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Abstract: Linear second order elliptic equations containing the sdirthe two
Laplace operators with convection terms or a free Laplaaraha Laplacian with
drift are considered iR?. The corresponding operatér may be non Fredholm,
such that solvability conditions for the equatién = f are unknown. We obtain
solvability conditions inH%(R9) for the non self-adjoint problem via relating it to
a self-adjoint Schrodinger type operator, for which sblity relations are derived
in our preceding work [16].
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1. Introduction

Reaction-diffusion equations with convective terms hagerbstudied exten-
sively in recent years, in particular with applications tmhnear propagation phe-
nomena (see e.qg. [4], [5],[6], [12], [14]). Rigorous ana&ysf such equations often
relies on the solvability conditions of the correspondimgéar problems. Classical
results for elliptic equations, namely the so-called Fodathalternative affirm that
they are solvable if and only if the right side is orthogorathie solutions of the
adjoint homogeneous problem. Apparently, it may not beiegble for reaction-
diffusion equations in unbounded domains. In such caseaBbility relations are
not established. In the present work, we study reactidingldn equations in the
case when the corresponding operator fails to satisfy tkedtaim property and
derive for them solvability conditions.

In this work we will study the linear diffusion-advectionwetion



Au+v(&).Vu+c(§u = f(§), (1.1)

where¢ is the independent variablg,e R™, v(§) is a given velocity field¢(¢) is

a potential. The dot denotes the scalar product between éstmrs. For the usual
physical applications can be temperature or concentration of some substances,
andn = 2 or 3. In biological applications the space dimension can be rti@e3.

Let us give two examples.

Consider a population of biological cells. They can be ctigrized by some
intracellular proteins. We can consider the concentrabiboells v as a function
of intracellular protein concentrations, = u(&;,...,&,). In this case, diffusion
term describes small random perturbations of intracellotancentrations, advec-
tion term shows the rate of change of intracellular conegiains due to reactions
or other factors.

The second example concerns populations of animals wheiladividuals are
characterized be their genotype or phenotype. Then thesotmrationu of individ-
uals can be considered as a function of the variaples., &, which corresponds
to the state of the genome (genes) or some phenotypicalatbassics (size, form,
and so on). In this example, diffusion term describes snaa@itiom perturbations
of genotype or phenotype in offsprings compared with tharepts, advection term
describes genetic pressure.

Hence investigation of diffusion-advection equationsustified in any space
dimension. We will discuss solvability conditions for suetuations taking into
account that they may not satisfy the Fredholm property wdwrsidered in un-
bounded domains. We will consider some particular caselseoféneral equation
(1.1) and will impose some conditions on the velocity field an the potential. In
what follows it will be convenient for us to introduce spaegiablesr andy such
that¢ = (z,y). The first problem studied in this work is

A+ 01(2). Vo + Agu + v2(y) Vyu + c1 (v)u + ex(y)u = f(z,9), 2,y €R?,

(1.2)
where the functions; (z), c2(y) : R* — R, the right side is square integrable and
the vector fields, (z) = —V.pi(z), va(y) = —V,p2(y) with p1 o € W2(R?).
The boundedness of the pressure along with its first and dederivatives was
established under reasonable assumptions in Lemmas Al 2raf A17]. Here
and further dowmy,, A, V., V,, stand for the Laplacians and gradients taken with
respect tar andy variables.

In the first part of this work we study solvability conditiofes problem (1.2).
Let us recall that the classical Fredholm solvability coiodi for the operator equa-
tion Lu = f affirms that this problem is solvable if and only(#;, ) = 0 for afinite
number of functional®; from the spaceév* dual to the spac& which contains the
image of the operator. This solvability condition is appbte if the operatoL. sat-
isfies the Fredholm property, that is its image is closeddtimension of the kernel



is finite, and the codimension of the image (or the number lvb&dlity conditions)
Is also finite.

