(u)r = %fuds.
r

Next we introduce the following sets:
e Y% = gY, the period cell,
e B? = gB, the trap,
e S% = &S, the trap boundary,
e F? =Y?\ B¢, the trap complement to the period cell,
o S ={x=(,x,) €0Y®: x, = £&/2}, the period cell “lids”.
The Floquet-Bloch theory — see, e.g., [4}/11,[12] — establishes a relation-

ship between the spectrum of A® and the spectra of appropriate operators on Y?.
Specifically, for ¢ € [0, 27) we introduce the functional space HJD(Y £\ §%) con-

sisting of functions from H'(Y? \ §¢) that satisfy the following condition on the
lateral parts of 9Y*:
ulse = explip)T“ulse, (3.1)

where T¢ : Lr(S%) — Lr(S%), (T?f)(x) = f(x — gep), ulse are the traces of u on
Se.
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By n;; we denote the sesquilinear form defined by formula

nolu, vl = f Vu - Vvdx + a® f(u+ —u_)(vy —v_)ds 3.2)
Ye\se Se

with the domain H‘;(Y‘9 \ §%). We define ﬂj as the operator acting in L,(Y?) being

associated with the form 7;;:

(AU, V)1yvey = Mglu,v],  Yu € dom(A7), Vv € dom(py).
Since Y° \ §¢ is compact, the operator Ag has a purely discrete spectrum. We

denote by {/If (s)} ren the sequence of eigenvalues of AZ arranged in the increasing
order and repeated according to their multiplicity.
According to the Floquet-Bloch theory one has the following representation:

a(ﬂ£)=0 U (K@) (3.3)

k=1 ¢e[0,27)
Moreover, for any fixed k € N the set | {/lf(s)}, in other words, the kth
¢e[0,27)
spectral band, is a compact interval.

We also introduce the operators AL, and A7), which are defined in a similar way
as A, however, with (3.1) replaced by Neumann and Dirichlet boundary condi-
tions of S, respectively. More precisely, we denote by 73, (correspondingly, 7))
the sesquilinear forms in L,(Y?) defined by ll and the domain H'(Y?\S¢) (cor-
respondingly, H(l)(Y'S \ §%) = {u e H'(Y*\S%): u=0o0nS%U S‘f}). The above
?ndicated operators are then associated with these forms, 7%, and 775, respectively,
ie.

(Au,v)yvey = ni[u,vl,  Yu € dom(AL), Yv € dom(nf),

where * is N (correspondingly, D).
As with A7, the spectra of the operators Ay, and A7, are purely discrete. We

denote by {/liv (s)}keN (correspondingly, {/lkD (s)}keN) the sequence of eigenvalues
of A}, (correspondingly, of A7) arranged in the ascending order and repeated
according to their multiplicity.

From the min-max principle — see, e.g., [[12, Chapter XIII] — and the inclu-
sions

H'(Y*\§%) > Hy)(Y*\ $%) > Hy(Y*\ S9)
we infer that
VkeN, Yo e[0,2m): () < Af(e) < A (e). (3.4)

Remarks 3.1. (a) With these preliminaries, we are able to provide the promised
brief description of the proof of Theorem It is clear that the left edge of
the first spectral band of A® coincides with zero, while the right one is situated
between the first antiperiodic eigenvalue /l‘f(s), ¢ = m, and the first Dirichlet



6 PAVEL EXNER AND ANDRII KHRABUSTOVSKYI

eigenvalue /1’13 (e). We are going to prove (see Lemmata and below) that
they both converge to @ as ¢ — 0. Similarly we can localize the left edge of
the second spectral band between the second Neumann eigenvalue /I’ZV (¢) and the
second periodic eigenvalue /lg(s), ¢ = 0, of which we will prove (see Lemmata
and below) that they both converge to 5 as € — 0. Finally, we intend to
prove that /lf(s), ¢ # 0, converges to infinity as € — 0 which means that the right
edge of the second spectral band exceeds any fixed L provided ¢ is small enough.
These results taken together constitute the claim of Theorem [2.1

(b) We stress that the band edges need not in general coincide with the corre-
sponding periodic (antiperiodic) solutions even if the system exhibits periodicity
in one direction only [68]. What matters is that we can squeeze them between
two values which converge to the same limit as € — 0.