Elliptic equations in unbounded domains satisfy the Frédharoperty if and
only if the corresponding limiting operators are inveriliéee [13]). Let us assume
thatc; (z) + e2(y) = co + ¢é1(x) + C2(y), wherec, is a constant and the functions
¢ (x) andé,(y) converge to zero as,y — oo. Then the Fredholm property is
satisfied ifcy, < 0 and it is not valid ifc, > 0. In the latter case the image of
the operatorl. corresponding to the left-hand side of equation (1.2) isahaded,
and the solvability conditions are unknown. In the presemtkwwe will establish
solvability conditions for the non-Fredholm operafom the case when, is non-
negative. To the best of our knowledge, this is the secondtres the solvability
conditions of such equations Ri* with n > 1, since the similar problem involving
the single Laplace operator with drift was treated in [14].the case of, = 1,
the situation is different and operators without Fredhohoperty can be studied
by introduction of weighted spaces (see [13]) or reducirgtho some integro-
differential equations (see [4]). Such methods are notiegqiple whenn > 1. We
will use here our previous results on the solvability coiedis for non-Fredholm
equations of the Schrodinger type (see [16]), which retiedhe spectral theory of
self-adjoint operators.

For equation (1.2) the homogeneous formally adjoint probkegiven by

ALQ — divg(v1(2)Q) + AyQ — divy(v2(y)Q) + c1(2)Q + c2(y)Q =0,  (1.3)

wherediv, anddiv, are the divergences computed with respeat éamdy variables
respectively. We will use the function space

W22(R®) := {Q(x,y) : RS = C | Q,VQ,A,Q,A,Q € L®(R"},  (1.4)

whereV := V, + V,. Similarly A := A, + A,. Note that in definition (1.4) we
do not require all the second partial derivatives to be bedndnlyA,Q andA, Q.
Let us introduce the scalar potential functions

(vmpl(x»Q Amp1<x)

Valz) = 4 e (),
Us(y) := (Vyp i<y)>2 _ Ayp;@) — ea(y),

assuming that,,(z) - —a asz — oo andUs(y) — —f asy — oo with the
nonnegative constants and g, such thats := o« + 5 > 0. We write down the
corresponding nonhomogeneous Schrodinger equation

—Az+V(x)z — Az +U(y)z —az = g(z,y), (1.5)

where

g(w,y) = —fz,y)e T e T (1.6)



Note that the solutions of equations (1.2) and (1.5) ardedlaia the change of
variables
p1(z) pa(y)
u(z,y) = z(z,y)e 2 e 2 . (1.7)
Here the potential¥ (z) := V,(z) + o andU(y) := Us(y) + § are assumed to be
shallow, short-range and satisfying the conditions ar@lsdo those used in works

[15], [16], [17].

Assumption 1. The potential function¥ (z), U(y) : R* — R satisfy the esti-
mates

C C
V) € ———=5=, VW < ——35=
V< e U0l S
with some= > 0 andz, y € R? a.e. such that

19 _2 L 8
49§(47r) 3||V||zoo(R3)||V||z%(R3) <1 and \/CHLSHV”L%(RS) < Ar.

19 _2 L 8
49§(47T) 3||U||200(R3)||U||Z%(R3) <1 and \/CHLSHUHL%(RS) < A.

Here C' denotes a finite positive constant angl s given on p.98 of [9] is the
constant in the Hardy-Littlewood-Sobolev inequality

3 3
‘/RS o |a:— ‘2 d:cdy’ <CHLSHfl”L 3 gy’ f1 € L2(R?).

In the work the norm of a functioffi € LP(R?), 1 < p < oo, d € N is denoted as
|| 1]l Lo (ray. We will be using

(1), fol)) pguer = /R @) )z,

with a slight abuse of notations when the functions involirethe inner product
are not square integrable, like for instan@ér, y) involved in relation (1.8). In-
deed, if fi(z) € LY(R?) and f,(x) is bounded, then the integral in the right side
of the definition above makes sense. The sphere of radiasthe space ofl
dimensions centered at the origin will be denotedSdy Due to the decay at in-
finity of our potential functions the essential spectrumha Schrodinger operator
—A,+V (2)—A,+U(y)—aon L*(R%) involved in the left side of equation (1.5) fills
the semi-axi$—a, o) (see e.g. [7]) such that there is no finite dimensional isdlat
kernel and the Fredholm alternative theorem fails to workpfoblem (1.5). Under
our Assumption 1 this Schrodinger operator is self-adjamd unitarily equivalent
to —A — a on L*(R®) via the wave operators (see [1], [8], [11], [15]). The
functions of the continuous spectrum satisfy

(—Aq + V(2))pr(z) = Kpp(z), k € R,



(=Ay +U(y))ng(y) = qznq(y), qc jo

the Lippmann-Schwinger equations for the perturbed plamecw (see e.g. [10]
p.98)

@= e [ T v
r)=——>—— [ — :
Pk (27?)% 7 Jos 7 — Ye)\Y)ay

ety 1 etlally—=|

ne(y) = (Ung)(2)d=

(27)2 AT Jpe |y — 2]
and the orthogonality relations

(x(2), Spl(ff))]ﬂ([m) =4§k-=1), kle R3,

(ﬁq(y)aﬁs(y))L2(R3) =d(q—s), q,s€ R3.

Their productspy (2)n,(y) form a complete system ib*(R®). For the right side of
(1.2) we have the following.

Assumption 2. The functionf(z,y) € L*(R%) and |z|f(x,v), ly|f(z,y) €
LY(RS).

Apparently, the right side of (1.5) defined in (1.6) satisties conditions of
Assumption 2 as well. Our first main proposition will be adduis.

Theorem 3.Let Assumptions 1 and 2 hold. Then problem (1.2) admits aueniq
solutionu(x,y) € H*(R®) if and only if

(f(xay)a Q(xay))LQ(RS) =0 (18)

foranyQ(z,y) € W2 (R®) satisfying the homogeneous equation (1.3), where the
spacelV?>(R%) is defined in (1.4).

The second problem studied in the article is given by
Azu+ Ayu+o(y).Vyu+ cly)u = F(x,y), (1.9)

wherer € R", n € Nandy € R3. The scalar function(y) : R* — R and the ve-
locity field v(y) = —V,p(y), assuming that(y) € W*>°(R?). The corresponding
adjoint homogeneous equation is

AQ + AyQ — divy (v(y)Q) + c(y)Q = 0. (1.10)
The function space used here is given by

W2e(R™) = {Q(z,y) : R"® = C | Q,VQ, A.Q, A,Q € L™(R™)}.
(1.11)



We introduce the scalar potential function

L (vyp(y))Q Ayp(y)
valy) = == —clw).

We consider the following two potential situations. Theec#soccurs when the
dimensiom € N is arbitrary,v,(y) — —a asy — oo with a constant > 0. Then

we definev(y) := v,(y) + a. In case Il) we restrict our attention to the dimension
n = 1, assuming that = 0, such that,(y) coincides withv(y) — 0, y — oc.

As before, the potential function(y) will be shallow and short-range, such that
the corresponding Schrodinger operatak, + v(y) on L?(RR?) is self-adjoint and
unitarily equivalent to-A, via the wave operators. Its functions of the continuous
spectrum satisfy

(A, +v(y)&(y) = *6(y), q € R’
in the integral formulation the Lippmann-Schwinger eqoiati

elay 1 etlally—=

&y) = —— &q)(2)dz

(2m)> 47 Jes |y — 2]
and the orthogonality relations

(&), aW) 2@y =6(g—1), ¢l R’

We have{,(y) wheng = 0. The corresponding nonhomogeneous Schrodinger
equation is given by

—Ayz— Az +v(y)z —az = G(z,y) (1.12)
with

G(z,y) = —F(:E,y)e_@. (1.13)
It can be verified that the solutions of equations (1.9) antiX)lare related via the
change of variables

p(y)

u(z,y) = z(z,y)e > .
For the right side of (1.9) we assume the following.

(1.14)

Assumption 4. The functionF (z, y) € L*(R"*3) and|z|F(z,v), |y|F(z,y) €
Ll(Rn+3).

Obviously,G(z,y) given by (1.13) satisfies the conditions of Assumption 4 as
well. Our second main statement is as follows.

Theorem 5. Let the potential functions(y) satisfy Assumption 1 and Assump-
tion 4 holds. Then problem (1.9) has a unique soluti¢n, y) € H*(R""3) if and
only if

(F(l‘, y)v Q(xv y))L2(R"+3) =0 (115)



foranyQ(z,y) € W2 *=(R"3) solving the adjoint homogeneous problem (1.10)
with the spacéV® < (R"*3) defined in (1.11).

The similarity with the usual Fredholm solvability conditis here is only formal
since the operators involved here do not satisfy the Fredhpbperty and their
ranges are not closed.

The studies of operators without Fredholm property areialuor instance for
proving the existence in the appropriate functional spateasationary and travel-
ling wave solutions of reaction-diffusion equations (seg €2], [3], [17]).