Lemma 3.1. Let ¢ # 0. In the limit € — 0 one has
/lg(s) — 00, 3.5
Proof. We denote
e F = & ' F?, the scaled trap complement to the scaled period cell,
e S, = s‘lSi, the scaled period cell “lids”.
We introduce the sesquilinear form 77, in the space L (Y) defined by the formula

olu,v] = fVu - Vidx +a°e f(u+ —u)(vy —vo)ds,
Y\S S
with
dom(i5) = {u € H'(Y\ S) : uls, = exp(ig)Tuls_},
where T : [»(S-) = Lx(S4), (Tf)(x) = f(x — ey), and ulg, are the traces of
uonS.. Let flfo be the operator associated with this form and let {;lf(s)}keN
be the sequence of its eigenvalues arranged in the ascending order and repeated
according to their multiplicity. It is easy to see that for all k € N
(&) = 4L (2). (3.6)

In the same Hilbert space L,(Y) we introduce the sesquilinear form 7, by the
formula

Relu, vl = fVu -Vvdx
Y\S
with dom(7j,) = dom(7jg), and by flw we denote the operator generated by this

form, with {;l,f}keN being the sequence of eigenvalues of A, written in the in-
creasing order and repeated according to their multiplicity. It is clear from the
definition that

Ay = —Ay(F) ® —A(B),
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where Ay (F) (respectively, A(B)) is the Laplacian in L,(F') (respectively, Ly(B))
with the Neumann boundary conditions on dF\ (S -US ;) and ¢-periodic boundary
conditions on S _US ; (respectively, with the Neumann boundary condition on S).
One can check easily that for any ¢ # 0 we have

9> 0. (3.7
To conclude the argument we are going to demonstrate that
VkeN: () - A7 (3.8)

holds, then (3.5) will follow directly from (3.6)—(3.8). It remains therefore to
prove (3.8). We denote

L= A +D", Ly=(A,+D7",
where I is the identity operator. The operators L, Lp are compact and positive
(thus self-adjoint), and furthermore
||Zf;|| <1 (3.9

Next we want to prove that

VieLyY): Lyf = Lyf inLy(Y) as & — 0. (3.10)
We take an arbitrary f € Lr(Y) and set u® = ij, f. Itis clear that

fiplu®, u®] + ullLyr) < C,

which, in particular, implies that the functions u® are bounded in H'(Y \ §) uni-
formly in &. Therefore by the Rellich-Kondrachov embedding theorem there exist
ue€ H'(Y \ S) and a subsequence &, k = 1,2,3..., satisfying &y \, Oas & — 0
such that

w —u inH' (Y \S) as e =g — 0, (3.11)
u®” > u in Ly(Y) as € =g — 0. (3.12)

Furthermore, in view of the trace theorem
u® - u inLr(OYUS) as e =g — 0, (3.13)

and consequently, u € dom(#,). Given an arbitrary v € dom(ﬁ;), we have the
following identity:

fVus -Vvdx + afe f(ui —uf)(vy —v_)ds + fue\"/dx = ff\"/dx. (3.14)

Y\s S Y Y

Using (3.TT)—(3.13) and keeping in mind that a®s — 0 holds as € — 0 we pass to
the limit in (3.14) as &€ = gx — 0 and obtain

fVu-V\"/dx+fm7dx:ff17dx, Yv € dom(7j,). (3.15)
Y

\S Y
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It follows from (3.135)) that u = Lp f. Since u is independent of the subsequence &,
the whole sequence u® converges to u as € — 0, in other words, (3.10) holds true.
Finally, again using the Rellich-Kondrachev embedding theorem, we conclude
that for an arbitrary sequence f#, which is bounded in L,(Y) uniformly in &, there
exist w € L[»(Y) and a subsequence &, k =1,2,3..., with g, ~, O such that

k—o0

lifpf‘9 —winl(Y) as e =g — 0. (3.16)

We denote by {,&f(s)}keN and {ﬂf} rent the sequences of eigenvalues of I:j, and Lp,

respectively, written in the decreasing order and repeated according to their mul-
tiplicity. According to Lemma 1 from [9] it follows from (3.9)), (3.10), and (3.16)
that

VkeN: fif(e) - i} as &€ — 0. (3.17)

However, since A} (¢) = ﬂ¢1(£) —land A = ﬁ% —1, (3.17) implies the sought relation
k
(3-8) concluding thus the proof of the lemma. o

Now we have to inspect the behaviour of the first Dirichlet eigenvalue, which
we use to estimate the left gap edge from above, in the the limit € — 0.

Lemma 3.2. One has
W) - a as e 0. (3.18)

Proof. Let uj, be the eigenfunction of A7, which corresponds to /llD (&), deter-
mined uniquely by the following requirements:

|y ve) = 1, (3.19)

uj, is real-valued, f uj,dx > 0. (3.20)
BS

From the min-max principle we get

A7 () = npluy, up] = min nj[u, ul, (3:21)
D

where Hj, = {u € dom(ny) : |lullzyye) = 1}. We construct an approximation, de-
noted as v}, to the eigenfunction uf, using the formula

0 xeF?®
e ={" ’ 3.22
VD(x) {lle_l/Z, ¥ e B ( )

It is clear that v, € dom(r7). Taking into account that Vv7, = 0 holds in B® U F®

we get
a’|S?| _ a°IS|
nplvp. vpl = a° f ((Vp)+ = (vp)-)’dx = =
Sé)

|Bs|  &lB

~a as € > 0, (3.23)

IVDllLare) = 1, (3.24)
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and therefore v}, € H). Consequently, in view of (3.21)) we can infer that

nplup, upl < mplvp, vipl. (3.25)
If follows from (3.23) and (3.25) that
5[, 1] < C, (3.26)

and using (3.26) one arrives at the following Friedrichs- and Poincaré-type in-
equalities:

IUHIIF, ey < CENVURIT, pey S CENHIuGy, u55] < C1 %, (3.27)
1§, = W5 BelI7, ey < CENVUPIT ey < CE MUY, up] < Cr1&7,  (3.28)
where (-) as usual denotes the mean value. Moreover, using (3.19), (3.27), and
(3.28) we get
2
[y yge|” 1B = 1 = MylIZ, ey — 1y = el ey = 1+ O(ED),
which implies, taking into account (3.20), that
(¢usy)pelBV* = 1) > 0 as & — 0. (3.29)
Finally, using (3.28) and (3.29) we conclude that

1§, = B 211Z ey < 20y = ) gell7, e

+ 2B [y — BT = 0 as & — 0. (3.30)

&

5 in the form of a sum,

In the next step we represent the eigenfunction u
uy, = vj +wp, (3.31)

and estimate the remainder w¥,. Plugging (3.31)) into (3.23) we obtain
Mplwp, whl < =2np[v, whl
= —24° f (5)+ = 05)-) (W) = §)-) ds. (3.32)
SE
Let us recall the following standard trace inequalities:
Vue H'(F),ve H'(B):  Ilullf,i5) < Cllullzy gy IMIZ,5) < CIVIE )

Using them together with a change of variables, x + xg, one can derive the
estimates

2 _
f W) | ds < Ce™ (17, ey + ENIVUSIT, 1)) - (3.33)
Sa‘

~1/212 — -
f |- = 1B ds < Ce7 (Ilufy = 1B P11 ey + 2 IVUGIT ) - (3.39)
SF
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Then taking into account (2.4) and (3.33)—(3.34) we obtain from (3.32) the in-
equalities

5w whll” < 4(a®)? f |v5)s = 05| ds f w5 — (wh)_| ds
Se S
@IS ({1 o et
< SWI(’(MD)+|2+|(MD)_ — 1B )ds
Sé‘

€112 & e1—1/2(12 2 112
< C (117 ey + 105y = 1B 2 ey + VU o)

thus in view of (3.26), (3.27), and (3.30) we find

nhwh, whl — 0 as € — 0. (3.35)

It follows from (3.23)), (3.31)), and (3.33) that
/l?(a) = nplup, upl ~ v, vl ~a as € = 0, (3.36)
which is the claim we have set up to prove. O

Next we need an analogous claim for the second Neumann eigenvalue which
we use to estimate the right gap edge from below.