2. Solvability conditions in dimensionn = 6

We introduce the sequence of infinitely smooth cut-off fuorts in the space of
six dimensiong ¢, }>° |, dependent only upon the radial variable such ghat 1
inside the ball(z, y)| < r,, vanishes identically fof(x, y)| > R, and is monoton-
ically decreasing inside the spherical laygr< |(z,y)| < R,. These sequences
of radii r,,, R,, tend to infinity asn — oo and are properly chosen such tt#t in-
creases at a higher rate. This enables us to achié¢e||.2(re), ||A&alz2@s) — 0
asn — oo. The cut-off functions will be used to perform the limitinggament
below since the solutions of the homogeneous problemsestuatie bounded but
may not be decaying at infinity, like for instance the perédriplane wavegy ().
The quadratic forms below will be finite sin€g(z,y) € W? *(R®) and we inte-
grate over the compact supportQf Let us procede with proving the solvability
conditions for our six dimensional problem.

Proof of Theorem 3Let us first assume that problem (1.2) possesses a unique
solutionu(z,y) € H*R®) andQ(x,y) € W?* *(R") is a solution of the homo-

geneous problem (1.3) with the spdd& <°(R%) defined in (1.4). Then we easily
arrive at

(g +v1(2). Vst Ayt 0a(y).Vyu + 2w+ eo(y)u, Q) ages) =

- (f(l‘, y)v an)LQ(RS)-
Integrating by parts, we easily obtain
(Amu7 an)LQ(RG) = (uu gnA:EQ)LQ(RS) + u, QAmén)LQ(RG) +2<u, VxQ.ngn)LQ(RS)’
(Aytt, Q6n) sy = (1, E0 Q) r2(0) + (1, QALE) 2(20) +2(u, VyQ.Vy6n) r2(m0).
(01(2). Vau, Q€n) 12me) = —(u, divg (01(2)Q)&n) 2@y — (u, Qui(2).Valn) 2(r),
(v2(y)-Vyu, Q€n) r2(rs) = —(u, divy(v2(y)Q)&n) 12 (®s) — (s QU2(Y).Vy&n) 12(R0).-

By adding the terms up, we arrive at

(1, [AeQ + Ay Q — divy (01 (2)Q) — divy (v2(y) Q) + c1(2)Q + ¢2(y) QNen) L2me) = 0

(
(
(
(



sinceQ)(z, y) solves the adjoint homogeneous problem (1.3). We estirhateet
maining terms using the Schwarz inequality as follows

[(u, QAL 2wy | < [|Q] Lo (mo) |1l L2(me) || Aénl| L2 (me),

[(u, VQ. V&) 2mey| < [[VQ|| oo ey |l L2 ey [| VEn | 2(rs),
(1, Qui(2). V&) r2msy| < [|Q| oo o) |1 ]] oo sy || 2oy [| Vel L2 ms)
[(u, Qua(y).Vy&n) 2®e)| < (| QLo moy |vall oo @3yl ul L2 oy [ Vy&nll L2 R,
such that the right sides of the all four inequalities ab@reltto zero as — oo.

Note thatf(z,y) € L'(R%) by means of Assumption 2 and the Schwarz inequality.
Finally, we estimate

|(f(l‘, y)v an)Lz(RG) - (f(xay)a Q)L2(RG)| < ||Q||L°°(RG) / |f({L‘,y)|de‘dy,

I(z,y)[>rn

which tends to zero as — oo. Thus, we arrive at the desired orthogonality condi-
tion (1.8).

To conclude the proof of the theorem, let us assume the djgposimely that
orthogonality relation (1.8) holds. Let us introduce

p1(z) P2 (y)

A

nq(v), (k,q)ES?/a a.e. (2.16)

By means of Lemma A3 of [17], the functions of the continuoscimyy (z) and
n,(y) are bounded along with their gradients and Laplacians. agsitforward
computation yields that the functions given by (2.16) $atise adjoint homoge-
neous equation (1.3) and belong to tff{é’oo(RG) space defined in (1.4). Therefore,

(f(2,y), Qrglz,y))r2mey =0, (K, q) € 5\6/5 a.e.

Qk,fI@jv y) =e

Hence
(9(z,9), ()0 (V) 12wy = 0, (K, q) € STz ace.

By means of the part a) of Theorem 3 of [16] equation (1.5) &laiunique so-
lution z(z,y) € H?(R®). A straightforward computation yields thatz,y) €
H?(R®) related toz(z,y) via transform (1.7) solves (1.2). Supposg,(z,y) €
H?(R®) are two solutions of (1.2). Then the differeneer,y) = z(z,y) —
z(z,y) € L*(R%), wherez, , are connected to; » by means of the variable change
(1.7), satisfies the homogeneous equation

Nz +V(x)z—Ayz+U(y)z —az = 0.