Lemma 3.3. One has
@) — B as e —0. (3.37)

Proof. Let u}, be the eigenfunction of AY,, which corresponds to /112\/ (¢) and satis-
fying the following requirement:

eyl Lo vey = 1, (3.38)

uyy is real-valued, f uy dx > 0. (3.39)
BE

Since /lllv (¢) = 0 and the corresponding eigenspace consists of constant functions,
we have

fufv dx =0, (3.40)
YS

and in view of the min-max principle it holds

X&) = nfi [us, us)] = min n% [, ul, (3.41)
N

where ‘Hl‘f, = qu € dom(ryy) : ullLyvs) = 1, fudx =0;. As in the previous
Yé‘

proof, we construct an approximation vy, to the eigenfunction uy;, this time defined
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by the formula
. |B?| &
KS — £].|YE| 2 X € F >
Vi(x) = F IIPZII ¥l (3.42)
K = BT X € Bt.

Obviously vy, € dom(r3,) and it is easy to see that

2 a®lS|-1Y|
vV, vl = a®IS?| (K}"':P - K%) = W ~p as € =0, (3.43)
IVillLars) = 1, (3.44)
f v, dx = 0. (3.45)

YE
In view of (3.44) and (3.43)), V5, belongs to HY, and therefore using (3.41)) and
taking into account (3.43) we get

nyluy, uy] < nylvy, vyl < C. (3.46)

Using (3.46) one can derive the following Poincaré-type inequalities:
iy = el ey < CENVUSIT, ey < CEMG LU uy] < Cre?,  (347)
1§y = Yol ey < CENVUGIT, 5oy < CEM LGy uf] < Cre?. (3.48)

Moreover, using (3.38), (3:40), (3:47), and (3:48) we infer that

2 2
|Fe| + () pe|” 1B

|ty e

= 1= llufy = U pelly, ey + Ny — UG Bell7 ey = 1+ O(ED),

Wyl F| + (uy) e B = f e dx = 0,
YS
from where, taking into account (3.39), we obtain the following asymptotics:

Usype = K5(1+ OEN2, Wl )pe ~ k5(1+ O as £ 0. (3.49)
Finally, using (3.47)-(3-49) one can easily arrive at the relation
0§, = KGN ey + iy = K57, ey = O as & — 0. (3.50)
In the next step, we again represent the eigenfuction u3, in the form of a sum,
uy = vy +wy 3.51)
and estimate the remainder w¥,. We plug (3.51) into (3.46) and obtain

My, wil < =205 vy, wil

= _2d° f (085 = 05D ) (W) = Wi)-) ds. (3.52)

SS
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In analogy with relation (3.34)) in the proof of Lemma 3.2 we employ the following
trace inequalities:
2 -
|G+ = 5" ds < Ce™" (= KEIT ey + EIVUGIT )
Sé‘
2 _
f |- — k5| ds < Ce™" (1l = K17, ey + E2NVHGIT ) -
SE
Using them we infer from (3.52) that

i Wil < 4 f |05+ = 05| ds- f w5 = wi)-[ ds

Se N

< 8IS 1K — k)2 f (s = 5+ - = 5F) as
A

2 2 2 2
<C (””}gv = Kpllz, ey + iy — kgl pe) + & ”Vuzgv”Lz(BsuFS))v

and thus by virtue of (3.46)) and (3.50) we get

Wi, wil — 0 as € — 0. (3.53)

Finally, it follows (3.43)), (3.31), and (3.53)) that
(&) = i [us, us] ~ ni[vi, vi1 ~ B as & = 0, (3.54)
which is nothing else than the claim of the lemma. O

Finally, one has to inspect the behaviour of the other eigenvalues involved in
estimates of the gap edges in the limit &€ — 0.