Since the operator involved in the left side of the problemvabconsidered on
L*(R") is self adjoint and unitarily equivalent teA, — A, — a, it has no nontrivial
square integrable zero modes. Therefaréz, y) = us(x,y) a.e. inRC, |



3. Solvability conditions inn + 3 dimensions

We introduce here in the spacerof+ 3 dimensions the sequence of smooth cut

off functions{¢&,, }>°_, with the properties analogous to ones used in Section 2.

Proof of Theorem 5Let us first assume that(z, y) € H*(R"*?) is the unique
solution to problem (1.9) an@(z,y) € W*>(R"*?) is a solution of the adjoint
homogeneous equation (1.10) with the spHEe™>(R"*3) defined in (1.11). Evi-

dently,

(Axu + Ayu + U(y)vyu + C(y)ua ng)L2(Rn+3) = (F(l‘, y)v ng)LQ(R"+3)~

F(x,y) € L*(R""3) via Assumption 4 along with the Schwarz inequality. For the

right side of the identity above we easily derive

|(F'(z,y), Q&m) r2@n+sy — (F(2,y), Q) r2@n+s)| <

< HQ|]L00(Rn+3)/ |F(x,y)|dedy — 0, m — oo.

|[(2,9)[>7rm

Integrating by parts, we easily obtain
(Azu, Q&m) L2mnts) = (U, A2 Q) L2mn+3) + 2(u, VoQ. V&) r2mnts)+
+(u7 QAxgm)LQ(R”H”)a
(Ayua ng)LQ(RWr?’) = (u, gmAyQ)LQ(R"+3) + 2(“7 va'Vygm)LQ(R"+3)+
+(u, QAyEm) L2mn+3),
(U(y)-vy% Qfm)B(Rnﬁ) = —(u, din(“(?/)Q)fm)m(Rnﬁ)—
—(U, Qv(y)-vyfm)m(w+3)-
Adding the terms up yields

(4, [ArQ + Ay Q — divy (v(y)Q) + c(y)Q)&m) L2 n+3) = 0

due to the fact thaf)(z,y) solves the adjoint homogeneous problem (1.10).

means of the Schwarz inequality we obtain the bounds
|(u, VQ.VE&n ) 2@ns) | < [Jul] 2@nss) [V Q| oo rrt3) [ V|| L2ments),
|(u; QAEm) L2r+3)| < Qoo rets) [[ul| L2 o) | A | L2 (rr+3),
|(u, Qu(Y)-Vy&m) L2rn+s)| <

<N QI oo 3y [0 (W) || oo 3y 1wl 2 (mr+3) |V yim || L2 nt3) -

Apparently, the right sides of all these inequalities abievel to zero asn — oo,
such that we obtain the desired orthogonality relationf)L.1

By



To conclude the proof, we now assume the opposite, such thaigmnality
condition (1.15) holds. Let us define in case |I) when the dsrmemm € N is
arbitrary andu > 0

e““” _r)

QrmglT,y) = e 2 G), (kg €STE ae (3.17)

and in case IlI) when the dimensien= 1 anda = 0

_p)

Qo(z,y) ==e 2 &(y).
Let us consider case ) since in case Il) we can exploit thdaindeas. It can be
verified that functions (3.17) satisfy the adjoint homogrreequation (1.10) and
belong to the?V?>(R"3) space. Therefore,

(F(:C, y)7 ka,q('r? y))L2(R"+3) = 0.

Hence ‘
ezkm

(G(z,y), Wfq(?/))m(ww) =0, (kq)€ S%?’ a.e.
By means of the part a) of Theorem 6 of [16], equation (1.12hitgla unique
solutionz(z,y) € H*(R""3). A straightforward calculation gives us thatz, y) €
H?(R""3) related toz(z,y) via the change of variables (1.14) satisfies (1.9). Let
us assume that; »(z,y) € H*(R"**) both solve (1.9). Then(z,y) := z1(z,y) —

2 (z,y) € L*(R™"?), with z; , connected ta, , via formula (1.14), is a solution of
the homogeneous problem

—Ayz—Ayz+v(y)z —az = 0.

Due to the fact that the operator in the left side of the egueadbove considered on
L*(R"3) is self adjoint and unitarily equivalent teA, — A, — a, it does not have
nontrivial square integrable zero modes. Thusz, y) = us(z,y) a.e. inNR".
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