Lemma 3.4. One has
if o = m, then /l‘f(s) —a as € -0, (3.55)
if o =0, then /lg(s) — B as € > 0. (3.56)
Proof. The proof of (3.56) is similar to the argument used to demonstrate (3.37).

Specifically, we approximate the eigenfunction u of A that corresponds to /lg(s)

and satisfies the conditions (3.38)—(3.40), with the index N replaced by ¢, by the
function v, given by (3.42). It is clear that v§, € dom(z3) if ¢ = 0. The check of
the asymptotic equality

(&) ~ mylvi, vyl ¢ = 0

repeats word-by-word the proof of (3.54).
Consider next ¢ = 7. By ug we denote the eigenfunction of Ay that corre-

sponds to A%(¢) and satisfies the conditions (3:19)—(3.20), with the index D re-
placed by ¢. Obviously, for ¢ = 7 such an eigenfuction exists.
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Using the Cauchy inequality, a standard trace inequality and the Poincaré in-
equality one can employ the following estimate: for any v € H'(F) we have

2 1
|wni—<wF|si;jw—<wFﬁ%h)
< C(Iv = Iy + MV, 1)) < CHIVVIE, ). (BST)
Via a change of variables, x — xg&, one can easily derive from (3.57) the estimate
2 -
[udse = uSpe|” < CEIVUENT, ey (3.58)

lilurthermore, from (3.58)) and the fact that u; satisfies condition (3.1) we can infer
that

2

2 . 2 . .
= |1 = exp(im)| "~ [uEype — (uS)se + exp(in)(us)se — exp(im){us)pe
N 2
<2 |1 — exp(m)| (|<M;>F£ — <”Z>Si )
< CEIVUEN, ey (3-59)
It follows from (3.59) and the Poincaré inequality that

[y e

24 ju)se — W)

2
P < CENVUEIE ey (3.60)

WUEIIT, ey = S = SN Pl ey + [CUEY e
This means that similarly to the Dirichlet eigenfunction case the function uj, satis-
fies the Friedrichs inequality in F*, despite the fact that uj does not vanish on dY.
The remaining part of the argument leading to repeats literarily the proof
of (B.18): we approximate the eigenfunction g, by the function v}, (3.22), noting
that since vj, vanishes in the vicinity of dY it belongs to dom(ry) for an arbitrary

D
¢, and then check the asymptotic equality

/l‘f(a) ~ nZ[V‘Z,v‘Z], @ =T 3.61)
Finally, the proof of (3.61) repeats word-by-word that of (3.36) taking into ac-
count the inequality (3.60). o

Remark 3.2. With some slight modifications of the proof one is able to show that
(3.55) holds in fact for all values of the parameter ¢ # 0. For our purposes,
however, it is sufficient to consider antiperiodic (i.e. ¢ = ) eigenvalues only.

Now, with the preliminaries represented by Lemmata [3.1H3.4]it is not difficult
to prove Theorem [2.1] Indeed, it follows from (3.3) that

o(A%) = U[/l,:(s), (@)1, (3.62)
k=1

where the spectral bands, i.e. the compact intervals [4, (&), 4; (¢)], are defined by

@, @1 = | (K@) (3.63)

¢e[0,27)
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We set ¢_ = 0, ¢, = 7. It follows from (3.4) and (3.63) that
(&) < A (e) < A7 (o), (3.64)
A2 (e) < A5 () < (@) (3.65)

Obviously, the left- and right-hand-sides of (3.64) are equal to zero if k = 1. It
follows from (3:37), that in the case k = 2 they both converge to S as € — 0,
and consequently

(&) =0, lim A (e) = . (3.66)
£
Similarly, in view of (3.3)), (3.18), and (3.55) we obtain
lim AT (e) = @, lim A} (&) = oo. (3.67)
-0 -0

Then the relations (2.5)—(2.6) follow directly from (3.62)) and (3.66)—(3.67) in

combination with the monotonicity of the sequences {A]f (&)}ken- In this way, The-
orem [2.1]is proved.
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